Infoscience

Journal article

Tissue-specific expression of the human gene for lecithin: cholesterol acyltransferase in transgenic mice alters blood lipids, lipoproteins and lipases towards a less atherogenic profile

Lecithin:cholesterol acyltransferase (LCAT) is a key enzyme in the reverse cholesterol pathway but its role in lipid metabolism is still unclear. We have generated mice transgenic for a 7-kb genomic DNA fragment comprising the 6 exons and 5 introns of the LCAT gene with 1932 bp of 5' flanking and 908 bp of 3' flanking sequences. One line had integrated about 30 copies and expressed about 40-fold increased LCAT activity in a human test system. The expression showed correct tissue specificity of the human LCAT gene. Increased LCAT activity resulted in a decrease of plasma triacylglycerols below 50% of fasting controls. This reduction was seen in all lipoprotein fractions. Lipoprotein lipase activity did not change significantly, whereas hepatic triacylglycerol lipase increased markedly. Plasma total cholesterol was similar in fasting transgenic and control mice, but low-density lipoprotein and very low-density lipoprotein cholesterol were reduced to about 50%. High-density lipoprotein cholesterol increased about 20%, accompanied by a correspondingly increased size and a higher cholesterol efflux-stimulating activity of transgenic LCAT high-density lipoprotein. Both apolipoprotein A-I and A-II plasma concentrations increased in transgenic mice. Plasma triacylglycerol and cholesteryl ester fatty acid distribution showed an increased proportion of palmitic acid, whereas oleic, linoleic and arachidonic acid decreased, thus resembling more closely the human situation. Overexpression of the human LCAT gene provokes major changes in plasma lipoprotein and apolipoprotein concentrations, resulting in a less atherogenic plasma lipoprotein profile through a reduction in atherogenic and an increase in anti-atherogenic lipoproteins.

Fulltext

Related material