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Abstract—Solar panels are frequently used in wireless sensor
nodes because they can theoretically provide quite a bit of
harvested energy. However, they are not a reliable, consistent
source of energy because of the Sun’s cycles and the ever-
changing weather conditions. Thus, in this paper we present a
fast, efficient and reliable solar prediction algorithm, namely,
Weather-Conditioned Moving Average (WCMA) that is capable of
exploiting the solar energy more efficiently than state-of-the-art
energy prediction algorithms (e.g. Exponential Weighted Moving
Average EWMA). In particular, WCMA is able to effectively take
into account both the current and past-days weather conditions,
obtaining a relative mean error of only 10%. When coupled
with energy management algorithm, it can achieve gains of more
than 90% in energy utilization with respect to EWMA under the
real working conditions of the Shimmer node, an active sensing
platform for structural health monitoring.

I. INTRODUCTION

Latest battery-powered embedded sensor nodes
([1],[2],[3],[4]), are designed to gather, process and wirelessly
transmit data in regular time intervals. These nodes are able
to provide significant in-situ processing capabilities of the
collected data (e.g., temperature figures, humidity). As a
consequence, a whole new set of applications with complex
features, such as actuation and data processing, have been
developed for these nodes. However, battery lifetime is still
a significant limitation. One way to improve this is by using
energy harvesting coupled with rechargeable energy storage
(e.g. batteries and super capacitors).
Many different types of energy harvesting technologies exist

- solar, vibration, wind, piezoelectric, thermoelectric, etc. Solar
energy harvesting is by far the most effective [5] for wireless
sensor nodes. A great application example is Shimmer [6], a
sensor node targeted at structural health monitoring applica-
tions (SHM). It uses supercapacitors as energy storage units
and a solar panel for energy harvesting. Shimmer evaluates
the health of a large structure such as a bridge by sending a
wave through it via one PZT device, and sensing a response
via another. Fairly significant processing has to be done on the
data (over 100 MIPS) to detect if there is damage. Finally it
transmits the result. The amount of energy needed to execute

these tasks is substantial, thus being able to understand how
much energy is currently available, and how much can be
harvested in the next time interval is very important.
Online strategies that understand these tradeoffs and can

plan in near term how to best spend the energy received
via energy harvesting need to be developed. The sensor node
should exploit the extra energy available from energy harvest-
ing sources once the batteries or super capacitors are charged
up. This energy can be used to achieve higher accuracy by
executing additional tasks on the node (such as actuating,
sensing, processing, etc). When energy harvesting is either not
available or minimal, the sensor node still needs to be able
to respond to a minimum amount of outside queries for data
(i.e., event-based triggering). Therefore, adaptation is needed
as the energy availability and the outside demands change
dynamically in time.
In this paper, we propose Weather-Conditioned Moving

Average (WCMA), a novel accurate yet very low overhead,
solar energy prediction algorithm based on the Exponentially
Weighted Moving-Average (EWMA) [7] estimation method.
Our new WCMA algorithm can be used to accurately estimate
the amount of energy that will be harvested by solar panels in
the near future, so that it is possible to deploy power-efficient
task management methods on solar energy-harvested wireless
sensor nodes.
The rest of the paper is organized as follows. In Section 2 we

summarize the related work on energy prediction algorithms.
Section 3 outlines our new solar energy harvesting prediction
algorithm. Finally, in Section 4 we assess the efficiency of the
energy prediction algorithm using an active sensing platform
for Structural Health Monitoring, i.e., the Shimmer node.

II. RELATED WORK

A frequently used and low cost (in terms of computation
need) energy prediction algorithm is Exponentially Weighted
Moving-Average (EWMA) [7],[8],[9],[10]. The method is
designed to exploit the diurnal cycle in solar energy and to
adapt to the seasonal variations. EWMA calculates the value
of energy likely to be harvested at a particular time as a



weighted average of the energy received at the same time
over a set of previous days [10]. Although EWMA-based
algorithm is accurate for consistent weather conditions, when
cloudy and sunny days are mixed, recent days energy values
introduce significant prediction errors. Therefore, to prevent
this problem, we introduce in this work a new prediction
algorithm that not only takes into account the solar conditions
at a certain time of the day, but also adjusts the energy intake
estimation for the changing weather conditions throughout a
day.
Other solar prediction algorithms have been recently pro-

posed, based on mean expected values. In [11], it is shown that
the average-daily solar system performance may be calculated
from the product of clear-sky solar performance and the
average time fraction of clear sky. This approximation greatly
simplifies the solar system performance prediction, but does
not offer specific energy guarantees at certain daily intervals,
not been suitable for short term predictions. Also, [12] in-
troduces a new method for modeling daily sun radiations,
based on Takagi-Sugeno fuzzy systems. This method uses
a non-linear technique, defined by a set of If-Then rules
with linear consequent parts, which establish a local linear
input-output relationship between the variables of the model.
Then, the parameters of the model are identified using the
fuzzy clustering combined to the least square algorithm. This
model produces accurate results, but requires a very high
computation, making this algorithm not applicable on small
wireless sensor nodes as we target in this work.

III. WCMA ENERGY PREDICTION

WCMA has its foundations on EWMA for estimating the
solar energy entering the system. In contrast to EWMA, it also
characterizes the seasonal changes by adapting both the change
in the hour of sunrise and sunset, as well as the difference in
solar power between seasons. Furthermore, this new algorithm
takes into the account weather changes with minimal overhead.
In EWMA, the day is divided on slots and a vector of

estimated values for each slot i is stored, i.e., X(i). This
equation is used to update the slots, as follows:

X(i) = α ·X(i− 1) + (1− α) · x(i) (1)

where x(i) denotes the value of real energy observed at the
end of the slot i and α is a weighting factor.
Figure 1 shows the actual energy input from the solar panel

and the predicted value in five consecutive days, with a mix of
sunny and cloudy conditions. In this case, when the sunny and
cloudy days alternate, the EWMA produces a significant error
in its prediction, due to the high impact of the solar conditions
of previous day in the predicted value. To avoid this effect, our
new prediction algorithm takes into account not only the solar
conditions at a specific time of the day, but also the weather
conditions in the current day. This is especially important
in frequently changing weather conditions, for example, we
observed that the energy harvested during cloudy days was
less than half of that gathered during sunny days.
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Fig. 1. EWMA energy prediction algorithm

WCMA algorithm uses an E matrix of size DxN that stores
N energy values for each D past days. Hence, E(i, j) is the
energy stored in the matrix for the jth sample on the ith day,
and the predicted value is related to the previous sample in
the same day and the mean value of the past samples (at the
same hour of the day):

E(d, n+1) = α·E(d, n)+GAPk ·(1−α)·MD(d, n+1) (2)

where α is a weighting factor similar to the EWMA algorithm,
and MD(d, n+1) is the mean of D past days at n+1 sample
of the day:

MD(d, n) =

∑
d−D

i=d−1
E(i, n)

D
(3)

The main innovation in our algorithm is the inclusion of
the factor GAPk. This factor measures the solar conditions in
the present day relative to the previous days. To compute the
GAPk factor, we first define a vector V = [v1, v2, · · · , vK ]
with K elements. V contains the quotient of the past K

samples and the average solar energy available during the
previous D days for those samples. Therefore, a value greater
that one means that today’s value is larger than the mean,
which represents a sunny day, and values smaller that one
represents cloudy days:

vk =
E(d, n−K + k − 1)

MD(d, n−K + k − 1)
(4)

Then, in order to give more importance to the closest values
on time, we weight these values with the distance to the actual
point in time using vector P = [p1, p2, · · · , pK ] as follows:

pk =
k

K
(5)

Finally, the weighting factor, GAPk , is computed:

GAPk =
V ·P∑

P
(6)



TABLE I
SOLAR ENERGY PREDICTION EXAMPLE

Solar Panel energy evolution in mW

n-2 n-1 n n+1

d-4 277 272 221 263

d-3 350 353 347 347

d-2 345 346 349 353

d-1 249 255 314 289

d 342 256 230 ???

Mean 305 306 307 313

V 1.12 0.84 0.75

P 0.33 0.67 1.00

Example: Table I shows an example of how WCMA com-
putes the GAPk factor for the next predicted value E(d, n+1)
with D=4, K=3. The Mean vector contains the mean value of
the previous four days, V has the quotient of the elements in
row d divided by the Mean (element by element), and P is the
weighting factor for V . Finally, the GAPk value is defined as
follows:

GAPk =
(1.12, 0.83, 0.75)× (0.33, 0.67, 1.00)∑

(0.33, 0.67, 1)
(7)

And the predicted value with α = 0.7 is:

E(d, n + 1) = 0.7 · 230 + 0.84(1− 0.7) · 313 (8)

A. WCMA’s parameters optimization

To optimize all the needed parameters in WCMA, i.e., the
size of the E matrix, (DxN), α factor and number K of
past samples to weight, we must define the error function
to evaluate and relevant constraints. To optimize these values
we have recorded the energy available from the solar panel
[13] every minute during 45 consecutive days. As we want to
predict the sun evolution, the night values will be discarded
in the computation of the error. We consider night values all
the samples with less than 10% of the maximum. The error
function for a record of N points is given at the percentage:

Err =
1

N

N∑
i=1

abs

(
1−

EReal

EPred

)
(9)

where EReal denotes the real energy value and EPred is the
estimated value.
To optimize the predictor performance, not only focus on

minimizing the error, but we also try to ensure all possible
tradeoffs between accuracy and duty cycle are met. When more
samples are collected per day, the estimate of the next value
is more precise at the cost of frequent sensor node wakeups
which can lead to a negative impact on the overall energy
consumption. On the other hand, a too low sampling rate
does not give the sufficient data to WCMA to estimate the
energy harvesting rate, which would make the sensor node
calibration difficult. Based on our experiments performed on
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Fig. 2. Estimated error for N=48 and K=6
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Fig. 3. Estimated error for N=48 and α=7

real sensor nodes ([6]), a sample period of 30 minutes (i.e.,48
samples/day) gives a reasonably accurate prediction with a low
duty cycle and a small memory footprint. Figure 2 shows the
estimated error of the prediction as a function of the weighting
factor, and the number of days D, for a fixed number of past
values K=6 and samples per day N=48. Selecting a weighting
factor (α) of 0.7 gives a minimal error, independent of the
number of past days stored in the matrix. Hence, we will use
the value of 0.7 in our optimization process of WCMA.

Figure 3 shows the prediction error versus D and K ,
with α and N fixed. Our experiments indicate that if the
number of past samples K is above 5, then the error quickly
increases because it takes into account too many samples of
the weather pattern of each day. Since the number of past
days does not influence the error as much as the number of
past samples K for a particular day, then we can use fewer
days for the estimate, which lowers the computational cost of
WCMA without a significant accuracy loss. As a result of our
analysis, WCMA model used in this paper has the following
parameters to minimize its prediction error: D=4 days, N=48
samples/day, K=3 past samples, and α=0.7.
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Fig. 4. Prediction accuracy of WCMA vs. EWMA

B. Comparison of WCMA vs. EWMA

We compare the energy prediction accuracy of WCMA to
EWMA. Figure 4 shows four consecutive days of different
weather conditions, and predicted values using both algo-
rithms. The first and third days correspond to sunny conditions
and the second and the fourth are cloudy. Since EWMA only
uses values from previous days at the exact same time period,
if the weather conditions change from one day to another, this
method has a large error in prediction (i.e., close to 30%).
On the other hand, WCMA produces a much better results
because it uses the values from the same hour over a number
of previous days and the past values from the same day, which
help calibrate against the actual weather conditions. Overall,
EWMA gives an average error of 28.6% compared to 9.8%
obtained by our new algorithm WCMA, over all 45 days of
the collected solar panel data.

IV. EXPERIMENTAL SETUP AND RESULTS

We assess the performance of WCMA in a real-life energy
harvested wireless sensor node, i.e., the Shimmer platform
[6], which is an active sensing platform for structural health
monitoring. Shimmer uses a super capacitor as energy storage
unit and solar panel as energy harvesting unit. It is able to
perform active sensing using a matrix of 16 piezoelectric
actuators/sensors (PZTs) to find structural damage. It launches
a wave signal via one PZT through the material and samples
the resulting wave via another PZT. Then Shimmer uses the
acquired signal to perform complex processing on its DSP
to determine if the structure is damaged or not. Shimmer is
also equipped with a ZigBee-compatible radio link. Thus, it
can send the sampled data or the results through its on-board
processing to a remote server. The types of tasks that can be
executed on the Shimmer platform are:

• Actuate/Sample: Shimmer has 16 PZTs which result
in 240 different paths that can be tested. This task is
characterized by a mean power consumption of 1027mW
and an execution time of 1.1ms, producing 20Kbytes of
data.

TABLE II
SOLAR ENERGY PREDICTIION RESULTS

Day ErealJ Algorithm EJ Err%

7 571.72
WCMA 550.44 3.72

EWMA 535.50 6.34

8 284.63
WCMA 255.60 10.20

EWMA 543.60 -90.99

9 400.61
WCMA 360.00 10.14

EWMA 423.00 -5.59

10 609.50
WCMA 597.60 1.95

EWMA 406.80 33.26

• Process: Different algorithms can be employed to process
the sampled data; they can vary from simple time do-
main pattern matching to complex filtering and frequency
domain analysis. Thus, this task has a mean power
consumption of 680mW and an execution time of 55ms
(light process) or 3470ms (complex process).

• Send: When no damage is detected, little data needs to
be sent over the radio, but in other situations the whole
data record gathered is necessary to perform an analysis
of the damage evolution over long periods. This task
has a power consumption of 165mW and requires 6ms
to send a packet of up to 255B. Shimmer is usually
placed in hard-to-reach locations, with limited wireless
connectivity. It needs to execute the damage detection
process daily. Thus, an energy estimator is mandatory to
carefully choose when the damage assessment should be
performed, and what kind of processing can be done with
the currently available energy and likely to be harvested
in near future. Table II shows the values of predicted
and actual energy available at noon during a period of
30min for the time record depicted in Figure 4. We
focus on these specific times to illustrate the difference
between EWMA and WCMA when it comes to intraday
prediction.

As Table I shows, WCMA has a maximum energy pre-
diction error of only 10%, while EWMA can have errors of
up to 90%. This large EWMA energy estimation error can
cause incorrect energy management decisions by Shimmer.
Shimmer needs to Actuate/Sample, perform full Processing
and Send the data obtained from all 240 PZT paths in order to
identify and localize damage in the structure. When there isn’t
enough energy to perform this whole analysis, the complexity
of processing task has to be reduced to ensure that at least
some feedback is obtained on the current structural health.
Thus, in the following experiments we evaluate how well
WCMA and EWMA perform as energy availability estimators
in situations where energy resources are at a premium and not
all tasks can be executed.
Checking the whole structure means that all 240 differ-

ent paths are actuated/sensed, with the total energy cost of
240*1.2mJ=0.27J. Sending all this processed data requires
240*77.6mJ=18.6J. The rest of the available energy can be



used to perform processing by the DSP. While the goal is to
run full processing at 3.47s per path each day, when there
is not enough energy available, then a fraction of paths run
only light processing, resulting in the overall lower average
processing time per path. We next report this DSP time per
path assuming the perfect prediction of energy harvesting
capabilities (oracle), or when using either WCMA or EWMA
to predict the amount of energy harvested over the next 30min
period. To illustrate our ideas we focus on the 30 min period
around noon each of the days outlined in Table II.

• Day 7: Both WCMA and EWMA do a great job predict-
ing for consistently sunny days resulting in the average
DSP time per path of 3.26s and 3.17s respectively,
compared to 3.39s by oracle predictor.

• Day 8: When a sudden change in weather occurs,
WCMA is able to adapt quickly resulting in much better
processing allocation relative to EWMA. Average DSP
per path time for WCMA=1.45s, while oracle is only
slightly higher at 1.63s. In contrast, EWMA signifi-
cantly overestimates the energy entering the system thus
scheduling too many full processing tasks with average
DSP time of 3.22s. As a result, Shimmer runs out of
energy before finishing the whole structure scan, resulting
in a significantly worse result.

• Day 9: Both predictors offer a good approximation of the
DSP time per path. Oracle comes in at 2.34s per path,
WCMA: 2.09s, EWMA: 2.48s.

• Day 10: EWMA underestimates the DSP time since
weather got better in day; oracle got 3.62s, WCMA:
3.55s, EWMA: 2.38s. As a result, much less processing
is done if EWMA is used for prediction, leading to
suboptimal results relative to WCMA.

Overall, WCMA correctly predicts all the variations of
harvested energy so that Shimmer can fully utilize it to
estimate the structural damage, while EWMA has significant
difficulties during variable weather conditions.

V. CONCLUSION

In this paper we presented Weather-Conditioned Moving
Average (WCMA), a new solar energy prediction algorithm
with very low computational overhead. WCMA is able to
effectively take into account both the current and past-days
weather conditions. Thus, it reduces the error of the predicted
value down to only 10% from 90% by EWMA during highly
variable weather patterns. Finally, we showed on the example
of Shimmer platform that correct prediction can have a sig-
nificant impact on the quality of structural health monitoring
results at run time.
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