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ABSTRACT
Power consumption has become a critical issue in large scale clusters. Ex-
isting solutions for addressing the servers’ energy consumption suggest
“shrinking” the set of active machines, at least until the more power-proport-
ional hardware devices become available. This paper demonstrates that
leveraging the sleeping state, however, may lead to unacceptably poor per-
formance and low data availability if the distributed services are not aware
of the power management’s actions. Therefore, we present an architecture
for cluster services in which the deployed services overcome this problem
by actively participating in any action taken by the power management. We
propose, implement, and evaluate modifications for the Hadoop Distributed
File System and the MapReduce clone that make them capable of operating
efficiently under limited power budgets.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems; D.4.3 [File Systems Management]: File Systems; D.4.7
[Organization and Design]: Distributed systems

General Terms
Design, Management, Reliability

Keywords
Cluster services, Cluster applications, Energy-Awareness, Storage

1. INTRODUCTION
Power consumption has traditionally represented a critical is-

sue for devices such as notebooks and personal digital assistants
(PDAs) since these devices generally run on batteries. Recent re-
search has however focused on reducing power consumption in
cluster systems as well, mostly motivated by their operational costs
and reliability. For instance, the data centers can consume as much
energy as a city if the number of servers reaches a certain level
[13]. Moreover, computing in an environment with high tempera-
tures significantly increases the risk of failure [8]. To address the
problem of overheating, data centers are forced to spend signifi-
cant resources on cooling devices, which again increases the over-
all power consumption.
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The EPA [7] estimates that U.S. data centers will consume around
100 billion kilowatt hours annually by 2011, representing a $7.4
billion annual cost. The reason for such a large overall cost is
twofold. First, data centers and their services have become impor-
tant for many sectors of the economy. Second, the same study has
shown that the consumed energy has more than doubled in a period
between 2000 and 2006, mostly because servers have become more
power hungry. Therefore, the report suggested certain opportuni-
ties for improving the energy efficiency of data centers, including
dynamically matching hardware resources to the load.

Most of the work on energy saving focuses on minimizing the
energy consumption while keeping the same overall performance
level. However, little research [4, 12] has concentrated so far on
minimizing the potential damage caused by a power management
system when it is forced to reduce the energy consumption when
existing solutions which individually address various aspects of en-
ergy savings are not sufficient. It is indeed easy to imagine a case
where the only action that a power management system can take
is to force some of the machines to enter a sleep state. This could
be due to, for example, a “thermal emergency” [4, 12], when it
is necessary to immediately reduce power consumption to avoid
jeopardizing the energy supply of the entire system. In this case,
the energy consumption represents the hard constraint of the opti-
mization problem, rather than the objective function as it was the
case in most of the previous work on this topic.

In this paper we demonstrate that two rather popular building
blocks for distributed applications are neither capable of operating
at multiple power levels, nor of dealing with energy consumption
limits. We therefore suggest a simple energy-aware design relying
on a common control plane, whereby the power management de-
fines the goals that have to be accomplished (energy-wise), and lets
the deployed services actively collaborate by suggesting actions
that, from their standpoint, minimize the impact on performance
and data availability.

2. CASE STUDY

In this section we analyze the capabilities of currently avail-
able distributed applications to adapt to radical reductions in en-
ergy consumption or multiple power modes. We focus here on two
important blocks for developing such applications: 1) Distributed
File Systems, and 2) MapReduce, which presents an important pro-
gramming model for large scale applications aimed at processing
and generating large amounts of data in parallel. Both building
blocks are provided by an open source project, Hadoop [1], that
provides a software framework for distributing and running appli-
cations on clusters of servers, inspired by Google’s File System
[10] and Google’s MapReduce [21].
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Figure 1: Server power usage and energy efficiency at vary-
ing utilization levels, from idle to peak performance. Even an
energy-efficient server still consumes about half its full power
when doing virtually no work. Source: [2].

To explore most of the available opportunities for energy savings
in cluster computing, we sketch the results of Google’s server uti-
lization and energy consumption study [2]. The solid line in Figure
1 represents the power consumption as a function of the utilization,
while the dashed line represents the energy efficiency, computed as
the ratio between the utilization and the corresponding power value,
again as a function of the utilization. The energy efficiency peaks
at full utilization and significantly drops as the utilization level de-
creases. For instance, the power consumption at nil utilization (0%)
is still pretty high, around 50%. The typical operating region (lies
between 20% and 50% utilization) makes the problem even worse.
Thus, Figure 1 also suggests that aggregating the workload by dy-
namically resizing the active server set is the best decision from
the power management point of view, at least until more energy
efficient hardware becomes available. By doing so, a certain num-
ber of machines can conserve energy through entering some of S-
states such as S3 (so called “suspend to RAM”), S4 (“suspend to
disk”) and S5 (“soft off”). From now on, we will refer to this ac-
tion as entering the sleep state. Exposing the Hadoop’s distributed
file system (HDFS) and MapReduce to such actions and observing
their energy-efficient characteristics are therefore next steps to be
tackled.

HDFS contains one master, the so-called NameNode, and several
DataNodes, which are the slaves. As the NameNode represents the
hot spot of the system, HDFS features also a secondary NameNode
which ensures correct system operation in case of a master failure.
The elementary data storage entities are called blocks, which can
be up to 64 MB large. Files larger than this value are partitioned
into blocks. If a DataNode wants to insert a file, it stores a copy of
this file locally and replicates it twice onto remaining DataNodes
(the default block replication factor is three).

Each DataNode periodically sends heartbeat messages to the Na-
meNode in order to allow monitoring of its availability. A DataN-
ode is declared as dead if no heartbeats are received within a certain
time window. The NameNode does also periodically verifies if all
replicas of the system are available and not corrupted. If a block is
found to be under-replicated or erroneous, it is automatically repli-
cated again.

Next we observe how the HDFS behaves under realistic actions
taken by the cluster power management system. To emulate the
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Figure 2: Aggregated network traffic when 30% DataNodes
enter the sleep state.

scenario in which the power management module intentionally lets
randomly chosen 30% of the DataNodes enter the sleep state, we
kill the HDFS processes on these machines. Figure 2 shows the
aggregate network traffic during this experiment. The leftmost side
of the graph corresponds to the system’s standby traffic, resulting
from heartbeat signals, report messages and other background tasks
(10 to 30 kB/s on average). After the HDFS processes are killed,
the NameNode’s heartbeat messages fail and the system instantly
starts to replicate all the blocks belonging to the sleeping nodes.
The reason for this so-called panic phase is that the system checks
the availability of each stored block, and if the number of replicas
is below a certain threshold, it automatically replicates the block
onto other machines. The resulting system peak traffic is around
110 MB/s.

These results show that implementing a power-saving strategy
without an energy-aware HDFS design generates heavy network
traffic, which in addition is completely unnecessary - the data stored
on sleeping nodes is temporarily unavailable and overall durable.
Furthermore, replicating blocks already stored on sleeping DataN-
odes wastes space and interferes with the system operation. An
even worse scenario can occur if the power management system
observes the additional load caused by panic phase, interprets this
as a user requirement, and starts waking up the machines. This
could cause undesirable cycles of powering machines on and off.

Another relevant metric is represented by the number of tem-
porarily unavailable blocks and files caused by certain nodes en-
tering the sleep state. Figure 5 depicts the fraction of unavailable
blocks, of the blocks that have only one replica, and of unavailable
files. A discouraging fact is that, even with a reasonable reduction
in energy consumption of 30%, there is a high fraction of unavail-
able blocks (5%) leading to a full 25% of all files being temporarily
unavailable. Moreover, 20% of the blocks are only replicated once,
implying that these blocks could eventually become unavailable too
in case of failure.

As a next step, we run a similar set of experiments with MapRe-
duce. Hadoop’s MapReduce framework is a programming model
which enables programmers who do not have much experience with
parallel programming to rapidly write jobs that are automatically
split into multiple independent simple tasks (mappers and reduc-
ers), in a completely parallel way. This allows easy access to the re-
sources of a large cluster and is appropriate for executing jobs such
as data mining, web indexing, scientific computation, etc. Similarly
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Figure 3: MapReduce processing power as a function of the
number of active machines.

to Hadoop’s distributed file system, MapReduce consists of one
master node running JobTracker and multiple slaves. Each slave
runs one TaskTracker instance. The master node is responsible for
assigning component tasks to slaves (scheduling), monitoring all
jobs, re-executing tasks that have failed or are too slow, etc.

In order to analyze the energy efficiency characteristics of MapRe-
duce we vary the overall energy consumption by repeating the same
experiment, but decreasing the number of active machines in the
cluster by one in each round. Each experiment includes the same
job (word counting problem) and the same input set (10GB) that
we found to be reasonably large for our cluster (details on the clus-
ter are reported in the Evaluation). The results are reported in
Figure 3, which shows the processing power as a function of the
number of machines used. We assume that all machines consume
the same amount of energy. One can observe that the processing
power scales almost linearly with the number of machines used,
up to a point where the system encounters a network bottleneck.
This is consistent with the previously reported findings [22], which
indicate that the MapReduce scheduler is not best suited for non-
homogeneous environments. In our example, once we start adding
machines across the bottleneck links, the energy efficiency drops
significantly. It is obvious from this scalability curve that MapRe-
duce should keep its computation locally in order to achieve the
best energy-efficiency.

Overall, one might conclude that aggregating load on a fewer
number of machines is a wise decision to address the problem of the
discouraging energy-efficiency characteristics for modern servers.
However, we also show that emerging distributed applications, be-
side being energy-efficient, have to be the active participants of the
power management if we want to avoid poor performance as seen in
this section. Therefore, we propose a model that has a communica-
tion channel between the cluster power management and services
running on the cluster for collaborative power-management. The
next section gives more detail of the proposed design.

3. APPROACH
The model we propose is depicted in Figure 4. In this architec-

ture, each distributed service running on the cluster cooperates with
the common control plane, which acts as a glue between the cluster
power management interface on one side, and all deployed services
(only HDFS and MapReduce in this specific case) on the other. The
common control plane assures that the needs of the distributed ser-

Common Control 
Plane

HDFS MapRed

Power 
Management

EA EA

Figure 4: Proposed approach: Common control plane connect-
ing power management on one side and HDFS/MapReduce on
the other.

vices as well as those of the power management are enforced in a
way that maximizes system objectives and observes power budgets.

The cluster’s power management actions may be initiated by
a human administrator or, under certain circumstances, automati-
cally. An example for the first case might be a thermal emergency
that requires 30% of the machines to enter the sleep state. An ex-
ample for the second case might be provided by a cluster being in-
tentionally forced to operate, in an automatic way, at a lower power
level during nighttime, when the load is assumed to be lower.

One of the common control plane’s responsibilities is to report
the cluster’s power management decisions to the active distributed
services. It is worth mentioning that each communication channel
is active in both directions, meaning that the distributed services
collaborate in the process and provide their feedback on which ma-
chines are most appropriate for sleeping. By doing so they min-
imize the impact on the performance, while fulfilling the power
management’s demands. Once the common control plane has col-
lected the necessary feedback from the running services, it makes
a decision and forwards the list of machines that are going to be
"sacrificed" to the power management, which then reacts on this
decision.

Although the general idea sketched above looks straightforward,
there are a few points worth discussing, mostly concerning the de-
sign of a particular service running on the cluster. For instance, it is
unacceptable to have a fraction of unavailable blocks as high as the
one seen in the previous section when only 30% of the nodes are
sleeping. Therefore, we need to introduce changes in the original
version of HDFS and MapReduce in order to make them behave as
active participants in the power management actions. The changes
are labeled as EA, which stands for Energy Aware design for cluster
applications, in Figure 4.

4. DESIGN AND IMPLEMENTATION
Section 2 shows that the design of both Hadoop’s DFS and MapRe-

duce is not energy-aware, despite the fact that they might rely on
machines featuring efficient local power management schemes. We
present in the following what be believe are mandatory attributes
for distributed applications, such as HDFS or MapReduce, to really
behave in an energy-proportional way, i.e., capable of efficiently
operating at multiple power levels.

4.1 Energy-Aware HDFS design

First, we need to make Hadoop capable of handling nodes which
we intentionally let enter the sleep state, instead of getting into a



panic phase. Therefore, we have to deal with a new kind of node
status, namely sleeping. The main purpose of this status is to dif-
ferentiate dead nodes (i.e., unrecoverable ones) from those which
have intentionally been put to sleep. We assume that a node going
to sleep is healthy, at least at the time we shut it down, and there-
fore that all the data it holds is only temporarily unavailable. On
the contrary, if a node is dead, we do not know exactly what caused
the problem - the physical machine where the DataNode is hosted
could have crashed due to hardware failure, the network could be
temporarily down, or the DataNode process itself could have hung.
In this case, it would be better for the distributed file system to
replicate the missing blocks.

If, on the other hand, a node is sleeping, we know that the ma-
chine and the hosted data are safe; we therefore do not need to
replicate again the temporarily unavailable blocks. In order to take
this aspect into account, we modified the block inspection function.
This has been implemented by checking if an unavailable block is
found: when this occurs, we prevent the replication from being
executed if the corresponding node is sleeping. Thus, by introduc-
ing the sleeping layer, we prevent the occurrence of a panic phase
while some machines are put to sleep.

Second, we need to introduce the ability of operating at mul-
tiple power levels. However, we recall that the previous section
demonstrated an unacceptably high fraction of unavailable blocks
when HDFS is exposed to a reasonably aggressive power manage-
ment action (30% machines were put to sleep). The reason lies in
the fact that HDFS randomly chooses machines on which a block
would be replicated. Therefore, a large number of choices for pick-
ing machines for sleeping leads to data unavailability. The simi-
lar study about load balancing and data availability is conveyed by
Saito et al. [19]. They defined the seggroup that represents the
set of machines storing a block. In short, as the number of seg-
groups increases, the extra load is spread more evenly. However,
having too many seggroups reduces the system’s reliability, since it
increases the number of combinations of inactive machines (caused
by sleeping) that lead to data loss. Since our goal is to minimize
the number of unavailable blocks while machines are sleeping, we
set the number of seggroups per machine to one. For instance, in a
set of 6 machines ({a,b,...,f}) we would have 2 seggroups ({a,b,c}
and {d,e,f}). Thus, we should be able to let 2/3 of all machines
enter the sleep state while still having a block availability of 100%,
assuming that the default number of replicas is 3.

Finally, the proposed design assumes that services have to ac-
tively collaborate by suggesting actions - machines appropriate for
sleeping in our case - that, from their standpoint, minimize the
harm at system level. This translates into minimizing the num-
ber of unavailable blocks, or making sure that all of them are still
available, if possible. Therefore, we implemented a function that
cycles through all combinations, selecting the most suitable one.

4.2 Energy-Aware MapReduce design

As seen in Figure 3, the processing power scales linearly with the
power consumption up to a certain level; however, from that point
onwards adding more machines increases the processing power only
marginally. We analyze reasons for such behavior, in the hope that
it will provide us with the insight useful for the energy-aware de-
sign.

Each MapReduce task is monitored and its current progress is
used when JobTracker looks for stragglers - nodes that are avail-
able but perform poorly. MapReduce speculatively launches a back-
up task for each task whose progress is slower than the average
progress score by a certain fraction (20% by default). For instance,

a map task’s progress score represents the fraction of the input data
read. Nodes that need to fetch the input data (for mappers) or
map outputs (for reducers) from other racks are therefore usually
marked as stragglers because they are significantly slower than the
average tasks’ speed. In this case, adding more machines across the
bottleneck links (details on the used topology are reported in the
Evaluation) does not in general necessarily increase the processing
power, and sometimes even decreases it, given that the stragglers
are competing with the other nodes for the same resources, such as
the network and disk I/O.

Based on the previous observation, we implemented a function
that acts on the power management’s decision by choosing sleep-
ing candidate machines that will maximize the processing power
of MapReduce. In other terms, we try to maximize the number of
tasks that will fetch input data locally (from their own rack) instead
of facing the network bottleneck. By doing so, we succeeded in
maximizing the performance from the users’ standpoint, while still
fulfilling the power management’s demands.

4.3 Discussion

So far, we have considered the scenario in which only the ser-
vices such as HDFS and MapReduce are involved in power man-
agement actions. Additional applications that are built on top of
these services cannot fully be insulated from power-management.
For example, since only the application might be aware of some of
its data placement policies, it too has to be connected to the control
plane. Further, it is likely that some application-specific knowledge
can be leveraged to enhance the overall benefit. Take a data stor-
age application as an example. This application would probably
prefer maintaining availability of the current, most commonly used
data relative to historical records which can temporarily be made
unavailable. In this case, the information about historical records
would be propagated to the common control plane where the final
energy-saving decision would be taken.

5. EVALUATION
We report in this section our preliminary results. We use 24 ma-

chines for all our experiments. In order to closely reproduce a re-
alistic environment with bottlenecks in the data center network, we
separate our machines into two logical racks with 17 and 7 ma-
chines, respectively. The connection between the racks is capped
at 100 Mbps. This is especially important for MapReduce as its
performance is significantly affected by data locality. We install
Sun Java 1.5 and Hadoop version 0.18.3 which serves as the base-
line. We generate eight one GByte files. Each file is inserted on a
different node and replicated afterwards. Overall the system han-
dles 120 unique blocks, 360 blocks including replicas and 24 GB
of data in total.

First we run the experiments where 30% of machines are inten-
tionally put to sleep and observe the behavior of both, the original
HDFS and HDFS with energy-aware design that actively partici-
pate in power management’s actions. In contrast towith the base-
line HDFS, Figure 5 shows that the proposed design dramatically
reduces block unavailability. Additionally, the presence of at least
2 replicas for each block proves the system’s resilience to failure.

Finally, Figure 6 demonstrates the same experiment with MapRe-
duce involved. Energy-aware design of MapReduce takes local-
ity into consideration when letting nodes enter the sleeping state.
By doing so, it minimizes the impact on performance when power
management system reduces power consumption by 30%. Indeed,
corresponding performance is significantly better, close to the one
when all machines are up and running.
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were put to sleep. Baseline against energy-aware HDFS.
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6. RELATED WORK

As already mentioned, a large body of research has focused so
far on energy savings in laptop computers, embedded devices, etc.
Specifically, most of the attention has been concentrated on opti-
mizing the energy consumption for processors [20, 17], memories
[14], or disks [5]. Interesting research work on offloading compu-
tation from these devices onto non-battery operated computers [18]
has also been reported.

Recently, energy savings for data centers hosting clusters of thou-
sands servers are becoming more and more important since the en-
ergy cost represents a significant share of the total ownership cost.
Energy savings techniques used for data centers are usually differ-
ent than those used for battery-operated devices because of their
different purpose and workload. The work in this area can be clas-
sified into two groups, local and cluster-wide techniques, with most
of them summarized in [3]. The local techniques include efforts
based on DVS policies and batching requests [6, 9] to address high
CPU energy consumption, or multi-speed disks [11] for tackling
the energy consumption in the storage subsystem.

Achieving the magnitude of energy savings that is sufficient to
address thermal emergencies [4, 12] while keeping performance
penalties marginal might require cluster-wide techniques. For in-
stance, if the server temperature is too high, these approaches can
reduce its load (or turn off the server altogether, if necessary) by
shifting the load to other machines that are unaffected by the emer-
gency. The existing work [4, 15, 12] assumes that any given re-
quest might be served by a number of the currently active servers.
This sort of policy is possible in scenarios in which each server
is largely stateless, as is the case with the first two tiers in 3-tier
Web services. However, cluster applications might be heteroge-
neous and the previous assumption does not hold in general case.
For instance, there is no server which can replace the server hold-
ing the last replica of a file. Similarly, only the applications know
which servers are essential to their functioning. In contrast to pre-
vious solutions, our approach suggests that all services deployed
in a cluster actively participate in the power management actions.
Furthermore, we explore what needs to be done in order to make
any service deployed to the cluster power-aware and capable of op-
erating in multiple power modes.

Given that various energy-saving solutions individually address
different aspects of energy savings, deploying them together might
potentially cause some dangerous or suboptimal interactions. There-
fore, Raghavendra et al. [16] propose a solution to this problem
that coordinates different individual approaches in an efficient and
stable way.

7. CONCLUSION
We demonstrate that important classes of distributed applications

do not gracefully operate with limited power budgets. We believe
that energy-aware design for cluster applications and services and
their active participation in power management actions will be re-
quired for reliable, high performance, and low cost data centers.
We therefore propose a new approach for making cluster applica-
tions energy aware, and demonstrate the efficiency of our approach
using a prototype implementation of HDFS and MapReduce.
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