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aLaboratoire de Technologie des Composites et Polymères (LTC), Ecole Polytechnique Fédérale de Lausanne (EPFL),

CH-1015 Lausanne, Switzerland
bInstitute for Biomedical Engineering, Swiss Federal Institute of Technology (ETH) and University of Zürich, CH-8044 Zürich, Switzerland
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Abstract

Bone is a complex porous composite structure with specific characteristics such as viscoelasticity and anisotropy, both in

morphology and mechanical properties. Bone defects are regularly filled with artificial tissue grafts, which should ideally have

properties similar to those of natural bone. Open cell composite foams made of bioresorbable poly(L-lactic acid) (PLA) and ceramic

fillers, hydroxyapatite (HA) or b-tricalcium phosphate (b-TCP), were processed by supercritical CO2 foaming. Their internal 3D-
structure was then analysed by micro-computed tomography (mCT), which evidenced anisotropy in morphology with pores oriented
in the foaming direction. Furthermore compressive tests demonstrated anisotropy in mechanical behaviour, with an axial modulus

up to 1.5 times greater than the transverse modulus. Composite scaffolds also showed viscoelastic behaviour with increased modulus

for higher strain rates. Such scaffolds prepared by gas foaming of polymer composite materials therefore possess suitable

architecture and properties for bone tissue engineering applications.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Bone is a natural complex porous composite with
unique properties of remodelling to adapt its micro-
structure to external mechanical stress. Bone is also one
of the tissues with the highest demand for tissue
reconstruction or replacement [1]. Artificial tissue grafts
were recently considered in order to overcome limita-
tions of traditional allo- or autografts, such as risk of
immune rejection and pathogen transfer, pain and
infection, or limited availability [2]. Bioresorbable
scaffolds, i.e. porous constructs, seeded with the
e front matter r 2005 Elsevier Ltd. All rights reserved.
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appropriate type of cells, should provide a template
for tissue regeneration, while slowly resorbing, to finally
leaving no foreign substances in the body, thus reducing
the risk of inflammation [3].
Scaffolds were initially composed of either polymer or

ceramic, which, however, tended to be too flexible or too
brittle, respectively. In the past few years, polymer/
ceramic composites have therefore gained increased
interest in the field of tissue engineering [4–7], to
reconstruct several types of structural tissues, such as
bone, cartilage, tendons or ligaments, and tissue
interfaces. The composite is expected to have improved
mechanical properties compared to the neat polymer,
and better structural integrity and flexibility than brittle
ceramics. In fact the combination of ceramic and
polymer could provide reinforced porous structures

www.elsevier.com/locate/biomaterials
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with enhanced bioactivity and controlled resorption
rates [8].
Many studies have tried to define which properties are

required for an optimal synthetic scaffold, in particular
for bone tissue replacement [2,9–16]. They state that
scaffolds need to be biocompatible. A three-dimensional
(3D) internal geometry, similar to bone morphology,
and the retention of mechanical properties after
implantation are required for scaffolds in order to
maintain a tissue space of prescribed size and shape for
tissue formation. A porosity higher than 75% seems to
be necessary. In the case of ceramic scaffolds, a
macroporosity of 200–400 mm is needed to promote
bone cell attachment, and a microporosity of less than
10 mm should promote ion and liquid diffusion [17].
Nevertheless, when using polymers, the pore size was
not shown to be significant [18–20]. In the case of
cancellous bone, anisotropic and viscoelastic mechanical
behaviour, with a modulus of 300–500MPa and a
strength of 5–10MPa, is desirable. These properties
should be maintained long enough prior to degradation,
i.e. till the newly grown tissue is capable of taking
the load.
Scaffolds have been processed by several techniques.

Solvent casting/particulate leaching [4,21] results in thin
scaffolds with a well controlled interconnected porosity
and pore size, and a compressive modulus of
0.15–150MPa. Emulsion freeze-drying or thermally
induced phase separation [22–25] lead to pore size
between 20 and 100 mm, with a compressive modulus up
to 20MPa in the longitudinal direction. 3D-printing [2]
requires the use of a complex and specific equipment.
None of the previous methods were ideal for bone tissue
engineering scaffolds, which often lacked mechanical
resistance, with modulus under the minimum of
cancellous bone. Moreover, the use of organic solvents
is their common drawback. Although the latter are
extensively used in the biomedical field, for scaffold
fabrication, as reviewed previously, as well as to
introduce proteins or other bioactive factors into
polymer supports [26], they present a potential toxicity
[27] which cannot be neglected.
Gas foaming was selected as a solvent-free process,

which allows functional fillers to be added. Here, the
latter consist in reinforcing ceramic particles, with
osteoconductive properties. If foaming was carried out
at room temperature, bioactive fillers could be directly
added to the scaffold during processing [28]. In our case,
these factors, if needed, can be added in a second step,
when bringing cells to the porous structure. Moreover, a
previous study has stressed the potential and flexibility
of supercritical gas foaming to produce scaffolds with
controlled architecture and properties [29].
The objective of this study was to characterise

bioresorbable porous composites processed by super-
critical CO2 foaming. Microarchitectural parameters
were evaluated by micro-computed tomography (mCT).
This non-destructive technique, extensively used to
characterise bone specimens [30,31], is based on X-ray
radiation and started to be used for polymer foams
[32–36]. The mechanical behaviour was tested in
compression in order to evaluate anisotropy and
viscoelasticity of prepared porous composite structures.
2. Materials and methods

2.1. Materials and scaffold processing

A commercial bioresorbable polymer, poly L-lactic acid

(PLA; Boehringer Ingelheim, Germany) was used without

further purification. It was characterised by an intrinsic

viscosity of 1.6 dL/g and a melting temperature of 181.7 1C.

Two ceramic powders were added to PLA: hydroxyapatite

(HA) and b-tricalcium phosphate (b-TCP) (Dr. Robert

Mathys Foundation, Switzerland). HA particles were of

nanometric size, with a high specific surface area (50m2/g),

while b-TCP particles were of micrometric size, with a much
smaller specific surface area (1–2m2/g). Both PLA and

ceramics were dried overnight at 105 1C under vacuum prior

to use in order to prevent polymer degradation by hydrolysis.

Foaming was carried out with supercritical CO2
(pure499.995%; SL gas, Switzerland).

Ceramic fillers and polymer must be intimately mixed before

the foaming process. Melt extrusion was shown to disperse

homogeneously particles within the matrix without significant

deterioration of the polymer, and without using any solvent

[37]. PLA pellets and ceramic particles were first mixed in the

dry state, then melt extruded with a micro-compounder (Micro

5 Compounder; DSM, The Netherlands) with two conical co-

rotating screws, of small capacity (5 cm3). Compounding was

carried out under a flow of nitrogen to limit polymer

degradation, with a set temperature of 205 1C, a screw rotation

speed of 100 rpm and a residence time of 4min, determined as

the optimum mixing conditions in a previous study [37].

The supercritical gas foaming technique and equipment

used in this work are described in detail in another article [38].

The foaming equipment was composed of a custom made high

pressure chamber (Autoclave France, France) and a compu-

terised data acquisition system. Samples, i.e. extruded rods,

were put into cylindrical open moulds, 35mm inner diameter,

and loaded in the pressure vessel. Pressure was increased up to

saturation pressure Psat (150–250 bar), and temperature

increased up to 195 1C, above the PLA melting point. On the

opposite to amorphous PLGA as used by Howdle et al. [28],

CO2 diffuses slowly at or close to room temperature in semi-

crystalline PLA. The latter must therefore be melted in order

to accelerate this diffusion and increase CO2 solubility in the

polymer. Polymer saturation by CO2 was completed after

10min and a melt polymer—gas solution is created. Foaming

was then achieved by sudden gas release, which induced the

generation of nuclei due to supersaturation. These nuclei grew

to form the porous structure. Initial depressurisation rate dP/

dt, controlled by a back-pressure regulator, and maximum

cooling rate dT/dt were found to be significant parameters

affecting pore expansion and stabilisation [38]. Simultaneously
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Fig. 1. Sample orientation in comparison with the foaming direction

for mechanical anisotropy testing. Black arrows indicate direction of

compression testing.
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to pressure reduction, temperature decreases; this increases

polymer viscosity and progressively fixes foam architecture, by

solidification and re-crystallisation of the polymer. Rate of

cooling has a significant effect on the porous structure: cooling

too rapidly will fix small closed pores, whereas a very slow

cooling will not allow freezing the structure, which will finally

collapse. An intermediate must be found which allows

interconnections to be created, while still stabilizing the

morphology before it collapses. Foaming parameters tested

are collected in Table 1.

2.2. Micro-computed tomography (mCT)

SEM and optical microscopy observations are limited to the

construct surface. To get an idea of the 3D internal structure of

foams, X-ray mCT was conducted on neat and composite

polymer samples. For each foaming condition four cylinders

were machined (diameter and height 8mm), and scanned.

Measurements were performed using an X-ray fan-beam-type

tomograph (mCT 40, Scanco Medical AG, Switzerland), also

referred to as a desktop mCT [30], at an energy of 50 kVp and a
spatial resolution of 12mm. From the resulting voxel data, a

cubic volume of interest with side length of 5mm (424 voxels)

was selected in order to eliminate side effects induced by

cylinder-sample machining. The grey-value images were

segmented using a constrained 3D Gaussian filter (s ¼ 1:2,
s ¼ 1) to partly suppress the noise in the volumes, and a fixed

threshold (19% of the maximum greyscale value) to extract

foam matrix with a contrast adapted to all samples.

Quantitative analysis of the porosity and of the pore

architecture can be obtained, based on the structural indices

usually measured for bone samples [39]. Bone (scaffold)

surface (BS) is determined by triangulation of the foam

surface. Bone (scaffold) volume (BV) is calculated using

tetrahedrons corresponding to the enclosed volume of the

triangulated surface. Total volume (TV) is the global volume

of the measured sample. Sample porosity e* (%) can therefore

be calculated as (1�BV/TV). The specific surface available for

pore adhesion is given by the bone surface-to-volume ratio

(BS/BV). 3D images also enable the direct assessment of metric

indices of feature sizes by actually measuring distances in the

3D space. Trabecular (pore wall) thickness (Tb.Th), and

trabecular separation (Tb.Sp) or pore diameter can be

computed. The structural degree of anisotropy (DA) is defined

as the ratio between the maximal and minimal radius

of the Mean Intercept Length (MIL) ellipsoid. Directional

MIL is the average distance between two void/matrix

interfaces in a given direction. The MIL ellipsoid is calculated
Table 1

Foaming conditions to prepare samples characterised by mCT and tested in

Condition Materials Saturation pressure Psat (bar

C1 PLA 150

C2 PLA 212

C3 PLA 243

C4_1HA (TCP) PLA+1%HA (TCP) 190

C4_5HA (TCP) PLA+5%HA (TCP) 190

C4_10HA (TCP) PLA+10%HA (TCP) 190
by fitting the directional MIL to a directed ellipsoid using a

least square fit.

2.3. Compression tests

Mechanical testing was carried out on a traction-compres-

sion device (UTS Test Systeme, Germany), with a cross-head

speed of 0.5mm/min. From a test, compressive modulus E*,

and elastic collapse stress sel* can be determined. Samples

were prepared with a special attention to obtain parallel

surfaces, perpendicular to the testing direction.

Compression tests on cubic specimens (10� 10� 10mm3)

were used to evaluate foam mechanical anisotropy in

compression. Experiments in three perpendicular directions

allowed to determine three elastic moduli E1*, E2* and E3*

(Fig. 1). For each foaming condition nine cubes were tested,

three in each direction. Samples were made of neat PLA, and

PLA loaded with 5 and 10wt% HA or b-TCP. Anova analysis
is carried out, using a significance level of 0.05, in order to

evaluate if the differences between filler contents and testing

directions are significant (XLstat software).

Viscoelasticity of foams was finally evaluated on cylindrical

specimens (height and diameter of 8mm), at three different

cross-head speeds: 0.1, 0.25 and 0.5mm/min (corresponding to

strain rates of 0.0001, 0.0005 and 0.001/s, respectively).

Cylinders were tested in the longitudinal or foaming direction.

Samples made of PLA loaded with 2.5, 5 and 10wt% HA or

b-TCP were tested.
3. Results and discussion

Different processing conditions and ceramic con-
tents resulted in a variety of porous structures. The
compression

) Depressurisation rate dP/dt (bar/s) Cooling rate dT/dt (1C/s)

6.7 2.8

1.15 2.8

20.4 5.2

1.6 2.5

1.6 2.5

1.5 2.7
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3D-macrostructure of these constructs was analysed by
mCT, and their mechanical performance was assessed by
compression testing.

3.1. 3D-macrostructure

The effects of foaming parameters on microcellular
foam morphology have been analysed mostly with SEM
and optical microscopic observations [40–42]. mCT
characterisation was here conducted in order to
determine the effect of foaming parameters (C1–C3)
and ceramic content (C4) on neat and composite PLA
foam macrostructures (Table 2 and Fig. 2). Conditions
C2 and C4 presented similar processing parameters,
which allowed a direct comparison between neat
polymer and composite foams, independently of foam-
ing conditions.
Condition C3 gave rise to a cellular structure with

large, but few, pores and thick walls (Figs. 2e and f). The
high saturation pressure could potentially induce a high
pore density; however, high depressurisation rates led to
a partial disintegration of the structure, with a few large
pores in the centre, and closed pores on the outside, due
to fast cooling.
Processing condition C2 resulted in a lower porosity

and pore number than C1 although the saturation
pressure was higher. This can be explained by a lower
depressurisation rate which induced less nucleation and
more coalescence, leading to fewer, but larger, pores
(Figs. 2c and d).
C1 was the processing condition leading to the most

suitable macrostructure for bone tissue engineering. In
fact it had sufficient porosity, higher than 75%, the
highest specific surface area and DA. The average pore
diameter (0.4070.07mm) was also in the defined range
for bone [17,39]. All these characteristics were confirmed
visually by the 3D reconstruction of the foam displaying
elongated and interconnected pores (Fig. 2a). A 2D
slice, perpendicular to the foaming direction, taken in
the centre of the sample also confirmed pore inter-
connectivity and pore size (Fig. 2b).
Scaffold characteristics can be compared to similar

values evaluated for trabecular bone. Using mCT,
Hildebrand et al. [39] and Kabel et al. [43] measured
Table 2

Effect of foaming conditions on neat PLA foam structural parameters

Condition Porosity e* (%) Bone surface to volume

ratio BS/BV (1/mm)

Degree

DA

C1 84.8172.74 43.6672.72 1.5370

C2 80.7871.13 25.2271.14 1.3470

C3 87.8071.06 27.0973.01 1.2970

Trabecular

bone [27,32]

52–96 7–34 1.1–2.

Values are given as mean7SD
morphometric parameters for human cancellous bones
from different skeletal sites. They pointed out that large
differences between inter and intra sites exist. For
example a femoral head was characterised by a high
bone volume fraction, thick trabeculae and a plate-like
structure; whereas lumbar spine samples presented a low
bone volume fraction, thin trabeculae and a rod-like
structure. This explains the large variations given for
trabecular bone in Table 2. All the foaming conditions
tested led to foams with structural parameters in the
range of those of cancellous bone, as displayed in Fig. 3
which compares three polymer foams and three different
types of trabecular bones. Gas foaming therefore proved
to be a flexible technique which enabled scaffolds to be
processed with various macrostructures suitable for
replacing different types of cancellous bones.
2D slices taken in the centre of a foam in three

perpendicular planes confirmed anisotropy in foam
morphology. A cross-section perpendicular to the
foaming direction (Fig. 4c) displayed relatively regular
and rounded pores, whereas cross-sections (Figs. 4a and
b) containing the expansion direction revealed elongated
pores along the foaming direction. This anisotropy was
more or less pronounced depending on the density of
nucleation and rate of cooling. A rapid cooling locked in
a high number of spherical pores like in condition C3,
whereas a slower cooling enabled pore elongation
provided no coalescence occurred (C1).
The effects of ceramic content (0, 1, 5, and 10wt%)

and ceramic type (HA or b-TCP) on composite foam
morphology were considered for a given foaming
condition (Figs. 5 and 6). When ceramic content
increased, porosity and specific surface decreased
(Fig. 5a). The reduction of porosity was similar with
b-TCP and HA, decreasing from 81% without ceramic
to about 74% with 10wt% of fillers. In the case of the
specific scaffold surface BS/BV, the decrease was more
pronounced with HA than with b-TCP. According to
porosity changes, scaffold volume BV increased in a
similar way with both ceramics. However, scaffold
surface BS decreased faster with HA, where larger pores
were created using higher filler content.
As far as pore diameter and wall thickness are

concerned, they both increased when HA was added
of anisotropy Trabecular spacing

Tb.Sp (mm)

Trabecular thickness

Tb.Th (mm)

.11 0.4070.07 0.0870.01

.12 0.6270.07 0.1370.00

.16 1.0870.01 0.1270.01

38 0.45–1.31 0.08–0.28
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Fig. 2. The effect of foaming parameters on PLA foam morphology.

3D mCT reconstructions (a, c and e) and 2D slices perpendicular to the

foaming direction Z (b, d, and f). (a,b) C1, (c,d) C2, and (e,f) C3.
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to PLA, whereas they were relatively stable in the case of
b-TCP (Fig. 5b). In a single cylindrical specimen these
two parameters could vary significantly because of the
pore diameter gradient created during foam expansion
by different cooling rates in the core and the outside of
the sample. With an increased amount of particles, pore
walls became thicker, delimiting more closed pores.
Anisotropy in foam morphology was also observed in
the case of composite foams. The DA, in the range of
1.3–1.6, was similar with and without fillers, either HA
or b-TCP. This characteristic did not seem to be
significantly affected by the addition of fillers provided
they were homogeneously dispersed in the polymer.
The main reason for these trends was the increase in

viscosity of the matrix with the addition of fillers.
Viscosity controlled foam expansion and stabilisation. A
low viscosity will favour pore coalescence and pore wall
rupture to create interconnections. On the contrary, an
increased viscosity will limit pore growth and favour
closed pores, therefore decreasing porosity, specific
surface, and increasing pore wall thickness. Pore size is
related to two main factors [44]. First there is competi-
tion between the gas diffusing out of the skin, which is
therefore lost for pore growth, and the gas diffusing into
nucleated pores. Second, the pore growth process is
limited by the diffusion rate and the stiffness of the
polymer matrix, depending in particular on matrix
viscosity. Jin et al. [45] investigated the gas foaming of
a liquid crystalline polymer (LCP)-filled polystyrene
(PS). On the one hand, when LCP content increased,
matrix viscosity increased, which tended to decrease
pore size. On the other hand, an improvement of
interfacial adhesion resulted in less gas loss and there-
fore an increase in pore size. The same competition
between enhanced matrix viscosity and good interfacial
adhesion occurred in our PLA/HA and PLA/b-TCP
systems, finally leading to an increase in pore size. The
effect of fillers on pore size in foam obtained by gas
foaming is, however, still discussed. Zeng et al. [46]
observed a decrease in pore size with higher nanoclay
content in polystyrene. According to Chen et al. [47],
pore size is also affected by filler size, depending on
saturation pressure.
Variations of scaffold parameters were generally more

significant with HA fillers than with b-TCP particles.
The former tended to form aggregates and were
generally less homogeneously dispersed in the matrix
than the latter, which created zones with different
viscosities and therefore different foaming behaviours.
A 5wt% filler content, and more preferably b-TCP, thus
seems to be the higher limit to obtain a homogeneous
and interconnected cellular architecture.
Filler distribution in the porous structure can also be

visualised because of the difference in X-ray transmis-
sion of PLA and HA or b-TCP, displayed in grey and
white, respectively, on the pictures (Fig. 7). During
image treatment, contrast and threshold were adjusted
but kept constant for all samples in order to be able to
compare all structures. This choice may have eliminated
some of the smallest particles, which explains why
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Fig. 3. Similarity of cancellous bone structures and polymer foam macrostructures.
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micrometric b-TCP particles seemed to be more
numerous than nanometric HA ones for the same
ceramic content. However, the largest HA aggregates
were still visible and were well dispersed in the pore
walls. No ceramic rich zones were observed.
To summarise this part, knowing the structure of

the bone which must be replaced, a set of process-
ing parameters can be used for a given material
formulation.

3.2. Mechanical behaviour: Anisotropy and

viscoelasticity

Neat and composite polymer foams exhibited aniso-
tropy in morphology with pores oriented along the
foaming direction, as highlighted using the mCT study.
Compression tests were carried out in order to ascertain
whether they also presented anisotropy in their mechan-
ical behaviour, induced by this anisotropic macrostruc-
ture. The results of compression experiments are
presented in Fig. 8. In the parallel testing direction,
composites with 5wt% fillers were not found to have a
significantly different modulus than the neat polymer.
On the opposite, the moduli of 10-wt%-filled polymers
differ significantly from both neat and 5-wt%-loaded
polymers. Composite foams therefore tend to be more
resistant than pure polymer foams. Ceramic fillers
actually reinforced the skeleton matrix, which resulted
in improved mechanical properties of the foams
provided a homogeneous structure was prepared [29].
When looking at foam modulus, samples tested in

compression parallel to the expansion direction were
significantly more resistant than samples tested trans-
versally to the foaming direction. No difference in
moduli and elastic collapse stresses was noticed between
the two transverse directions E2* and E3* (sel2* and
sel3*). They were thus considered as one value ET*
(selT*), an average of E2* and E3* (sel2* and sel3*). This
anisotropic behaviour can therefore be qualified as
transverse isotropic. Bone has a similar behaviour,
presenting a higher mechanical resistance axially than
transversally [48,49].
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Fig. 4. Anisotropy in PLA foam morphology (C1) (a) YZ plane, (b)

XZ plane, both parallel to the foaming direction Z; and (c) XY plane,

perpendicular to the foaming direction Z.
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This anisotropy was induced by the processing
technique, giving rise to elongated and preferentially
oriented pores. It was observed for all ceramic contents,
from 0 to 10wt% ceramic, either HA or b-TPC, and
for different foaming conditions (C1 or C2). Modulus
measured longitudinally could be up to 1.5 times
higher than the transverse modulus. This ratio can
be compared to the DA obtained by mCT, which was
in a similar range (DA ¼ 1.1–1.7). Anisotropy in
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Fig. 6. The effect of HA content on composite foam morphology. 3D

mCT reconstructions (a, c and e) and 2D slices perpendicular to the

foaming direction Z (b, d, and f). (a,b) C4/1wt%HA, (c,d) C4/

5wt%HA, and (e,f) C4/10wt%HA. Similar structures were observed

with b-TCP fillers.

Fig. 7. Filler distribution: ceramic particles are homogeneously

dispersed in pore walls (a) C4_10TCP, and (b) C4_10HA.

L.M. Mathieu et al. / Biomaterials 27 (2006) 905–916912
elastic collapse stress was less significant, with similar
values measured longitudinally and transversally. Error
bars were due to different densities and to different
macrostructures because of the gradient structure
of the main foam sample from which tested cubes
were cut.
Gibson and Ashby [50] derived a model for

anisotropic porous structures, which was experimentally
verified [51,52]. For an anisotropic open pore foam,
with struts of thickness t, and lengths h and l in
the longitudinal and transverse directions, respectively,
they calculated the ratios between longitudinal and
transverse modulus (Eq. (1a)), and elastic collapse stress
(Eq. (1b)):

E�
L

E�
T

¼
2ðDAÞ2

1þ ð1=DAÞ3
, (1a)

s�elL
s�elT

¼
n2L
n2T

1

DA
, (1b)

where DA ¼ h/l is the structural DA, and n is the
rotational stiffness of the strut.
These equations show that Young’s modulus is more

affected by anisotropy than elastic collapse stress, with a
variation at least as marked as (DA)2 for the former and
only of (DA) for the latter. The weaker dependence of
elastic collapse stress on the DA can be explained by two
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competing phenomena occurring during mechanical
solicitation. Longer struts, if unconstrained at their
ends, buckle more easily than shorter ones. However,
the rotational constraints on longer struts are also
greater than on shorter struts, which finally stabilise
them.
In this study compressive modulus was as well shown

to be more sensitive to anisotropy than elastic collapse
stress. However, the moduli ratio EL*/ET* was similar
to the morphological DA and not greater. This
difference could be explained by a misalignment
between the preferential pore orientation and the testing
direction. Moreover, pore size was not homogeneous as
in theoretical models, which induced locally higher
stress and deformation, resulting in a lower global
stiffness. Bone also behaves in an anisotropic way.
Trabecular bone typically has a longitudinal modulus
of 129.07749.48MPa for a transverse one of 38.237
20.18MPa [48]. Few other studies have shown an
interest in scaffold anisotropy. Using thermally induced
phase separation, Ma and Zhang [53] manufactured
microtubular scaffolds, with a higher longitudinal than
transverse modulus (9.5 and 1.5MPa, respectively). In
the latter study, anisotropy was induced by the
processing technique. On the other hand, Slivka et al.
[54] created anisotropy by adding 2.5mm PGA fibres to
a PLGA foam, provided that fibres were oriented
during processing. A compressive modulus in the axial
direction up to six times higher than the transverse
one was measured (32 and 5MPa, respectively with
10wt% fibres).
Anisotropy in morphology, described by mCT, was

shown to induce anisotropy in compressive behaviour.
This effect was especially pronounced with modulus,
although it was less significant than theoretically
expected from the Gibson and Ashby model.
Besides anisotropy, viscoelasticity is another specific

property of natural bone. Bone was shown to have a
viscoelastic behaviour, becoming stiffer under a higher
strain rate solicitation [55]. Viscoelasticity of developed
porous constructs was evaluated by compression at
different strain rates. Results are presented in Fig. 9
with HA particles. The same trend was obtained with
b-TCP fillers.
When a given strain rate is considered, the modulus

and elastic collapse stress tended to increase with an
increase in HA content up to 5wt%. At higher contents,
foams became fragile, as shown by the lower collapse
stress with 10wt% HA. When strain rate increased,
higher moduli and collapse stresses were measured
whatever the ceramic content. In log–log coordinates,
the modulus increased linearly with strain rate. In semi-
log coordinates the elastic collapse stress also increased
linearly with strain rate. Carter et al. [56] derived a
power law relating stress and strain rate s� ¼ k_�a. They
evaluated a ¼ 0:06 for cancellous bone, whereas a values
of 0.01–0.07 were determined for polymer and compo-
site foams tested. The developed porous composite
structures thus exhibited similar viscoelastic behaviour
to that of natural bone. These viscoelastic measurements
indicate a trend, and that the addition of fillers did not
induce a loss of the viscoelastic behaviour.
Two factors contribute to the viscoelasticity of

the cellular constructs. One is inherent to the solid
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constituting the foam skeleton; and the second one is
derived from the fluid which fills the pores. In this study,
the latter was weak, pores being filled with gas only.
Therefore, the main contribution to foam viscoelasticity
was here due to the polymer, viscoelastic by nature. In
physiological conditions, the cellular constructs will be
filled by a liquid which will enhance the viscoelastic
behaviour. Slivka et al. [54] have also highlighted the
viscoelasticity of their fibre reinforced porous structures.
With 10wt% PGA fibres they obtained a linear
relationship for modulus–strain rate and strength–strain
rate curves, on log–log and semi-log coordinates,
respectively.
4. Conclusions

mCT scans, applied to neat and composite polymer
foams, evaluated histomorphometric parameters of
3D-constructs more precisely than with a 2D picture
analysis. In particular, anisotropy, pore size variations
and wall thickness were determined and compared to
trabecular bone characteristics. 3D reconstructions of
porous macrostructures were also obtained, allowing the
internal cellular structure to be visualised. Processing
conditions to obtain an optimum structure were
determined.
Mechanical testing then demonstrated anisotropy in

compressive properties and viscoelastic behaviour of
neat and composite polymer foams prepared by super-
critical gas foaming. Longitudinal modulus was up to
1.5 times higher than the transverse one, and was shown
to increase with higher strain rates. This behaviour is
similar to that of bone, with mechanical characteristics
closer to bone properties than current polymer systems.
Viscoelasticity and anisotropy, both in morphology and
in mechanical properties, are promising characteristics
for bone replacement. From a biological point of view,
biocompatibility of human primary bone cells with
composite scaffolds was demonstrated [57]. The latter
study also relates the effect of the structure and
properties of the scaffolds described here on cell
proliferation and differentiation. Other properties are
currently evaluated, such as scaffold changes during its
resorption.
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