Statins are hypolipidemic drugs which not only improve cholesterol but also triglyceride levels. Whereas their cholesterol-reducing effect involves inhibition of de novo biosynthesis of cellular cholesterol through competitive inhibition of its rate-limiting enzyme 3-hydroxy-3-methylglutaryl CoA reductase, the mechanism by which they lower triglycerides remains unknown and forms the subject of the current study. Treatment of normal rats for 4 days with simvastatin decreased serum triglycerides significantly, whereas it increased high density lipoprotein cholesterol moderately. The decrease in triglyceride concentrations after simvastatin was caused by a reduction in the amount of very low density lipoprotein particles which were of an unchanged lipid composition. Simvastatin administration increased the lipoprotein lipase mRNA and activity in adipose tissue and heart. This effect on lipoprotein lipase was accompanied by decreased mRNA as well as plasma levels of the lipoprotein lipase inhibitor apolipoprotein C-III. These results suggest that the triglyceride-lowering effect of statins involves a stimulation of lipoprotein lipase-mediated clearance of triglyceride-rich lipoproteins.