Numerical analysis of fringe patterns recorded in holographic interferometry using high-order ambiguity function

This letter introduces a new approach for the demodulation of fringe patterns recorded in holographic interferometry using high-order ambiguity function (HAF). The proposed approach is capable of retrieving the phase from a single fringe pattern. The main advantage of this approach is that it directly provides an estimation of the continuous phase distribution and thereby avoids the necessity of using a cumbersome 2D phase unwrapping procedure. This method first computes the discrete-time analytic signal of the recorded fringe pattern. Then, by modelling this analytic signal as a polynomial phase signal embedded in additive complex white Gaussian noise, a parametric estimation procedure based on HAF is employed to directly estimate the unwrapped phase distribution. Numerical simulations and experimental results demonstrate the potential of the proposed approach.


Published in:
Journal of Modern Optics, 56, 8, 949-954
Year:
2009
Publisher:
Taylor & Francis
ISSN:
0950-0340
Keywords:
Laboratories:




 Record created 2009-03-22, last modified 2018-03-17

Preprint:
Download fulltextPDF
External link:
Download fulltextURL
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)