Networks of mixed canonical-dissipative systems and dynamic hebbian learning

We study the dynamics of a network consisting of N diffusively coupled, stable- limit-cycle oscillators on which individual frequencies are parametrized by $w_k, k = 1, . . . ,N$. We introduce a learning rule which influences the wk by driving the system towards a consensual oscillatory state in which all oscillators share a common frequency $w_c$. We are able to analytically calculate $w_c$. The network topology strongly affects the relaxation rate but not the ultimate consensual $w_c$. We report numerical simulations to show the learning mechanisms at work and confirm our theoretical assertions.


Published in:
INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLLIGENCE SYSTEMS, 2, 140-146
Year:
2009
Keywords:
Laboratories:


Note: The status of this file is: Involved Laboratories Only


 Record created 2009-03-16, last modified 2018-01-28

External link:
Download fulltext
n/a
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)