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Abstract— The paper presents a very high speed slotless
permanent magnet motor design procedure using an analyti-
cal model. The multiphysics analytical model allows a quick
optimization process using a sequential quadratic programming
method. The presented model includes the magnetic fields, the
mechanical stresses in the rotor, the electromagnetic power losses,
the windage power losses and the power losses in the bearings.
The paper also presents an example of optimization.

I. I NTRODUCTION

Due to their high power density, very high speed (VHS)
permanent magnet (PM) motors are increasingly demanded
on the market [1].

In a VHS motor, the different parts and the different
materials are pushed to their thermal and mechanical limits.
Indeed, as the speed is very high, high stresses appear in the
rotor. As the mechanical power is given byP = Tω, for a
given output powerP at high speedsω one needs a much
lower torqueT and volume than at lower speeds. Hence,
there is a high power density. This article shows an innovative
procedure to VHS PM motors design.

II. T HE NECESSITY OF A MULTIPHYSICS FULLY

ANALYTICAL MODEL

The mechanical optimum for the motor would be to reduce
the rotor diameter to diminish the stress in it, but it would
reduce the motor torque. The magnetic optimum would be to
reduce the air gap, but it would increase the windage power
losses. These two simple examples show us the importance of
having an optimization which uses the complete multiphysics
model of the system.

In the considered case finite elements methods are extremely
heavy for optimization processes. Therefore an analytical
model is used. The model is applied to the motor structure
shown in Fig. 1. Our geometry is: a magnet at the center, a
sleeve, an air gap, the coils, and the stator yoke.

III. T HE ANALYTICAL MODEL

A. The magnetostatic fields

To solve the field, the polar coordinate system (r, α) is
used. Magnetic field in the PM is calculated using Poisson’s
equation:

∇2φ =
∇ · ~BR

µ0µr
(1)

with ~BR the PM remanent field,µr the relative permeability,
µ0 the free space permeability andφ the scalar magnetic

Fig. 1. Motor structure

potential. The magnetic fields in the sleeve, the air, and the
coils are calculated by setting~BR = 0 in (1), which gives
Laplace’s equation. The hypothesis of infinite permeability in
the yoke is made.

Xia and Zhu’s article [2] resolves the two equations in the
following geometry: a shaft in the center, a magnet, an air gap,
and the stator yoke. In our case, the shaft radius is set to zero.
The radial radial fieldBr in the air gap is obtained:

Br(r, α) = B̂r(r) cos p(α− θ) (2)

with
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2BRp
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and with p the number of pole pairs,µr the magnet relative
permeability,r1 the outer radius of the magnet,ryi the inner
radius of the stator yoke,θ the rotor orientation.

We calculate Laplace’s torqueT acting on the copper with
the current densityJ :

T =
∫

coil

rJBr(r, α)dτ (4)

with dτ an element of volume.



The result is the following:

T =
2BRJlarp+1
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with la the active length,rce the outer radius of the coil,rci

the inner radius of the coil, and

g(p, rce, rci) =


r−p+2
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(6)

and

f(αi, θ, p) = sin(p(α4 − θ))− sin(p(α3 − θ))
− (sin(p(α2 − θ))− sin(p(α1 − θ))) (7)

with αi i = 1, ..., 4 the angles which set the dimensions of
one coil.

B. Mechanical stresses

The mechanical stresses (σr, σα) in the rotor are calculated
using the equilibrium equation [3]:

dσr

dr
+

σr − σα

r
+ Fr = 0 (8)

with Fr the radial force density. Hook’s law gives the depen-
dence of the strainε on the stresses:

εr =
1
E

(σr − νσα) (9)

εα =
1
E

(σα − νσr) (10)

with E Young’s modulus andν poisson’s ratio.
In a rotating system a volume element is subject to the

following force F :

F = ρω2r (11)

with ω the anglular velocity.
Using the following values, we obtain the results shown on

Fig. 2:

νs = 0.32
νm = 0.3
ω = 2 π 3333 s-1

ρs = 4.42× 103 kg
m3

ρm = 7.7× 103 kg
m3

Es = 116× 109 N
m2

Em = 150× 109 N
m2

e0 = 2× 10−5 m

r1 = 5.80× 10−3 m

r2 = 6.21× 10−3 m
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Fig. 2. Radial (continuous line) and tangential stress (dashed line) in the
magnet and the sleeve along a radius. Top: stresses at no speed (tangential
and radial stresses have the same value in the PM). Bottom: Stresses at 200
krpm.

with νs andνm Poisson’s ratio respectively of the sleeve and
of the magnet,ρs and ρm the density of the sleeve and the
magnet,Es and Em Young modulus of the sleeve and the
magnet,e0 the radial interference between the magnet and the
sleeve,r1 andr2 the outer radius of the magnet and the sleeve.

The permanent magnet is fragile. In order that it does not
break at high speeds, it is prestressed, as shown on Fig. 2 (top):
at no speed, the radial and tangential stresses are negative in
the PM. The limiting factors are the radial stress at the center,
and the tangential stress at the inner side of the sleeve at high
speeds: Fig. 2 (bottom).

C. Thermal model

The steady state temperatureT is calculated using the heat
diffusion equation [4]:

k∇2T + q̇ = ρcp
∂T

∂t
(12)

with k the thermal conductivity,ρ the material density,̇q the
rate at which thermal energy is generated per unit of volume
andcp the specific heat.

Because of the 3D thermal interactions in the motor, and
because of the air movements in the air gap, this 2D thermal
model is not consistent with the reality. It is used to give us



indications and not to constraint the model. Further investiga-
tions in the thermal modeling need to be done.

So the thermal aspect of the motor is not directly taken
into account. But, as the motor is designed by minimizing the
total power losses, the thermal aspect is indirectly taken into
account.

D. Electromagnetic power losses

Joule power losses densitypcop in the coils is calculated as:

pcop = ρcJ
2 (13)

with ρc the resistivity andJ the current density.
The stator iron power lossesPiron are assumed to be

generated only by the PM. Their densitypiron is calculated
approximately using Steinmetz equation:

piron = c1f
c2B̂c3 (14)

with ci, i = 1, 2, 3 being empirical coefficients,̂B the maxi-
mum magnetic field andf the frequency. The same empirical
approach used in [5] for the hysteresis power losses is used
here for the iron power losses.

The eddy current and hysteresis power losses in the magnet
are neglected. The eddy currents in the sleeve and in the coils
are also neglected.

E. Windage power losses

The article from Vrancik [6] indicates us that the windage
power lossesPw are calculated as:

Pw = πCdlr
4
2ω

3ρair (15)

with l the length considered,r2 the inner radius of the air
gap, ω the angular velocity andρair the air density. The
skin friction coefficientCd is calculated using an empirical
formula:

1√
Cd

= 2.04 + 1.768 ln(Re
√

Cd) (16)

with Re the Reynolds number.
Fig. 3 shows the windage power losses given by this model

for an air gap length of 34 mm when the motor turns at 200
krpm.

F. Mechanical power losses in the bearings

The power losses in the bearingsPbearings [7] can be
estimated by:

Pbearings = c4ω
c5 (17)

with c4 andc5 be two empirical constants.
In our case, ceramic ball bearing are used.
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Fig. 3. Windage power losses in an air gap cylinder of 34 mm of length at
200 krpm.
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Fig. 4. Representation of the objective function (the power losses) for each
iteration.

IV. OPTIMIZATION PROCEDURE

The model contains more than 140 equations and 190 vari-
ables. The system has 13 degrees of freedom. The commercial
softwarePro@Designis used to perform the optimization [8].
This program is based on a sequential quadratic programming
(SQP) solver using the partial derivatives and penalty func-
tions. One parameter is chosen to be the objective function
and all the others are fixed, constrained in intervals or free.

Fig. 4 shows the minimization of the objective function
which is in our case the total power losses. One can note
that the minimum value of power losses shown on the graphic
is in this example at the first iteration. The algorithm does not
converge to this value of losses because some constraints are
not satisfied at this iteration.



V. OPTIMIZATION EXAMPLE

Because of the mechanical normal modes, the active length
of the motor was constrained to be smaller or equal to 30 mm.
The motor specifications are:

Active length of the motor (la) ≤30 mm
PM remanence (BR) 1.18 T
Number of phases 3
Mechanical power 2 kW
Speed 200 krpm

The optimal design generated by Pro@Design is:

Active length of the motor (la) 30 mm
Outer radius of the PM (r1) 5.80 mm
Outer radius of the sleeve (r2) 6.21 mm
Outer radius of the coils (rce) 14.14 mm
Number of pole pairs (p) 1
Phase current amplitude (sin wave) 36.25 A
Efficiency 94.5 %
Bearing power losses (Pbearings) 53 W
Joule power losses (Pcop) 39 W
Air gap power losses (Pw) 11 W
Iron power losses (Piron) 13 W

VI. D ISCUSSION

The optimization process showed in our case that:

1) It is very fast: it takes only a few seconds to find the
optimum.

2) A 2 pole pairs motor needs to have a bigger active length
than a 1 pole pair one to reach the optimum efficiency,
which is problematic with respect to the mechanical
normal modes. Concerning the control electronics, the
solution with 1 poles pair is also more suitable.

3) Without any constraints on the active length, the opti-
mization process finds an optimal design without sleeve
with an active length ofla = 61.69 mm and an outer
radius of the PM ofr1 = 5.06 mm.

Some important models are still missing: a vibration model,
a model of the electronics, a model of the power losses in
the PM, the sleeve, and the coils due to the variation of the
magnetic field. The power losses in the yoke should be refined
taking into account the field created by the coils.

VII. PROTOTYPE

A prototype has been designed using this analytical model.
It is shown on Fig. 5. Although it is designed for 200 krpm
and 2 kW, some construction constraints are added to the
presented constraints in the optimization process. In means that
the prototype is slightly different compared to the optimization
example.

The prototype is being measured and the results will be
shown in more details in a future publication. Nevertheless,
the first results already showed the benefits of the analytical
approach. The prototype designed using the analytical model
showed better results than the previous prototypes. It already
reached 200 krpm.

Fig. 5. Test and measurement bench for the high speed prototype.

VIII. C ONCLUSION

The optimization procedure presented in the paper enables
to quickly obtain the optimal design. Different materials,
motor configurations, and constraints for the motor parameters
are tested.
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