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Abstract. We prove that for any 1-reduced simplicial set X, Adams’ cobar
construction ΩCX on the normalised chain complex of X is naturally a strong
deformation retract of the normalised chains CGX on the Kan loop group GX.
In order to prove this result, we extend the definition of the cobar construction
and actually obtain the existence of such a strong deformation retract for all
0-reduced simplicial sets.

Introduction

There are two classical differential graded algebra models for the loop space on
a 1-reduced simplicial set X: Adams’ cobar construction ΩCX on the normalised
chain complex [1], and the normalised chains CGX on the Kan loop group GX [7].
Both of these models are (weakly) equivalent to CΩ|X|, the chains on the loop
space of the realisation |X|.

In this article we show that ΩCX is actually a strong deformation retract of
CGX, opening up the possibility of applying the tools of homological algebra to
transferring perturbations of algebraic structure from the latter to the former.

Theorem. For any 1-reduced simplicial set X there is a natural strong deformation
retract of chain complexes

(1) ΩCX
φ ��

CGX .
ψ

��
������

Φ��

Here ψφ is the identity map on ΩCX and Φ is a chain homotopy from φψ to
the identity map on CGX. Furthermore both φ and ψ are homomorphisms of
differential graded algebras.

In particular, ΩCX is isomorphic to a subdifferential graded algebra of CGX,
and both φ and ψ induce isomorphisms of algebras in homology.

Remark 1. Let X and Y be 1-reduced simplicial sets, and let f : GX → GY be a
simplicial map (not necessarily a homomorphism). The theorem above gives us a
natural way to construct a chain-level model of f . Indeed, if we set

ξ = ψ ◦ Cf ◦ φ : ΩCX → ΩCY,
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then

ΩCX

φ

��

ξ �� ΩCX

φ

��
CGX

Cf �� GCX

commutes up to natural chain homotopy.

Remark 2. It was proved in [6] that if X is a simplicial suspension, then ΩCX
is naturally a primitively generated Hopf algebra, and the chain algebra map φ :
ΩCX → CGX also respects comultiplicative structure. In this case the strong
deformation retract of the theorem above is actually Eilenberg-Zilber data [3], which
implies that the chain algebra map ψ : CGX → ΩCX is also strongly homotopy
comultiplicative [ibid.].

In order to prove the theorem above, we extend the definition of the cobar
construction and actually obtain the existence of such a strong deformation retract
for all 0-reduced simplicial sets.

The homomorphism φ, which we recall in the first section of this article, was first
described by Szczarba [11] in the language of twisting cochains. Given a simplicial
set X that is 0-reduced but not necessarily 1-reduced, he gives an explicit, though
somewhat complicated, formula for a twisting cochain,

αφ : CX → CGX,

that is based on the universal twisting function τ : X → GX and that gives rise in
the usual way to an algebra homomorphism

φ : ΩCX → CGX.

In degree zero the cobar construction is a free associative algebra on symbols
given by the nondegenerate 1-simplices of X, while the right-hand side is the group
ring on the free group on the same symbols. In the first section of the paper
we observe that if X is not 1-reduced, then we may perform a change of rings
along φ0, obtaining an extended cobar construction Ω̂CX, together with an algebra
homomorphism

φ : Ω̂CX → CGX

that is an isomorphism in degree zero.
In the second section we introduce the retraction map ψ from the chains on the

loop group to the extended cobar construction, for which we provide an explicit
recursive formula. We prove in fact that ψ is a natural homomorphism of chain
algebras and a one-sided inverse of the Szczarba map φ. It is surprising that such
a map has not been previously observed in the literature.

In the third section we complete the strong deformation retraction (1) by defining
the natural homotopy Φ. For this, we use the acyclic models for the loop group on
0-reduced simplices studied by Morace and Prouté [10].

1. Preliminaries

1.1. Simplicial notions and notation. A simplicial set X is a contravariant
functor from the category of finite nonempty ordinals ∆ to the category of sets;
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more prosaically it is a sequence of setsXn, n ≥ 0, and specified face and degeneracy
operators

di : Xn → Xn−1, si : Xn → Xn+1 (0 ≤ i ≤ n)

satisfying the simplicial identities; see for example [9]. A simplicial set is n-reduced
if Xk

∼= {∗} for k ≤ n. The notions of simplicial group and simplicial objects in
other categories are analogous.

Given an element x ∈ Xn and any composite θ of simplicial face and degeneracy
operators, represented by a monotonic function f : {0, . . . ,m} → {0, . . . , n} in ∆,
we also write

θ(x) = x(f(0),...,f(m))

for the corresponding element of Xm. We may write the face and degeneracy maps
themselves, for example, as

di(x) = x(0,...,̂i,...,n),

si(x) = x(0,...,i,i,...,n).

The simplicial relations imply that any simplicial operator Xn → Xm has normal
form

θ = si1 . . . siqdj1 . . . djr
with ik > ik+1 and jk < jk+1 for all k. In this form, the corresponding derived
operator Xn+1 → Xm+1 is

θ′ = si1+1 . . . siq+1dj1+1 . . . djr+1 .

An operator θ is frontal if it contains no d0; such operators satisfy θ′s0 = s0θ.

1.2. The cobar construction. We introduce a slightly extended definition of the
cobar construction, which will be better suited for applying to the normalised chain
complex on a 0-reduced simplicial set. Our definition generalises the classical con-
struction of Adams, with which it agrees for simply connected coalgebras.

Let (C, ∂,∆) be a connected differential graded coalgebra over a commutative
ring R, so that C0 = R. We suppose furthermore that C is R-free in each degree.
Consider the ring B given by the free associative R-algebra on the desuspension of
C1,

B = T (s−1C1) =
⊕
k≥0

(s−1C1)
⊗k.

Fix an R-basis {xj | j ∈ J} of C1, and let A be the ring obtained from B by freely
adjoining inverses ξj of all elements of the form 1+ s−1xj , for all j ∈ J . Explicitly,

A = TB

(
ξj | j ∈ J

)
/

(
ξj ⊗ (1 + s−1xj) = 1 = (1 + s−1xj)⊗ ξj

)
.

Observe that the relations may also be expressed in the form

ξj ⊗ s−1xj = 1− ξj = s−1xj ⊗ ξj .

The ring A may be regarded as a differential graded algebra concentrated in de-
gree zero. The graded algebra underlying the extended cobar construction (Ω̂C, ∂Ω)
is then

Ω̂C = TA(s
−1C≥2)

=
⊕
k≥0

A⊗ (s−1C≥2 ⊗A)⊗k.
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Each R-module (Ω̂C)n is generated by words

a = a1 ⊗ · · · ⊗ ar, |ai| = ni, |a| = n =
∑

ni,

where either ai = s−1c for some R-basis element c ∈ Cni+1 or ni = 0 and ai = ξj
for some j ∈ J . This R-module is free on those words in which ξj does not appear
adjacent to s−1xj . The algebra multiplication is induced by a concatenation of

words, extended bilinearly to Ω̂C, modulo the relation that ξj is inverse to 1+s−1xj .

The differential ∂Ω on Ω̂C is the derivation of A-algebras that is specified by

∂Ω
n s

−1c = −s−1dc + (−1)|ci|s−1ci ⊗ s−1ci

for all basis elements c ∈ Cn+1 and all n ≥ 1, where ∆(c) = 1⊗ c+ c⊗ 1 + ci ⊗ ci

(using the Einstein summation convention). Note that ∂Ω is necessarily zero on
elements of A.

The unit 1 ∈ (Ω̂C)0 is identified with the empty word, via the isomorphism
R ∼= (s−1C1)

⊗0.

Remark 3. If C is simply connected so that C1 = {0} and therefore A = B = R,

then Ω̂C coincides with the usual cobar construction ΩC defined by Adams.

1.3. The Kan loop group. Let X be a 0-reduced simplicial set and G a simplicial
group. A twisting function τ : X → G is a collection of functions of degree −1,

{τ : Xn+1 → Gn | n ≥ 0},
satisfying

τs0x = 1 ,

siτx = τsi+1x ,(2)

d0τx = τd0x
−1 · τd1x ,(3)

diτx = τdi+1x if i ≥ 1 .(4)

Let GX denote the Kan loop group on X, which is a simplicial group that models
the space of based loops on the geometric realization of X (see [7, 9]). There is a
universal twisting function

τ : Xn+1 � (GX)n = F(Xn+1)/F(s0Xn),

τx = [x],

sending x ∈ Xn+1 to the class of the corresponding generator in the quotient of
free groups, and the simplicial structure on GX is defined by (2)–(4).

Recall that the normalised chain complex CG on a simplicial group G also has a
differential graded algebra structure, with multiplication given by the shuffle map
and the multiplication in G,

m : CG⊗ CG −→ C(G×G) −→ CG;

that is,

(5) m(g ⊗ h) =
∑

(−1)sgn (µ,ν)sµ(q) . . . sµ(1)g · sν(p) . . . sν(1)h, g ∈ Gp, h ∈ Gq,

where the summation is over all (p, q)-shuffles (µ, ν) ∈ Shuff(p, q).
The following proposition is the motivation for our extension of the cobar con-

struction. Recall that for any simplicial set X, the degree n part of its normalised
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chain complex, CnX, is the free abelian group on the set of all nondegenerate n-
simplices of X and that CX has a comultiplication ∆ : CX → CX ⊗CX given by
the Alexander-Whitney diagonal approximation

∆(x) = x(0) ⊗ x +

n−1∑
i=1

x(0,...,i) ⊗ x(i,...,n) + x⊗ x(n)

for x ∈ Xn, n ≥ 1, and with ∆(x) = x ⊗ x for x ∈ X0. In particular, if X is
0-reduced, then CX is a connected, differential graded coalgebra over Z.

Proposition 4. Let X be a 0-reduced simplicial set and GX its Kan loop group.
Then there is an isomorphism of rings

(Ω̂CX)0 ∼=
φ0 ��

(CGX)0
ψ0

��

determined by

ψ0(τx) = ξx, ψ0(τx
−1) = 1 + s−1x,

φ0(s
−1x) = τx−1 − 1, φ0(ξx) = τx.

Proof. The proof is straightforward. Note that if x is the degenerate element s0(∗),
then the four equations yield ψ0(1) = 1, φ0(0) = 0, φ0(1) = 1. In degree 0 the
multiplication (5) is just m(g ⊗ h) = g · h, and we have

ψ0(τx
α1
1 . . . τxαr

r ) = ψ0(τx
α1
1 )⊗ · · · ⊗ ψ0(τx

αr
r ),

φ0(a1 ⊗ · · · ⊗ ar) = φ0(a1) · · ·φ0(ar),

where xi ∈ X1, αi = ±1 and ai = s−1xi or ξxi
. This is well defined: ψ0(g) is

inverse to ψ0(g
−1) for all g ∈ (GX)0 and φ0(ξx) is inverse to φ0(1 + s−1x) for

all x ∈ X1 � {s0(∗)}. It is also clear that the composites φ0ψ0 and ψ0φ0 are the
respective identity maps:

φ0ψ0(τx) = φ0(ξx) = τx, φ0ψ0(τx
−1) = φ0(1 + s−1x) = τx−1,

ψ0φ0(s
−1x) = ψ0(τx

−1 − 1) = s−1x, ψ0φ0(ξx) = ψ0(τx) = ξx. �

1.4. The Szczarba map. A map of differential graded algebras

φ : ΩCX → CGX

was given explicitly by Szczarba in the language of twisting cochains. The following
definition, lemma and theorem are from sections 2 and 3 of Szczarba’s paper [11],
adapted slightly to define a map on the extended cobar construction

φ : Ω̂CX → CGX

that extends the isomorphism φ0 of Proposition 4.
Let Sn be the set of n! sequences of integers

i = (i1, . . . , in) such that 0 ≤ ik ≤ n− k for each k.

In particular, in = 0. The sign of such a sequence i ∈ Sn is

(−1)
∑

i, where
∑

i = i1 + i2 + · · ·+ in .
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Definition 5. Given a twisting function τ : X → G, the Szczarba operators are
the functions

Szi : Xn+1 −→ Gn , i = (i1, . . . , in) ∈ Sn ,

given by the following product in Gn:

Szi x = Dn+1
0; i τx−1 ·Dn+1

1; i τd0x
−1 · · ·Dn+1

n; i τdn0x
−1 .

Here the operators Dn+1
j; i : Gn−j → Gn for i ∈ Sn, j = 0, . . . , n, are defined as

D1
0; () = IdG0

,

Dn+1
j; i1,...,in

=

⎧⎪⎪⎨⎪⎪⎩
Dn ′

j; i2,...,in
s0 di1−j if j < i1 ,

Dn ′
j; i2,...,in

if j = i1 ,

Dn ′
j−1; i2,...,in

s0 if j > i1 .

(6)

As simplicial operators these are all frontal: defining Dn+1
j; i : Xn−j → Xn in the

same way, one has Dn+1
j; i τ = τ Dn+1

j; i

′
: Xn−j+1 → Gn.

Lemma 6. The Szczarba operators satisfy

d0 Szi1,...,in = Szi2,...,in di1+1 ,

dk Szi1,...,ik,ik+1,...,in = dk Szi1,...,ik+1,ik−1,...,in if ik > ik+1 ,

dn Szi1,...,in x = sµ Szi′ x(0,...,r) · sν Szi′′ x(r,...,n+1) .

In the last equation the sequences i′, i′′, the integer r and the (r − 1, n− r)-shuffle
(µ, ν) are defined by a certain bijection

Sn
∼=

n⋃
r=1

Shuff(r − 1, n− r)× Sr−1 × Sn−r,

i 	→ ((µ, ν), i′, i′′)

(see [11, Lemma 3.3]), which respects parity as follows:

n+
∑

i = r + sgn(µ, ν) +
∑

i′ +
∑

i′′ (mod 2) .

Note that Szczarba’s sign conventions differ slightly from ours and that his
inductively-defined parity ε(i, n+ 1) is in fact just n+

∑
i.

Theorem 7. For any twisting function τ : X → G on a 0-reduced simplicial set
X, there is a canonical homomorphism of differential graded algebras defined by

φ : Ω̂CX −→ CG,

φ0(ξx1
) = τx1,

φ0(s
−1x1) = τ (x1)

−1 − 1,

φn(s
−1xn+1) =

∑
i∈Sn

(−1)
∑

i Szi x (n ≥ 1) ,

for xn+1 ∈ Xn+1.

Proof. The map φ extends linearly and multiplicatively via

φp+q(a⊗ b) = m(φp(a)⊗ φq(b)), |a| = p, |b| = q,
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where m is the multiplication (5), to all of Ω̂CX. We show φ is a chain map, i.e.,
that ∂nφn = φn−1∂

Ω
n . For x ∈ X2 we can write

∂Ω
1 s

−1x = −s−1d0x+ s−1d1x− s−1d2x− s−1x(0,1) ⊗ s−1x(1,2)

= (1 + s−1d1x)− (1 + s−1x(0,1))⊗ (1 + s−1x(1,2))

and so we have, by Lemma 6,

∂1φ1s
−1x = ∂1Sz0x = d0Sz0x− d1Sz0x = Sz()d1x− Sz()x(0,1) · Sz()x(1,2)

= τ (d1x)
−1 − τ (x(0,1))

−1 · τ (x(1,2))
−1 = φ0∂

Ω
1 s

−1x.

For x ∈ Xn+1 the argument is essentially the same. We have

∂n φn s
−1x =

∑
i∈Sn

(−1)
∑

i ∂n Szi x

=
∑
i∈Sn

(−1)
∑

i

( n∑
k=0

(−1)k dk Szi x

)
,

where, by Lemma 6, all the terms for 0 < k < n cancel, and the terms for k = 0, n
may be rewritten as∑

0≤i1≤n−1

i∈Sn−1

(−1)i1+
∑

i Szi di1+1 x+
∑

1≤r≤n

(µ,ν), i′,i′′

(−1)n+
∑

isµ Szi′ x(0,...,r) · sν Szi′′ x(r,...,n+1)

=
∑

1≤r≤n

(−1)r−1φn−1 s
−1drx+

∑
1≤r≤n

(−1)rm(φr−1 s
−1x(0,...,r) ⊗ φn−r s

−1x(r,...,n+1))

− 1⊗ φn−1s
−1x(1,...,n+1) + (−1)nφn−1s

−1x(0,...,n) ⊗ 1

= φn−1

( n+1∑
r=0

(−1)r−1s−1drx +

n∑
r=1

(−1)rs−1x(0,...,r) ⊗ s−1x(r,...,n+1)

)
= φn−1∂

Ω
n x. �

We will need one further property of the Szczarba operators.

Lemma 8. For all x ∈ Xn+1 and i ∈ Sn, the following product in Gn is degenerate:

Dn+1
0; i τx · Szi x = Dn+1

1; i τd0x
−1 · · ·Dn+1

n; i τdn0x
−1 .

Proof. For any sequence i ∈ Sn we will show by induction that Dn+1
j; i is sκ(i)−1-

degenerate for all j > 0, where κ(i) is the least integer such that iκ(i) = 0. If i1 = 0,
so that κ(i) = 1, then by (6),

Dn+1
j; i = Dn ′

j−1; i2,...,in s0 = s0D
n
j−1; i2,...,in

for all j > i1 = 0. If i1 > 0, so that κ(i) > 1, then κ(i2, . . . , in) = κ(i)− 1 and we
know that Dn

j; i2,...,in
(if j > 0) and Dn

j−1; i2,...,in
(if j > 1) are sκ(i)−2-degenerate

by the inductive hypothesis. The corresponding derived operators are therefore
sκ(i)−1-degenerate and, by (6), so is Dn+1

j; i for all j > 0. �
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2. The retraction map

2.1. Definition of the map. Let X be a 0-reduced simplicial set. We introduce
in this section a map of differential graded algebras

ψ : CGX −→ Ω̂CX

between the chains on the loop group and the extended cobar construction, which
is a retraction of the Szczarba map φ. The map ψ is uniquely determined by the
relation

ψn(τx · g) = ψn(g) −
n∑

i=0

s−1x(0,...,i+1) ⊗ ψn−i(τd
i
1x · di0g)(7)

for x ∈ Xn+1 and g ∈ (GX)n. Note that the i = 0 term on the right-hand side is
s−1x(0,1) ⊗ψn(τx · g). In fact ψ may be expressed inductively, on the degree n and
the word length in (GX)n.

Lemma 9. The definition of ψ in (7) may be rewritten as

ψn(τx · g) = ξx(0,1)
⊗
(
ψn(g)−

n∑
i=1

s−1x(0,...,i+1) ⊗ ψn−iωi(x, g)

)
,

ψn(τx
−1 · h) = (1 + s−1x(0,1))⊗ ψn(h) +

n∑
i=1

s−1x(0,...,i+1) ⊗ ψn−iωi(x, h),

where

ωi(x, g) = τdi1x · di0g ∈ (GX)n−i,

ωi(x, h) = ωi(x, τx
−1 · h) = τd0d

i−1
2 x · di0h.

Proof. Collecting the terms in (7) involving ψn(τx ·g) and dividing by 1+s−1x(0,1)

gives the first equation. The second is obtained by taking g = τx−1 · h in the
first. �

From these formulae it is straightforward to give the map ψ explicitly in low
degrees.

Lemma 10. The map ψ0 : (GCX)0 → (Ω̂CX)0 agrees with that defined in Proposi-

tion 4, and the map ψ1 : (GCX)1 → (Ω̂CX)1 is given for x, xi ∈ X2 and α, αi = ±1
by

ψ1(τx
α1
1 . . . τxαr

r ) =
r∑

i=1

ψ0d1(τx
α1
1 . . . τx

αi−1

i−1 )⊗ ψ1(τx
αi
i )⊗ ψ0d0(τx

αi+1

i+1 . . . τxαr
r )

with ψ1(τx
α) =

{
−ψ0(τx(0,1))⊗ s−1x⊗ ψ0(τx(0,2)) (α = +1)

s−1x⊗ ψ0(τx(1,2)) (α = −1).

Lemma 11. ψ is well-defined.

Proof. We show that ψn(w) = 0 if w is degenerate, by induction on n and on the
word length in GX. Suppose 0 ≤ j ≤ n− 1 and

w = sj(τx
α · g),
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where α = ±1 and τxα · g is a reduced word in (GX)n−1. For α = +1 we have

(1 + s−1x(0,1))⊗ ψn(w) = (1 + s−1x(0,1))⊗ ψn(τsj+1x · sjg)

= ψnsjg −
n∑

i=1

(sj+1x)(0,...,i+1) ⊗ ψn−iωi(sj+1x, sjg)

in which the first term is zero inductively. Each term in the summation is also zero
since (sj+1x)(0,...,i+1) is degenerate for j < i and ωi(sj+1x, sjg) = sj−iωi(x, g) for

j ≥ i. Since 1 + s−1x(0,1) is invertible, we have ψn(w) = 0.
The argument for α = −1 is similar. �

2.2. Properties of the retraction map. We now prove that ψ is a morphism of
differential graded algebras and a retraction of the Szczarba map φ.

Proposition 12. ψ is a chain map.

Proof. We will show that for all x ∈ Xn+1 and g ∈ (GX)n,

∂Ω
n ψn(τx · g) = ψn−1 ∂n(τx · g),

by induction on n and on the word length in GX. We first observe that

ψn−1(d0(τx · g)− τd1x · d0g) = ψn−1(τd0x
−1 · τd1x · d0g)− ψn−1(τd1x · d0g)

= s−1x(1,2) ⊗ ψn−1(τd1x · d0g) +
n−1∑
i=1

s−1x(1,...,i+2) ⊗ ψn−1−iωi(d0x, τd1x · d0g),

using the second formula in Lemma 9. Now since τd1x · d0g = ω1(x, g), and also
ωi(d0x, τd1x · d0g) = ωi(d1x, τd1x · d0g) = ωi(d1x, d0g) = ωi+1(x, g), we get

ψn−1(d0(τx · g)− τd1x · d0g) =

n∑
k=1

s−1x(1,...,k+1) ⊗ ψn−kωk(x, g)(8)

and substituting dr−1
1 x and dr−1

0 g for x and g respectively, we obtain

ψn−r(d0ωr−1(x, g)− ωr(x, g)) =

n∑
k=r

s−1x(r,...,k+1) ⊗ ψn−kωk(x, g).(9)

Now, using Lemma 9, we know that

(1 + s−1x(0,1))⊗ ∂Ω
nψn(τx · g) = ∂Ω

n

(
(1 + s−1x(0,1))⊗ ψn(τx · g)

)
= ∂Ω

n

(
−

n∑
i=1

s−1x(0,...,i+1) ⊗ ψn−iωi(x, g) + ψng

)

= −
n∑

i=1

∂Ω
i s

−1x(0,...,i+1) ⊗ ψn−iωi(x, g)

−
n−1∑
i=1

(−1)is−1x(0,...,i+1) ⊗ ψn−1−i∂n−iωi(x, g) + ψn−1∂ng,
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since inductively ∂Ω
n−iψn−i = ψn−i−1∂n−i and ∂Ω

nψng = ψn−1∂ng. Now expanding

the operators ∂Ω and ∂ we get

(1 + s−1x(0,1))⊗ ∂Ω
nψn(τx · g)

= −
n∑

i=1

i+1∑
r=0

(−1)r+1s−1x(0,...,r̂,...i+1) ⊗ ψn−iωi(x, g)

−
n∑

i=1

i∑
q=1

(−1)qs−1x(0,...,q) ⊗ s−1x(q,...,i+1) ⊗ ψn−iωi(x, g)(10)

−
n−1∑
j=1

n−j∑
t=0

(−1)j+ts−1x(0,...,j+1) ⊗ ψn−1−jdtωj(x, g) +
n∑

k=0

(−1)kψn−1dkg.

Collecting together the terms for which either i = 1, k = 0, r = 0, or q = 1 gives(
(1 + s−1x(0,1))− (1 + s−1x(0,2))

)
⊗ ψn−1ω1(x, g) + ψn−1d0g

+
n∑

i=1

(1 + s−1x(0,1))⊗ s−1x(1,...i+1) ⊗ ψn−iωi(x, g)

= (1 + s−1x(0,1))⊗ ψn−1d0(τx · g)− (1 + s−1x(0,2))⊗ ψn−1ω1(x, g) + ψn−1d0g

by (8), and by Lemma 9 the last two terms here cancel exactly with the terms for
r = 1 and i > 1 in (10).

Now collecting the terms for r = i + 1 and i > 1 in (10), together with all the
(i, q)-indexed terms not already considered, gives

−
n∑

i=2

(
(−1)is−1x(0,...,i) +

i∑
q=2

(−1)qs−1x(0,...,q) ⊗ s−1x(q,...,i+1)

)
⊗ ψn−iωi(x, g)

= −
n∑

r=2

(−1)rs−1x(0,...,r) ⊗
(
ψn−rωr(x, g) +

n∑
k=r

s−1x(r,...,i+1) ⊗ ψn−iωi(x, g)

)

= −
n∑

r=2

(−1)rs−1x(0,...,r) ⊗ ψn−rd0ωr−1(x, g)

by (9), and this cancels exactly with the terms for t = 0 in (10).
Thus expression (10) is equal to

(1 + s−1x(0,1))⊗ ψn−1d0(τx · g) +

n∑
k=1

(−1)kψn−1dkg

−
∑

2≤r≤i≤n

(−1)r+1s−1x(0,...,r̂,...i+1) ⊗ ψn−iωi(x, g)(11)

−
∑

1≤j<j+t≤n

(−1)j+ts−1x(0,...,j+1) ⊗ ψn−1−jdtωj(x, g).
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Now to complete the proof it remains to show that expression (11) is equal to

(1 + s−1x(0,1))⊗ ψn−1∂n(τx · g) = (1 + s−1x(0,1))⊗ ψn−1d0(τx · g)

+

n∑
i=1

(−1)i(1 + s−1x(0,1))⊗ ψn−1(τdi+1x · dig).

The first term is as required, and by Lemma 9 the summation is

n∑
i=1

(−1)i
(
ψn−1dig −

n−1∑
k=1

s−1(di+1x)(0,...,k+1) ⊗ ψn−1−kωk(di+1x, dig)

)
.

The result therefore follows from the observations that

(di+1x)(0,...k+1)=

{
x
(0,...,̂i+1,...,k+2)

,

x(0,...,k+1),
ωk(di+1x, dig)=

{
ωk+1(x, g) (i ≤ k),

di−kωk(x, g) (i > k).

�

Proposition 13. The map ψ is an algebra homomorphism.

Proof. Let v ∈ (GX)p and w ∈ (GX)q and consider v ⊗ w ∈ (CGX ⊗ CGX)n,
n = p+ q. To show that ψ is multiplicative we must prove that

ψnm(v ⊗ w) =
∑
(µ,ν)

(−1)sgn(µ,ν)ψn(sµv · sνw) = ψpv ⊗ ψqw

in Ω̂CX by induction on p and the word length of v. For v = ∗, or p or q = 0, there
is nothing to prove; suppose inductively that p, q ≥ 1 and v = τx · g for x ∈ Xp+1

(the argument for v = τx−1 · g is similar). Then by Lemma 9,

(1 + s−1x(0,1))⊗ ψn(sµ(τx · g) · sνw) = (1 + s−1x(0,1))⊗ ψn(τs
′
µx · (sµg · sνw))

= ψn(sµg · sνw)−
n∑

i=1

dn−i
i+2 s

′
µx⊗ ψn−iωi(s

′
µx, sµg · sνw).

The term dn−i
i+2 s

′
µx will be degenerate unless i ≤ p and (sµ, sν) is of the form

(si+ξqsi+ξq−1
. . . si+ξ1 , s

i
0sζ) for some (p− i, q)-shuffle (ξ, ζ), and we have

(1 + s−1x(0,1))⊗ ψnm(v ⊗ w)

=
∑
(µ,ν)

(−1)sgn(µ,ν)ψn(sµg · sνw)−
∑

1≤i≤p
(ξ,ζ)

(−1)sgn(ξ,ζ)dp−i
i+2x⊗ ψn−i(sξωi(x, g) · sζw)

= ψnm(g ⊗ w) −
p∑

i=1

dp−i
i+2x ⊗ ψn−im(ωi(x, g)⊗ w)

=

(
ψpg −

p∑
i=1

dp−i
i+2x ⊗ ψp−iωi(x, g)

)
⊗ ψqw, by the inductive hypothesis,

= (1 + s−1x(0,1)) ⊗ ψpv ⊗ ψqw,

by Lemma 9. The result follows. �

Proposition 14. The map ψ is a retraction of φ; that is, the composite ψφ is the
identity.
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Proof. It is enough to prove this on algebra generators of Ω̂CX. For x ∈ Xn+1 and
i = (i1, . . . , in) ∈ Sn we will show that

ψnSzix =

{
x if i1 = · · · = in = 0,

0 otherwise.

Denote by x0; i the element of X satisfying

Dn+1
0; i τx = τx0; i.

Lemma 8 tells us that ψn(τx0; i · Szix) = 0, and so by Lemma 9 we have

ψnSzix =
n∑

k=1

dn−k
k+2x0; i ⊗ ψn−kωk(x0; i, Szix).

From (6) we see that Dn+1
0, i τx has an sk−1 degeneracy if ik 
= 0. Thus dn−k

k+2x0; i is

degenerate except in the case i1 = · · · = ik = 0. In this case we see from (6) and
Lemma 6 that

ωk(x0; i, Szix) = τdk1x0; i · di0Szix = Dn−k+1
0; ik+1,...,in

τdk1x · Szik+1,...,ind
k
1x,

which is degenerate again by Lemma 8. The only nonzero term is therefore

ψnSz0,...,0x = x0;0,...,0 ⊗ ψ0(∗) = x,

and hence ψφx = x, as required. �

3. Deformation retraction of the loop group

Both the Kan functor G and the cobar construction model loop spaces. In the
1-reduced case it is easy to show that the Szczarba map φ : ΩCX → CGX is a
weak equivalence, by applying Zeeman’s comparison theorem to the map of spectral
sequences associated with

(12)

ΩCX

φ

��

�� ΩCX ⊗αφ
CX ��

��

CX

=

��
CGX �� C(GX ×τ X) �� CX

in which the total spaces are acyclic.
We prove here the following stronger result.

Theorem 15. Let X be a 0-reduced simplicial set. Let φ be the Szczarba map and
ψ the retraction map defined above.

There is a natural strong deformation retraction of chain complexes

Ω̂CX

φ ��
CGX.

ψ
��

������
Φ��

Recall that if A and B are chain complexes, ∇ : A → B and f : B → A are
chain maps, and h : B → B is linear map of degree +1, then

A
∇ ��

B
f

��
������

h��
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is a strong deformation retract if f∇ = IdA and ∂h + h∂ = ∇f − IdB . Given a
strong deformation retract, one can apply the machinery of homological perturba-
tion theory to transfer perturbations of the structure B across to A, obtaining a
new strong deformation retract; see [4], [5], [8].

Proof. According to Proposition 14, we need only to prove that there is a natural
chain homotopy from the composite φψ to the identity map on CGX. The proof,
an acyclic models argument, proceeds by induction on the degree.

The base step of the induction is trivial, by Proposition 4. We can simply set
Φ0 = 0 : C0GX → C1GX for all 0-reduced simplicial sets X.

Suppose now that Φk : CkGX → Ck+1GX has been defined for all 0 ≤ k < n
and for all 0-reduced simplicial sets X so that

(1.k) Φk is natural in X for all k, and
(2.k) ∂Φk +Φk−1∂ = φψ − IdCGX for all k and all X,

where n ≥ 1.
Let ∆[n] denote the quotient of the standard simplicial n-simplex by its 0-

skeleton. If x = (k0 · · · kj) is a j-simplex of ∆[n], let x ·n denote the (j+1)-simplex
(k0 · · · kj n). Let

hn
i :

(
G∆[n]

)
i
→

(
G∆[n]

)
i+1

denote the group homomorphism specified by hn
i (τx) = τ (x ·n) for all x ∈ ∆[n]i+1.

Let

h̄n : C∗G∆[n] → C∗+1G∆[n]

denote the degree +1 linear map specified by h̄n
i (w) = −hn

i (w) for all w ∈ (G∆[n])i.
Morace and Prouté proved in [10] that for all i ≥ 1,

∂i+1h̄
n
i + h̄n

i−1∂i = Id,

i.e., that h̄n is a contraction in positive degrees. It follows that HiG∆[n] = 0 for
all i ≥ 1.

Consider the infinite wedge

W (n+ 1) =
∨
m∈N

∆[n+ 1].

There is a chain homotopy

h̃n+1 : C∗GW (n+ 1) → C∗+1GW (n+ 1)

that is a contraction in positive degrees and that generalises Morace and Prouté’s
construction.

Let

w = τδα1
m1

· · · τδαk
mk

∈
(
GW (n+ 1)

)
n
,

where δmi
denotes the unique nondegenerate (n + 1)-simplex in the mth

i copy of
∆[n+ 1] in W (n), and αi = ±1. Set

Φn(w) = h̃n
(
φψ(w)− w − Φn−1(∂w)

)
.

The induction hypothesis implies that φψ(w)− w − Φn−1(∂w) is a cycle and that

∂Φn(w) =− h̃n∂
(
φψ(w)− w − Φn−1(∂w)

)
+ φψ(w)− w − Φn−1(∂w)

= φψ(w)− w − Φn−1(∂w).
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Adding Φn−1(∂w) to both sides of this equation, we obtain

∂Φn(w) + Φn−1(∂w) = φψ(w)− w;

i.e., (2.n) holds for all such w.
Let X be any 0-reduced simplicial set, and let

w = τxα1
1 · · · τxαk

k

be any nondegenerate n-simplex in GX, where αi = ±1 for all i. Let ζi : ∆[n+1] →
X be the simplicial map representing xi.

Let γ : ∆[n + 1] → X denote the simplicial map collapsing everything to the
basepoint. Consider the morphism of simplicial groups

Ψw = G(ζ1 ∨ · · · ∨ ζk ∨
∨
m>k

γ) : GW (n+ 1) → GX.

Observe that

Ψw(τδ
α1
1 · · · τδαk

k ) = w,

where δi denotes the unique nondegenerate n-simplex in the ith copy of ∆[n+1] in
W (n+ 1).

Using the map Ψw constructed above for any generator w of CnGX, we define
Φn : CnGX → Cn+1GX for any 0-reduced simplicial set X by

Φn(w) = Cn+1Ψw ◦ Φn(τδ
α1
1 · · · τδαk

k ).

Note that if X = W (n+ 1) and w = τδα1
j1

· · · τδαk
jk

, then

Ψw : GW (n+ 1) → GW (n+ 1)

is a homomorphism of simplicial groups given simply by permuting generators. It
follows from the construction of the chain homotopy h̄n+1 and therefore of the chain
homotopy h̃n+1 that h̃n+1 is natural with respect to homomorphisms that simply
permute generators, so that

Cn+1Ψw ◦ h̃n
n = h̃n

n ◦ CnΨw.

Consequently, Φn(w) is indeed well-defined, since φ, ψ and, by the induction hy-
pothesis, Φn−1 are all natural with respect to simplicial maps.

Moreover,

∂Φn(w) = Cn+1Ψw ◦ ∂Φn(τδ
α1
1 · · · τδαk

k )

= Cn+1Ψw ◦
(
(φψ − IdCGW (n) − Φn−1∂)(τδ

α1
1 · · · τδαk

k )
)

(	)
= (φψ − IdCGX − Φn−1∂) ◦ CnΨw(τδ

α1
1 · · · τδαk

k )

= (φψ − IdCGX − Φn−1∂)(w),

where the equality (�) follows from naturality of φ, ψ and Φn−1. In other words,

∂Φn +Φn−1∂ = φψ − IdCGX ,

for all X; i.e., condition (2.n) holds.
To conclude, observe that condition (1.n) holds as well, since for all simplicial

maps g : X → Y between 0-reduced spaces and all w ∈ GX,

Gg◦Ψw = ΨGg(w) : GW (n+1) → GY. �
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Remark 16. It is in order to be able to apply the chain homotopy of Morace and
Prouté that we work with 0-reduced simplicial sets. There is no such chain homo-
topy in the 1-reduced case, so it seems we are obliged to prove the existence of the
strong deformation retract in the 0-reduced case in order to conclude that it exists
in the 1-reduced case as well.

Remark 17. As defined in the proof above, Φn is almost certainly not a derivation
homotopy, since, as easy computations show, h̃ is not a derivation homotopy.

Remark 18. Morace and Prouté showed that h̄n
i+1 ◦ h̄n

i = 0 for all i and n, from

which it follows that h̃n
i+1 ◦ h̃n

i = 0 as well and therefore that

h̃n+1
n+1 ◦ Φn(τδ

α1
j1

· · · τδαk
jk

) = 0

for all j1, ..., jk and α1, ..., αk.

Remark 19. The results in this paper generalise from chain complexes to crossed
complexes. There is a crossed cobar construction ΩπX on the fundamental crossed
complex πX, see [2], and we may define a ‘crossed’ Szczarba map of crossed chain
algebras φ : ΩπX → πGX that forms part of a deformation retraction

ΩπX
φ ��

πGX.
ψ

��
������

Φ��

The classical argument that φ is a weak equivalence, using (12), does not go through
in this slightly nonabelian situation, since it seems there is no good notion of twisted
tensor product of crossed complexes.
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