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Abstract—We derive the theoretical performance of three
bio-inspired odor source localization algorithms (casting, surge-
spiral and surge-cast) in laminar wind flow. Based on the
geometry of the trajectories and the wind direction sensor
error, we calculate the distribution of the distance overhead
and the mean success rate using Bayes inference. Our approach
is related to particle filtering and produces smooth output
distributions. The results are compared to existing real-robot
and simulation results, and a good match is observed.

I. INTRODUCTION

With the advances in robotics and chemicals sensor re-

search in the last decade, odor sniffing robots have become an

active research area. Notably the localization of odor sources

would allow for very interesting robotic applications, such as

search and rescue operations, safety and control operations

on airports or industrial plants, and humanitarian demining

[1] [2] [3] [4]. Many of these applications are time-critical,

i. e. odor sources should be found as fast as possible. But as

the structure of plumes in the air is intermittent in both time

and space [5] [6], tracking plumes is a challenging problem.

In recent work, we compared the surge-spiral algorithm

[7] [8] [9] [10], the surge-cast algorithm and pure casting

[11] [12] [13] [14] [15] [16] [17] in both simulation [20]

and with real robots [21] [22] in laminar wind flow. The

results of both studies revealed that upwind surge algorithms

are more efficient than pure casting. When combined with

incremental plume reacquisition strategies such as spiraling,

these algorithm are also more robust with respect to environ-

mental conditions and the choice of algorithm parameters.

Simulation experiments furthermore revealed that the plume

lost distance (the distance between seeing the last odor patch

and declaring that the plume was lost) does not have a major

influence on the overall performance of the algorithm, while

the accuracy of the wind direction sensor does.

In this paper, we are studying the same three algorithms

from a theoretical perspective. Within a simple framework,

we derive two equations for each algorithm: an analytical

expression for the performance under ideal conditions with

a perfect wind sensor, and a probabilistic model taking

into account the error of the wind direction sensor. The

latter allows us to numerically calculate the performance

distribution, which we compare to the results obtained in

simulation and with the real robots.
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As in our previous work, we are mainly interested in the

success rate and distance overhead of plume tracking (i. e.

following the plume towards the source). Plume finding and

source declaration are not within the scope of our work.

The remainder of this paper is structured as follows. We

first present the three algorithms (Section II), the model

(Section III) and the metrics (Section IV). In sections V,

VI and VII, we then derive the theoretical distribution of all

three algorithms and compare them to the real-robot and the

simulation results. Finally, we conclude in Section VIII.

II. ALGORITHMS

All three algorithms used in this paper are bio-inspired

and a combination of upwind surge, casting, and spiraling

[23]. The algorithms use only binary odor information, that

is, they either perceive the odor or do not perceive any odor,

but ignore different concentrations levels. Commonly, the

measured concentration is thresholded to obtain this binary

value, but more elaborate processing could be used as well.

Finally, all three algorithms need a wind sensor to measure

the wind direction. As molecules are mainly transported by

advection, this piece of information is very valuable. The

wind speed is ignored.

Since we are only interested in the plume tracking be-

havior, the robot starts in the plume, and declares failure

if it gets too far away from it. This allows us to rule out

arena geometry effects, which could greatly influence the

results (e. g., high variance introduced by randomized search

techniques).

Similarly, source declaration is done by a supervisor (ideal

source declaration) and therefore does not affect the results.

Experiments are considered successful if the robot has come

in physical vicinity of the source.

A. The Casting Algorithm

The casting algorithm is very similar to the one described

by Li et al. [11]. As shown in Figure 1, a robot in the plume

Fig. 1. Sketch of the casting algorithm. The stars indicate where the wind
direction is measured.



Fig. 2. Sketch of the surge-spiral algorithm. The star indicates where the
wind direction is measured.

Fig. 3. Sketch of the surge-cast algorithm. The stars indicate where the
wind direction is measured.

moves upwind with an angle β (relatively to the currently

measured wind direction) until it is out of the plume for

a certain distance, denoted dlost. Once the plume is lost, the

robot turns and moves cross-wind until it hits an odor packet,

and then moves upwind with angle β again.

The wind direction is measured each time the robot

switches to plume reacquisition, and when it encounters the

plume again.

B. The Surge-Spiral Algorithm

The surge-spiral algorithm is similar to Hayes’ algorithm

presented in [7], except that we focus exclusively on its use

for plume tracking here. Hence, we have a single spiral gap

parameter.

A robot in the plume moves straight upwind until it loses

the plume for a distance dlost. It then tries to reacquire the

plume by moving along an Archimedes spiral with gap size

dgap. Unlike [7], we start our spiral in upwind direction, as

drawn in Figure 2.

The wind direction is measured when the robot switches

from upwind surge to spiraling, and when it switches back

to upwind surge.

C. The Surge-Cast Algorithm

The surge-cast algorithm [22] is a combination of upwind

surge and cross-wind casting. It is similar to the surge-

spiral algorithm, with the spiral being replaced by cross-wind

movement.

A robot in the plume moves straight upwind until it loses

the plume for a distance dlost. It then tries to reacquire the

plume by moving cross-wind for a set distance (dcast), first

on one side and then on the other. To maximize the chances

of hitting the plume in the first cross-wind movement, the

robot measures the wind direction to estimate from which

side it left the plume.

If the robot did not reacquire the plume by casting, the run

is considered unsuccessful. In a real application, the robot

would probably switch back to plume finding behavior, or

try to reacquire the plume with a larger cast distance or with

spiraling.

The wind direction is measured when the robot switches

from upwind surge to casting and when it switches back to

upwind surge, as indicated in Figure 3.

III. THEORETICAL MODEL

The model used in this paper is closely related to the

experimental setup used in our previous work with the real

robots [21] [22] and in simulation [20]. However, plume and

sensors are abstracted to simple mathematical objects that

allow for a mathematical analysis. A comparison of the three

models is given in Table III.

A. Wind and Plume Model

We consider a 2D space with a perfectly laminar wind

flow and a single odor source emitting a chemical substance

at constant rate. This substance is only transported by (large-

scale) advection. Small-scale advection (responsible for the

intermittent structure of the plume) and diffusion (an effect

a few orders of magnitude smaller) are not modeled. For

simplicity and without loss of generality, the wind is blowing

in positive x direction at a speed of 1m/s, i. e.

a(u) =

(

1
0

)

[m/s] (1)

at any position u.

Since the algorithms only take a binary input from the odor

sensor, we model our plume as a straight line of constant

width w starting at the odor source and extending to infinity

in the direction of the wind. The robot — modeled as a point

in 2D space — is considered in the plume if it lies on this

line, and out of the plume otherwise.

While this model is far from physical reality, the behavior

of all three algorithms in such a simplified model is approxi-

mately the same as in the real plume. As the algorithms pass

the (binary) odor sensor input through a filter to smooth out

all “gaps” shorter than the distance dlost (see Figure 4), there

TABLE I

COMPARISON OF THE REAL-ROBOT EXPERIMENTS, THE SIMULATION

EXPERIMENTS AND THE THEORETICAL MODEL.

Real exp. Simulation Theory

Environment wind tunnel Webots [24] MATLAB

Wind ≈ laminar laminar laminar
Plume real, ethanol filaments [25] straight line
Plume width (w) ≈ 35 cm 35.4 cm 35.4 cm
dlost ≈ 60 cm 61.4 cm 61.4 cm
Robot Khepera III Khepera III point
Locomotion diff.-drive diff.-drive holonomic
Odometry good perfect perfect

Wind sensor error non-gaussian N(0, (5.7o)2) N(0, (5.7o)2)
Odor sensor error negligible Gaussian, small 0
Odor sensor delay t90 ≈ 0.1 s none none



0 10 20 30 40 50 60 70 80 90 100
0

5

10

Plume traversal and filtering with d
lost

C
o
n
c
e
n
tr

a
ti
o
n

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

T
h
re

s
h
o
ld

e
d

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

Crosswind distance (cm)

F
ilt

e
re

d

Plume width (w) d
lost

Fig. 4. Preprocessing of the odor concentration signal by the robots. In
the real-robot and simulation experiments, the concentration threshold was
tuned manually. Note that the plume lost distance, dlost, is measured in
along the trajectory of the robot, while the plume width, w, is measured in
cross-wind direction.

is no need to model these gaps. This is actually the purpose

of that filter, which has been shown to work well in the

experiments with the real robot [22].

B. Wind Direction Sensor Model

The output of the wind direction sensor at position u,

as(u), is modeled as an unbiased sensor with added Gaussian

noise. That is,

as(u) = a(u) + va (2)

where

va ∼

(

N(0, σ2
a)

N(0, σ2
a)

)

[m/s] (3)

This is the same model that we used in simulation [20].

Even though the noise is added to the X and Y components

of the wind vector, the distribution of the angular noise is

approximately Gaussian as well for sufficiently small σa.

Each wind direction measurement is therefore susceptible to

an angular error modeled by the random variable

α ∼ N(0, σ2
a) with σa = 0.1 [rad] (4)

The angular noise of the real sensor has a more complicated

distribution, mostly because of quantization (10o intervals)

and the occasional large errors.

IV. METRICS

In all our experiments, we compared the distance over-

head, do, and the success rate, sr, of the algorithms. The

former is calculated as

do =
dt

du

(5)

where dt denotes the effectively traveled distance by the

robot and du the upwind distance (i. e. the distance by which

the robot came closer to the source). The advantage of this

metric is two-fold:

⊲ do is distance independent as long as the plume struc-

ture (width, intermittency, concentrations) remains the

same over the whole length. Hence, the results of

different starting positions can be compared.

⊲ do is independent of the kinematic constraints of our

differential-drive robot.

The success rate, sr, is the fraction of runs in which

the robot successfully found the source. Note that this is

a distance dependent value and stands with the success

probability per upwind distance, sp, in the following relation:

sr = (sp)
du (6)

In the experiments presented in this paper, du ≈ 14m.

V. PERFORMANCE OF THE CASTING ALGORITHM

We now calculate the distance overhead for all three

algorithms with and without taking into account the wind

direction sensor noise. For the case without noise, we derive

an expression for the mean distance overhead, do, while for

the case with the wind direction sensor noise, we numerically

calculate the distribution of distance overhead and the mean

of the success rate, sr.

The procedure is the same with all three algorithms, as

they all proceed by repeating a basic pattern until the source

is found. These basic patterns are depicted in Figure 5. Each

repetition of this pattern (called iteration in the remainder

of this paper) brings the robot closer to the source, but also

entails a certain probability to lose the plume completely.

In this section, we present our approach in details for the

casting algorithm, while the following sections only provide

the equations for the other two algorithms.

A. Ideal Wind Direction Sensor

With an ideal wind sensor (α1 = 0, α2 = 0), the tra-

jectory produced by the casting algorithm in our theoretical

model is deterministic. Its distance overhead can be written

as

do(β) =

1
sin β

+ f (1 + sin β)
(

1
sin β

+ f
)

cos β
≥

1

cos β
(7)

with

f =
dlost

w
(8)

Even though this expression may look complicated, it can

easily be derived by looking at the geometry of the trajectory.

B. Noisy Wind Direction Sensor

a) Distribution of one iteration: With the casting al-

gorithm, the basic pattern is produced by the following two

steps:

1) Move upwind with an upwind angle β until the plume

is lost for a distance greater than dlost.

2) Move cross-wind until the plume is found again.

Whether to turn left or right for this cross-wind motion

is decided using the wind direction.



(a) Casting (b) Surge-Spiral (c) Surge-Cast

Fig. 5. Basic patterns (building blocks) of the three algorithms. In one iteration, the robot moves along the thick line.

Both steps consist of measuring the wind direction, turning

towards the respective angle and moving forward while con-

tinuously sampling the odor concentration. While sampling

speeds and accelerations are large enough to be ignored,

the wind direction measurement introduces a non-negligible

error. Each of the two readings is susceptible to noise

modeled by the random variables α1 resp. α2. Note that as

each reading is assumed to be independent, α1 and α2 are

independent as well. Hence, the robot actually goes upwind

with an angle β − α1 and cross-wind with π
2 + α2.

Under these assumptions, we can — for a single iteration

— calculate the distribution of the distance that the robot

covers (dt), the distribution of the distance by which it

approaches the source (du), as well as the probability that

the robot loses the plume completely and fails the run (1−s).

Using trigonometry, the following equations1 are obtained:

dt = l + dlost
sin |β − α1|

cos α2

(9)

du = l cos(β − α1) + dlost sin |β − α1| tan α2 (10)

s =

{

1 if α2 < β − α1

0 otherwise
(11)

where

l =
w

′

sin |β − α1|
+ dlost (12)

w
′ =

{

w if α1 < β

0 otherwise
(13)

Note that dt, du and s are dependent random variables, as

they are generated using the same samples of α1 and α2.

The mean success probability of a single iteration can be

calculated by marginalizing over α1 and α2:

E(s) =

∫

∞

−∞

∫

∞

−∞

P(s|α1,α2)P(α1)P(α2) dα1dα2

(14)

The mean distance overhead, E( dt

du

), of one iteration could

be calculated in a similar fashion, but is not of particular

interest.

1To simplify the notation, we use random variables (i. e., distributions) as
if they were normal variables (e. g. a sample of that distribution), but write
them in bold font.

b) Distribution of a whole run: What we would like to

calculate instead is the distance overhead of a complete run.

To do that, we need to combine the iteration distributions

until the upwind distance exceeds 14m. Let us define

S(1)(t, u) = P(dt = t,du = u, s = 1) (15)

as the distribution of the successful runs after one iteration

in the space spanned by dt and du. Note that S(t, u) is not

a probability density function in the strict sense, because

∫

∞

−∞

S(1)(t, u) d(t, u) = E(s) ≤ 1 (16)

While the distribution of the successful runs after two

iterations, S(2)(t, u) is simply the convolution of S(1)(t, u)
with itself, the distribution after three iterations, S(3)(t, u),
is the convolution of S(2)(t, u) with S(1)(t, u), and so on.

Hence, we can combine any number of iterations by applying

the convolution equation,

S(i)(t, u) =

∫

∞

−∞

S(i−1)(t−t1, u−u1)S
(1)(t1, u1) d(t1, u1)

(17)

once for each added iteration. Note that this is only valid

because iterations are mutually independent, i. e. α
(j)
1 is

indep. of α
(k)
1 , and α

(j)
2 is indep. of α

(k)
2 , ∀j 6= k. As an

example, the first four iterations for β = 30o are depicted in

Figure 6.

Since S(1)(t, u) does not include the failing runs after one

iteration, S(i)(t, u) do not include them neither. Hence, the

fraction of successful runs after i iterations is simply

E(s(i)) =

∫

∞

−∞

S(i)(t, u) d(t, u) = (E(s))
i
≤ 1 (18)

To calculate the distribution of complete runs, it suffices

to combine iterations until

S(i)(t, u) = 0 ∀u < 14m (19)

and to collect statistics.
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c) Implementation Issues: Carrying out the above pro-

cedure analytically is clearly not viable. However, the equa-

tions can easily be solved numerically, either with a Monte-

Carlo approach (randomly selecting input samples and calcu-

lating a histogram of the output samples) or by discretizing

the distributions and calculating the joint distributions numer-

ically. We have chosen the second approach, as it provides

smoother output distributions. This corresponds to particle

filtering with fixed particles placed on a regular grid.

The implementation is fairly straightforward. We have

chosen a resolution of 0.02o for α1 and α2 and cut them

off at ±25o. The distribution S(i)(t, u) was approximated

with a 30m by 30m square lattice with a resolution of 1 cm

in each direction. Care must be taken with big values for dt

and du that do not fit within this lattice, as one would lose

probability mass when ignoring them. We simply added these

values to the cell (30m, 30m) which approximates their dt

du

ratio with 1.
In addition, equation (17) is O(n2) where n denotes the

number of cells of S(i)(t, u), which can be large. Since most

values in this matrix are zero or very small, however, the

algorithm can be boost by using sparse matrices. After each

iteration, we furthermore removed all values with du > 14m
after having calculated the necessary statistics.

C. Results

Figure 7 shows the theoretically calculated as well as the

experimentally measured distance overhead of the casting

algorithm. Figure 8 shows the corresponding success rates.

For β > 15o, the theoretically derived distance overhead

distribution is almost normal and in accordance with our

previous findings [26].

The simulation results (boxes) match very well with the

theoretical distribution. Small differences with larger upwind

angles could be due to the placement of the odor sensor. In

the theoretical model, this sensor was assumed to be centered

on the robot, while the real sensor was put in front of the

robot, at about 7 cm from its kinematic center.
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Fig. 7. Theoretical and experimental distance overhead of the casting
algorithm. Green stars: Real-robot experiments (20 runs each). Blue boxes

and red crosses: Box-plot of the simulation results (50 runs each). The box
shows the lower/upper quartile and the red line denotes the median. Red
crosses stand for outliers. Gray shading: Theoretically derived distribution
of the upwind overhead. Black lines: Expected mean upwind distance,
calculated from the distribution (solid line) and with equation (7) (dashed
line).
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In addition, equation (7) (dashed line) for an ideal wind

sensor is a very good approximation of the mean obtained

with our non-ideal wind sensor. While an ideal wind sensor

would allow us to reach the optimal performance for very

steep upwind angles, its performance is slightly worse for

β > 8o. Randomness can indeed boost the performance

here, as the relationship between performance and effective

upwind angle is not linear.

The real-robot results are significantly worse in terms of

distance overhead, but better when comparing the success

rate (except for β = 30o). Reasons for this are believed to be

two-fold. First, closer inspection of the real robot trajectories
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Fig. 9. Theoretical and experimental performance of the surge-spiral

algorithm. Green stars: Real-robot experiments (20 runs each). Blue boxes

and red crosses: Box-plot of the simulation results (50 runs each). The box
shows the lower/upper quartile and the red line denotes the median. Red
crosses stand for outliers. Gray shading: Theoretically derived distribution
of the upwind overhead. Black line: Expected mean upwind distance,
calculated from the distribution.

revealed that the cross-wind angle was almost systematically

biased towards the downwind direction. Similarly, the actual

upwind angle was 2o – 5o higher than what was configured.

This is an artefact of the measurement resolution of the wind

direction sensor, which was only 10o [22]. Second, the flow

right in front of the odor source was slightly turbulent and

sometimes caused additional errors in the wind direction

measurement. Even though these were manually removed

in the most detrimental cases, the trajectories close to the

source are still slightly less ideal.

VI. PERFORMANCE OF THE SURGE-SPIRAL ALGORITHM

A. Ideal Wind Direction Sensor

With an ideal wind direction sensor, the upwind overhead

of the surge-spiral is simply

do(dgap) = 1 (20)

Since the robot starts in the plume and moves straight upwind

in this ideal plume, it never leaves it. Hence, in contrast to

the casting algorithm, the surge-spiral algorithm achieves

optimal performance under ideal conditions.

B. Noisy Wind Direction Sensor

With a noisy wind direction sensor, we again break the

basic pattern of the the algorithm into two steps:

1) Move straight upwind until the plume is lost for a

distance greater than dlost. Due to the wind direction

measurement error, the actual upwind angle is α1.

2) Moves along an Archimedean spiral until the plume

is found again. The wind direction measurement here

(α2) only serves to decide whether to start the spiral

towards left or right.

The surge-spiral algorithm does not have any failure

condition2. Under the ideal assumptions taken here and

the fact that the spiral increases, the robot will eventually

reacquire the plume. The three distributions therefore are

dt = l + rl(dgap, dlostb sin |α1|) (21)

du = l cos α1 + ry(dgap, dlostb sin |α1|) (22)

s = 1 (23)

where

l =

{

dlost if α1 < 0
w

sinα1
+ dlost otherwise

(24)

b =







−1 if α2 < α1 < 0
−1 if 0 < α1 < α2

1 otherwise

(25)

rl(dgap, x) and ry(dgap, x) are the trajectory length resp. the

upwind component of the spiraling maneuver with spiral gap

dgap and distance x from the plume. As these values are

difficult to calculate analytically, we numerically integrated

over a spiral trajectory to find them. This is much more

precise than approximating the spiral with a circle and

straightforward to implement.

Since sin α1 → 0 for small α1, it is clear that a good wind

direction sensor will significantly increase the upwind step

length, and therewith significantly improve the performance

of the algorithm.

The rest of the calculation is exactly the same as intro-

duced in Section V.

C. Results

Figure 9 shows the distance overhead for the surge-spiral

algorithm. Despite the high variance of the simulation results,

the overall match between simulation and theory is pretty

good. Both capture the drop in performance for small spiral

gaps, and both predict a fairly constant performance over a

wide range of larger gap distances.

As opposed to the casting algorithm, the distribution

generated by surge-spiral is almost exponential. While most

runs yield a good distance overhead value, some runs are

very bad. Indeed, a number of outliers can be observed the

simulation and real-robot results (which are available for

dgap = 58 cm only).

For large dgap values, the theoretically derived distance

overhead distribution becomes slightly bumpy. This is a

result of the discrete number of iterations that the algorithm

performs. The number of real-robot and simulation runs is

too small to observe the same effect there.

VII. PERFORMANCE OF THE SURGE-CAST ALGORITHM

A. Ideal Wind Direction Sensor

For the same reasons as for the surge-spiral algorithm, the

upwind overhead for the surge-cast algorithm under ideal

conditions is

do(dcast) = 1 (26)

2In the simulation and real robot experiments, the only condition for
failure was when the robot touched the arena wall. This, however, was very
unlikely even with the real robots and never happened.
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Fig. 10. Theoretical and experimental performance of the surge-cast

algorithm. Green stars: Real-robot experiments (20 runs each). Blue boxes

and red crosses: Box-plot of the simulation results (50 runs each). The box
shows the lower/upper quartile and the red line denotes the median. Red
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calculated from the distribution.

B. Noisy Wind Direction Sensor

Since surge-cast and surge-spiral only differ their plume

reacquisition strategy their equations look very similar:

dt = l + ct(α1,α2, dlost) (27)

du = l cos α1 + cu(α1,α2, dlost) (28)

s =

{

1 if dlost
sinα1

cosα2
< dcast

0 otherwise
(29)

Instead of the spiraling maneuver, however, the surge-cast

algorithm casts to reacquire the plume. The corresponding

equations for ct and cu are:

ct = dlost
sin |α1|

cos α2

+ b (30)

cu = dlost(cos α1 + sin |α1| tan α2) (31)

b =







dcast if α2 < α1 < 0
dcast if 0 < α1 < α2

0 otherwise

(32)

Note also that the surge-cast algorithm fails if the robot does

not find the plume by casting backward and forward.

The rest of the calculation is again the same as introduced

in Section V.

C. Results

The distance overhead and the success rate of the surge-

cast algorithm are plotted in Figure 10 resp. Figure 11.

The match between simulation and theory is excellent

for both the distance overhead and the success rate. The

exponential distribution predicted by the theory is visible on

the outliers of the simulation results.

The real-robot results are only slightly worse, but follow

the same trends. While a few very good runs can be observed
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Fig. 11. Theoretical and experimental success rate of the surge-cast

algorithm.

with the real robots, their performance does not exactly

follow an exponential law. Closer inspection of the individual

runs suggests that this is mainly due to the odometry bias

which makes the robot turn slowly when it intends to go

straight. Such errors do not have a big impact on a bad run,

but makes a perfect run very unlikely.

For both the surge-cast and the surge-spiral algorithms,

the theoretical prediction with an ideal wind sensor does not

provide an accurate model of the performance of upwind

surge algorithms. At least in laminar flow, these algorithms

highly depend on the wind direction sensor and its accuracy

[20].

VIII. CONCLUSION

We derived the performance of three bio-inspired algo-

rithms in laminar wind flow within a very simple theoretical

model. For each algorithm, a deterministic equation for a

ideal wind sensor and a probabilistic approach taking into

account the wind sensor noise were introduced. The latter

provides the distribution of the distance overhead, as well as

the mean success rate.

The performance was compared with our previously pub-

lished simulation [20] and real-robot [21] [22] results, and

a good overall match was observed. The analysis at these

three levels was very complementary:

⊲ The real-robot experiments helped us finding out the

accuracy of the sensors and the type (distribution)

of errors they yield. They also pointed us to real-

world problems such as odometry drift that are not

commonly modeled in simulation programs. But most

importantly, they helped us developing some intuition

for the environment and parameters, which was crucial

in the design of the simulation experiments and the

theoretical model. Finally, they also served as real-robot

validation of the results obtained in simulation and in

theory.



⊲ The simulation experiments allowed us to study the

importance and influence of the algorithmic parameters.

For our laminar flow scenario, we concluded that the

plume lost distance does not have a big impact on the

performance, while the the accuracy of the wind sensor

did.

⊲ The theoretical results finally allowed us to study

the distribution of the distance overhead, as well as

the expected mean distance overhead and success rate

under ideal conditions. While the distribution of the

distance overhead for the casting algorithm is almost

normal (Gaussian), surge-spiral and surge-cast yield

approximately exponential distributions. This could be

an issue for real-world applications if predictability of

the performance is more important than speed.

Altogether, the experiments provide a good overall picture

of these three bio-inspired algorithms and demonstrate the in-

terplay of the three underlying behaviors (casting, spiraling,

and upwind surge) observed in nature. We showed that pure

casting is inefficient for large upwind angles, and not very

robust for small upwind angles. Upwind surge strategies have

a big speed advantage, especially if the wind direction can be

determined accurately. However, they need to be combined

with a plume reacquisition strategy. Using a local search

strategy (e. g., spiraling) to reacquire the plume yields very

robust algorithms. Casting for plume reacquisition is faster

if reliable wind direction information is available, such as in

our experiments.

It is important to note that our findings presented here

hold for a static scenario with laminar or quasi-laminar

wind flow. Turbulence makes it intrinsically much harder

to determine the wind direction, and may have a major

impact on the results. In addition, obstacles will not only

negatively influence the performance, but require to modify

the algorithms [27]. Hence, our results should be viewed as

an upper limit on the performance that can be achieved in

quasi-ideal conditions, and not as a performance target in

real-world conditions.
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