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Physics Insight & Performance Benefit in MHD & Energy Transport...
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WHY STUDY also SHAPES different from ITER?

 

• Test of MHD and transport theory
• Negative triangularity improves confinement

 

•

 

Confinement scales with 

 

I

 

p 

 

(

 

τ

 

E

 

, 

 

n

 

e

 

, 

 

β

 

, fast ions...),
and 

 

 I

 

p max

 

 can be increased by plasma cross-sec-
tion shaping at constant magnetic field  

• Many parameters depend on plasma shaping and
reciprocally, active plasma shaping offers a mean
to control these parameters

• Optim. of devices beyond ITER, innovative shapes

 

SHAPING VARIABLES

 

• elongation 

 

κ, 

 

triangularity 

 

δ

 

, including negative,
squareness 

• aspect ratio R/a
• limited / diverter shape   

 

SHAPE INFLUENCES ...

 

•

 

MHD

 

 stability (sawteeth, modes, disruptions,
ELMs, TAE damping & gaps)

•

 

Confinement

 

, edge transport barrier, performance
•

 

Transport

 

 (electron heat, rotation) 
•

 

Integrated approach

 

 of plasma shaping 

 

needed

 

:
several phenomena 

 

with crucial impact on plasma
containement

 

 are influenced by shape, e.g.

 

:
•e.g. ELMs(

 

shape

 

) can destroy ITBs (e.g. JET)
•Sawteeth(

 

shape

 

) can trigger NTMs

 

• Some effects of plasma shaping can differ with
plama scenario, e.g.:

 

•

 

τ

 

E

 

(

 

δ

 

) increases towards 

 

neg 

 

δ

 

 in L-mode (core)
increases towards 

 

posit 

 

δ

 

 in H-mode (pedestal)

 

 A. Pochelon, Y. Camenen

 

1

 

, A. Marinoni, S. Brunner, S. Coda, J. Graves, F. Hofmann, An. Martynov, S. Medvedev

 

2

 

, F. Piras, H. Reimerdes

 

3

 

, O. Sauter, 
A. Scarabosio

 

 4

 

, L.Villard, S. Alberti, C. Angelino

 

 5

 

, R. Behn, A. Bortolon, A. Bottino

 

 4

 

, L. Curchod, K. Daouk, B.P. Duval, A. Fasoli, I. Furno, 
T.P. Goodman,  M.A. Henderson,  A. Karpushov, X. Lapillonne, J.B. Lister, Y. Martin, J.-M. Moret, J.I. Paley, R.A. Pitts, L. Porte, F. Ryter

 

 4

 

, 
L. Sulmoni, A. Sushkov

 

 6

 

, G. Tonetti, M.Q.Tran, H. Weisen and the TCV Team

 

1

 

Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas
Association EURATOM-Confédération Suisse, CH-1015 Lausanne EPFL, Switzerland

 

1. Motivations 

4. MHD & stability: modes & disruptions
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ext.-mode with 

 

m

 

/

 

n

 

=3/1~

 

q

 

a

 

—> coupling to int. mode 2/1 

 

q

 

=3 disruptivity reduced by shaping

 

Disruptivity (disr./s) in 
Hugill diagram vs 

 

δ

 

 and 

 

κ

 

 low disr.=blue, high disr.=red

 

q

 

=3 high density disr. notch 
stabilized by (

 

κ

 

,

 

δ

 

)-shaping

 

MHD modes leading to disruption

 

q

 

=3-events: 3 shape ranges:
low, medium, high shaping

disrupt, modes, no modes

 

κ

 

=1.3, 

 

δ

 

=0.2 (weak shaping)

 

- 2/1: dominant mode leading to disrupt.
- Locking of 3/1 to 2/1 correlates 
with the 2/1 becoming disruptive

 

- 

 

Shaping reduces the 3/1 external mode

 

• 2/1-

 

Δ

 

’-stability does not improve, even deteriorates  towards high 

 

κ

 

! 
• Essential role of mode coupling (from exp. and th.)
• Thus other mechanisms acting like wall stab. of external mode 3/1,  

- and coupling with higher 

 

q

 

 integer vacuum flux surfaces 

 

q

 

= 4, 5, ...

•

 

Δ

 

’-stab predicts 2/1  stable in 

 

I

 

p

 

-ramp 
• Thus wall stabil. of the 3/1 mode is

essential to avoid destab. of 2/1 by 2/1

 

MHD modes: 3/1 -> 2/1 MHD stability (PEST-3)
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3. MHD and stability: 

 

q

 

=1 sawteeth

 

q

 

=1 radius scaling:

 

 studied over a large 

 

κ

 

-range 

 

•

 

the limiting 

 

 

 

pressure inside 

 

q

 

=1 (

 

β

 

Bussac

 

)
is determined by shape

 

•

 

τ

 

ST

 

 

 

follows ideal internal kink 

 

stability
• parallel to Mercier ideal stability over this

shape range

 

Sawtooth period/stability central ECH (1.1<

  

κκκκ

 

<2.1

  

    

 

and -0.2<

  

δδδδ

 

<+0.5)

Sawtooth period/stability for -0.6<

  

δδδδ

 

<+0.3, OH

 

Sawtooth disappearance at high 

  

κκκκ

 

 >2.3 - 2.6, in OH ...
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... and at lower 

  

κκκκ

 

 

 

 with off-axis ECH

 

• both triangularity signs are stabilizing
(shorter sawteeth)

•

 

δ

 

W

 

ideal int kink

 

 and 

 

τ

 

ST

 

 show the same
behaviour with 

 

δ

 

 (min. close to 

 

δ 

 

~ -0.3)
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=2.53
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At very high 

 

κ

 

 & 

 

l

 

i

 

<0.7,
sawteeth disappear 

 

(

 

γ

 

ideal int kink

 

 >

 

ω
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), 

 

replaced by 

 

m

 

/

 

n

 

=1 multi-
harmonic modes on 

 

q

 

=1 
keeping a flat central 
pressure profile with 

 

ρ

 

1

 

 
unchanged 

 

(infernal, in-
terchange modes?)

 

 

 

multi-harmonics 

 

m

 

=1,2,3 on 

 

q

 

=1 
with off-axis ECH current profile 
broadening, 
as in  high 

 

I

 

N

 

 OH discharges

 

 

 

ρ

 

1

 

 

 

≠

 

 const, decreasing 
with off-axis ECH
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—>

 

  ideal internal kink 

 

Weisen NF02, PPCF98
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2. TCV facility & Shaping achievements

 

Flexible plasma shaping

 

• X2, 2

 

nd

 

 harm., 82.7GHz, 
3MW, 6 LFS launchers, 
steerable during dis-
charge

• X3, 3

 

rd

 

 harm., 118GHz, 
1.5MW

• Cut-off densities:
X2 : 4.2 10

 

19

 

 m

 

-3

 

X3: 11.1 10
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 m

 

-3

 

R

 

=0.88
m, 

 

a

 

=0.25m, 

 

R/a

 

~3.5

 

B

 

<1.54T, 

 

I

 

p

 

<1MA

 

   0.9 < 

  

κκκκ        

 

< 2.8 
- 0.7 < 

  

δδδδ        

 

< +1 

... matched by a flexible heating system, entirely based on ECRH

 

16 independent shaping coils

operational diagram limited by :

 

n=0 vertical instability
n=1 external kink (IN & β-limit)

current limit at high κκκκ

ββββ-limit at high κκκκ
βN~2 reached 

with 1.5MW X3 
at κ95~1.6 in H-mode  
More power needed 
to test the β-limit at 

high κ!

Ideal MHD pre-
dicts 

the current limit

κ=2.5 at low 
IN, with 

off-axis ECH

vertical stability requires broad current profiles

t=0.5s

t=1.4s

Hofmann PPCF01
Pochelon NF01
Camenen NF07
Paley PPCF07

Hofmann PRL97

Porte NF07, Alberti JoPh05, Pochelon SMP05

IN

κ

X3 system (118GHz, 1.5MW)

X2 system (82.7GHz, 3MW)

Upper Lateral Launchers (4)

Equatorial Launchers (2)

At fixed q(a) , 
ρinv and <j> 
increase 
with shaping, κ

EC

• τST depends 
strongly on 
plasma shape

at const ρ1

disruptivity [s-1]
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δ=−0.4

HFS

δ=−0.2 δ=+0.2 δ=+0.4

LFS

... from plasma Shaping Experiments in the TCV tokamak

6. Electron heat transport versus shape and collisionality

7. Innovative ideas, prospects, e.g.

Presence of suprathermals
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•
• MHD: Sawtooth period/internal kink stability: stabilized by ±δ, destabilized by

high κ
• Supression of q~3 ramp-up disruptions by plasma shaping: 

role of mode coupling (3/1 —> 2/1) and wall stabilization (of q~3, 4, 5...) 
• Heat transport: Dominant role of geometrical factor (SEF) at high νeff, impor-

tant for κ-changes
• Transport improves by a factor 2 in L-mode from δ =+0.4 to δ =-0.4 at low νeff
• Central role of collisions, modifying χe with shape (here triangularity)
• Negative triangularity physical effect: 1) role of shear (increasing k⊥⊥⊥⊥) and 

2) trapped e- toroidal precession versus TEM mode frequency (decrea-
sing γγγγ  of the mode)

• Thus, shape effects on confinement & transport depend on collisionality, 
which determines the dominant micro-instablity type and transport associated

• exploration of - heat, momentum, particle transport - with shape

• TCV plasma shaping acts as a stringent test bench for theories, validation of 
models, by gradually changing parameters and extending their covered range .

5. Confinement and geometry  
Ohmic confinement at medium densities (ννννeff ~ 2.5-10)

• Negative triangularity 
1) modifies the resonance between the toroidal precessional 
drift frequency of trapped electrons and the mode frequency, 
reducing the growthrate γ of the mode 
2) enhances the local shear, increasing k⊥ of the mode.

Collisionality ννννeff 

• Strong τEe(δ) dep. found,
asymmetrical in δ, unlike SEF

• No more explained by SEF 
only: χe must vary with δ.

• Strong τEe increase with κ, (κ<~2.3) 
• Mild decrease with δ  (δ>0)
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The SEF (Shape enhancement factor) evaluates the part of 
τEe-variation  due to the geometrical shape factor, 

keeping same diffusivity χe(ρ)  (and ∇Te(ρ))
SEF=τEe shape / τEe circ with same χe  (ASTRA)

keeping sawtooth inv. radius ρ1~const (for similar profiles)

local flux surface averaged
gradient geometrical factor 

EC confinement at low densities (ννννeff ~ 0.2-1)

SEF adequately accounts for ττττEe-variations with shape 
in OH medium density discharges (ννννeff ~ 2.5-10)

Central ECH and covering a 
large δ-range:  - 0.6 < δ < +0.5 

Triangularity scan (ννννeff ~ 0.1-1)Te, gradTe-variation expts

• χe-depends  on collisionality νeff, 
rather than on e.g.: Te, ne, or R/LTe,
with νeff= 0.1R ne Zeff / Te

2 = νei/ωDe, 
where ωDe = curvature drift frequency.

• and χe decreases with colisionality νeff 

diff. Thom.
CXRS

TEM dominated regime 
(no ETG in 0.2<ρ<0.7 range,
due to high Zeff & high Te/Ti ) 

Triangularity and collisionality dep. 
(in TCV L-mode, TEM-dominated)
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Shaping, by changing  
χe, Te, Ti , Te/Ti, Zeff, 
wall-contact, etc... ,   
gives an opportunity 
for untangling the un-
derlying physic, in par-
ticular the change of 
dominant TEM turbu-
lence with νeff.

Non-linear gyrokinetic 
local collisional (GS2)

larger k⊥ at δ<0, reducing the 
mixing length
transport
γ/k⊥2 at low n

8. Conclusions

low νeffhigh νeff

heat flux versus pitch angle

Heat transp Qe (shape geom., flux surf. averaged Te-gradients) To sustain the same pressure profile at δδδδ =-0.4
than at δδδδ =+0.4 demands only half the power,
due to the reduction of χχχχe toward negative δδδδ....

Triangularity and many parameters varied

• As good as H-mode...

Transport simulations reflect exp. χe in TEM regime:
• decrease of  χe towards high νeff and negative δ
• triangularity effect on χe smaller at high νeff, see also vs. pitch-angle
• but disagree for the radial dependence: possibly a global effect.

Rotation inversion vs. 
ne is shape dependent

H-mode at negative triangularity

• 2 EC deposition locations
• Varying Ptot = P1 + P2

and   P1 / P2

 Linear and non-linear GK simulations of heat transport
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=  reducing triangularity

• Systematic exploration of plasma shape effects on H-mode properties
(also at negative triangularities: test of models over broader range of shapes)

• improved eITB properties at negative triangularity with lower transport?
• impurity, particles transport with elongation and triangularity
• divertor with low shear to reduce heat load and study transport

• Further shape studies:

Moret PRL97, Weisen NF97

varying δ

varying κ

Camenen 
thesis06

Coda 98, Pochelon NF99, Weisen NF98Pochelon EPS99

Camenen PPCF05

Camenen PPCF05, Thesis06, NF07

Camenen NF07

Camenen PPCF05

Bortolon PRL06 Duval PPCF07 PP08
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Is geometry sufficient to explain?

Gyrokinetic simulations
linear, global (LORB) 

Doublet Snowflake (hexapole) divertor
Ruytov PP 07 08

Piras 2008

Hofmann EPS 96

TCV Hofmann EPS96
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To study the ef-
fect of shape on:
- confinement,
- transport, 
- ELM/quiescent 
regime, 
- pedestal, 
- β-limit & RWM 
at low power with 
ECH X3

GS2 linear

δ

κ

Camenen PPCF05

Marinoni subPPCF 08

Camenen NF07

χe ml -variation with κ,δ
Marinoni subPPCF 08

Marinoni subPPCF 08

• Shapes effects on χe and τEe depend on collisionality 
• Collisionality unifies the description of OH & EC transport (different νeff) 
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eITB at negative triangularity: better?

• Shape is related to vital issues in ITER and to concept improvement in 
view of DEMO

Transport with κκκκ, will depend on ννννeff and instability ...


