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Fries et al. [1] reported careful experiments on capillary rise of a liquid in a weave both 

with and without evaporation. They used a model based on the assumption that the liquid wets 

the weave to saturation, i.e., the weave’s saturation has only two states, completely saturated (all 

the pore space is filled with liquid) or completely unsaturated (all the pore space contains no liq-

uid). They observed during liquid imbibition that, with evaporation, “there seems to be a trend 

that the mathematical model overestimates the height … . The average deviation is found to be in 

the range of 20%” ([1], pg. 127). Of various explanations for this discrepancy, they suggest that 

probably “the most influential is the assumption of a constant evaporation distribution all over 

the wet weave” and further suggested that their theory could explain the experimental data if “by 

some means the evaporation rate (might) be higher at the top of the weave”. However, the au-

thors present no mechanistic basis for this suggestion. Here, we propose an alternative to explain 

their observations. 

We observe that the two-state, wet/dry model invoked by that authors, while a useful ap-

proximation for imbibition into a dry porous medium, is of only limited applicability for a drain-

ing or drying porous medium. For the case of imbibition into a dry medium with a limited range 

of pore sizes, a sharp saturation change at the wetting front is typical. For a medium with a satu-

rated region that is allowed to drain or dry, there will typically be a gradual change in saturation 

throughout the medium. Case (6) in Fig. 10 shows the reduction in mass of a wetted weave due 

to evaporation. In their analysis of this case, Fries et al. ([1], pg. 124) deduced a constant mass 

drying rate per unit area of wetted weave. In other words, during evaporation the extent of the 

wetted weave did not change, only its saturation. Thus, the weave likely cannot be considered as 

being analogous with a capillary tube, which is either dry or saturated, rather it is a porous me-

dium with a pore-size distribution, as suggested by Fig. 2. 
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Our main point is that this fundamental assumption of two-state liquid content may not be 

justified. Their wetting model is based on the capillary bundle approach of Green and Ampt [2] 

or, more specifically, Washburn [3], which basically assumes a single pore size and could be a 

misleading description. Instead, we expect the weave to be saturated in the immersion zone and 

to be increasingly dry with height in the wicking zone. This is the case with or without a uniform 

evaporation flux but, as explained above, it is clear that with evaporation the drying weave expe-

riences (up to) the complete range of saturations, from wet to dry. 

The Green and Ampt model (Eq. 9 in [1]), which is the core of the evaporation/flow model 

developed by the authors, has been investigated physically for both downward and upward flow. 

The experiments in [1] all concern the latter case. In [4] it was shown that the Green and Ampt 

model incorporates a non-physical shape of the hydraulic conductivity as it varies with satura-

tion. Because air entrapment – which is likely when a liquid moves in the direction of gravity 

due to the air buoyancy – changes the shape of the hydraulic conductivity especially near satura-

tion, the Green and Ampt model can be considered as a reasonable approximation for vertically 

downward flow. However, for upward flow (as in the experiments in [1]), air entrapment is un-

likely and the model’s non-physical character could be a concern as the shape of the hydraulic 

conductivity function is not modified [4]. Indeed, based on their extensive laboratory experi-

ments, Green and Ampt [2] found that their model was less applicable to vertically upward flow 

than to downward flow. 

The authors defined φ as the porosity (volume of pore space divided by total volume), and 

obtained its value by measuring the slope in Fig. 11, which yields φ = 0.24 ± .03 (called θ in Ta-

ble 7). If the pore space is completely full with liquid, then the saturation is identical to the po-

rosity. If the liquid only partially fills the available pore space, then the saturation will be lower 
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than the porosity. For a medium containing no liquid the saturation is zero. Since for their expe-

riments with evaporation they estimate the maximum height from mass measurements, taking φ 

= 0.24 as if there was no evaporation, the actual φ should be lower and as a result we suspect that 

the actual height is greater than given in Fig. 13 for instance. 

Based on the changing saturation within the weave, we now give a crude quantitative esti-

mate of the 20% discrepancy noted by the authors following application of their two-state theory. 

The non-constant φ in the profile is largely due to the capillary diffusion of liquid in the weave. 

The capillary diffusion coefficient in a porous medium can be approximated by a power law, 

∼φn, with 4 ≤ n ≤ 8 [5] (if n → ∞, φn approaches a delta function in which case φ becomes uni-

form and, for imbibition, the two-state saturation model assumed by the authors ensues). The pa-

rameter n is an empirical, medium-dependent constant. Without evaporation the liquid content φ  

is a function of position x  given by Eq. (6) in [6] as ( )0/ 1= − φ φ n
Fx x ,  where Fx  is the posi-

tion of the wetting front and 0φ  is the value of φ  at saturation. Then the average liquid content is 

given by ( ) (01
0 0

1
φ− )./φ φ = +∫Fx x n nd  With evaporation the steady state profile is given by Eq. 

(12) in [7] as, ( 0φ ) /2/ 1= − φ n
Fx x ,  then the average liquid content is  Thus evapora-

tion reduces the average liquid content in the profile by (n + 1)/(n + 2), or between approximate-

ly 10 and 20% for the range of possible values of n given above. These estimates ignore the ef-

fect of gravity. Note also that Lockington et al. 

(/ 2n n + ).

[7] considered the case when evaporation is pro-

portional to the liquid content, whereas the authors showed that evaporation in their experiments 

is largely independent of liquid content. Then, the reduction for φ should even be greater than (n 

+ 1)/(n +2). In conclusion, the actual heights with evaporation should be at least 10 to 20% high-
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er than the values they give (which are based on mass data), thereby reducing the discrepancy 

with the predicted values. 
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