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Abstract

In this paper pressure gradient vs. volume flow rate calculations over a wide
range of oscillatory frequencies for oscillatory tube flow of healthy human blood
are performed using the non-homogeneous hemorheological model of Moyers-
Gonzalez et al. [25, 26, 27]. Results at low (2 Hz) oscillatory frequencies are
shown to be in close conformity to the experimental data of Thurston [39] and
the behaviour may be interpreted using a linear viscoelastic model. As the os-
cillatory frequencies increase a resonant frequency at which flow rate amplitude
enhancement occurs is encountered. For frequencies greater than the resonant
frequency the pressure gradient amplitude required to maintain a constant vol-
ume flow rate amplitude increases with the oscillatory frequency.

For very high frequency oscillations we use a multiple time scales technique in
conjunction with our non-homogeneous hemorheological model to solve for the
leading order flow variables. It is found that the leading order expressions for the
cell number density, average aggregate size and rr-component of elastic stress
(i.e. that due to the red blood cells) are functions only of the radial component
r. The O(1) elastic shear stress is shown to be zero, so that, for sufficiently large
values of the oscillatory frequency, the red cell contribution to the total shear
stress tends to zero. Using our multiple time scales method it is also shown that
the model behaves in the very high frequency regime like a generalised linear
viscoelastic fluid, having a radially dependent complex viscosity. This allows us
to explain the computed results using asymptotic expressions for the in phase
and π/2 out of phase components of the pressure gradient in a linear viscoelastic
fluid. In particular, we may predict the apparent complex viscosity of human
blood in very high frequency oscillatory tube flow.
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1. Introduction

It is well known that when the frequency ω̂ of pressure gradient oscillations
driving oscillatory tube flow of a Newtonian fluid gets very large the velocity
field is not able to keep up with the rapidly changing pressure field (see, the
mathematical details in chapter 4.11 of the monograph of [47], for example).
A consequence of this is that if the pressure gradient amplitude is fixed at all
frequencies, the peak velocity values will fall below the maximum of the velocity
profile of the steady Poiseuille flow corresponding to ω̂ = 0. The problem of a
linear Maxwell fluid oscillating in a tube was solved by Broer [6] and that of the
general linear viscoelastic fluid by Fredrickson [17]. In a Newtonian fluid the
volume flow rate will not be in phase at any frequency with the pressure gradient
because of inertia. In the case of a linear viscoelastic fluid, however, there is
an additional phase shift due to elasticity and this may, at a critical volume
flow rate amplitude and frequency (conditions for “viscoelastic resonance” [39]),
cancel the shift due to inertia, making the volume flow rate and the pressure
gradient perfectly in phase (see, for example, Eqn. (18) and the discussion of
the low flow rate amplitude experimental results of Thurston [38] for P ′′

M in
Fig. 1(b)). As shown in Section 3, a linear viscoelastic fluid may behave more
and more like an elastic solid as the oscillatory frequency increases, meaning
that the volume flow rate and the pressure gradient will tend to being π/2
out of phase. As with a Newtonian fluid, the volume flow rate amplitude of a
linear viscoelastic fluid will decrease to zero as ω̂ → 0 if the pressure gradient
amplitude is fixed.

The dependence of the rheological properties of human blood on the fre-
quency of oscillations in oscillatory tube flow has been investigated by a number
of authors and some classic treatises are to be found in articles by Coulter and
Singh [11], Kunz and Coulter [21] and Thurston [37, 38]. We may define, as did
the authors of the first two articles just cited, a dynamic apparent viscosity for
blood as being the viscosity of a Newtonian fluid which exhibits the same pres-
sure gradient-volume flow rate under the same conditions of oscillatory flow.
The dynamic apparent viscosity thus defined may therefore be considered as
some average viscosity of the blood in a particular oscillatory flow. For each of
the tubes used in the experiments of Coulter and Singh [11] and in an attempt
to clearly distinguish frequency from shear-rate effects, the volume flow rate am-
plitude was fixed whilst allowing the oscillatory frequency to vary up to 10Hz.
Under these circumstances, it was found that the dynamic apparent viscosity
was an increasing function of frequency, and was a convincing demonstration of
the non-Newtonian character of blood in this flow. This result was in contrast
to the earlier findings of Kunz and Coulter [21] who reported that the dynamic
apparent viscosity decreased with increasing oscillatory frequency. It should be
borne in mind, however, that in the case of the experiments in [21] the stroke
volume rather than the volume flow rate amplitude was fixed, thus resulting
in a linear dependence of the latter on the oscillatory frequency. This had as
one effect an increase in the average shear rate as the frequency increased and
undoubtedly led to shear-thinning effects. The results of both sets of authors
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demonstrated that the hydraulic resistance (proportional to the part of the pres-
sure gradient which is in phase with the volume flow rate) showed a dramatic
difference from what could be predicted on the basis of the classical Newtonian
theory of Womersley [45]. The quadrature (π/2 out of phase) component of the
pressure gradient, however, was in close conformity with the linearized theory.
These results were in agreement with the earlier experimental data of Fry et
al. [18] who performed an in vivo study in the descending thoracic aorta of five
dogs of the pressure gradient - blood velocity relationship.

In [37] Thurston presented experimental results for oscillatory flow of 50%
hematocrit blood in a tube and showed that for each oscillatory frequency con-
sidered, a critical mean velocity gradient existed beyond which the relationship
between the viscous and elastic components of the mean shearing stress and the
mean velocity gradient ceased to be linear. Thereafter, maintaining the mean
velocity gradient at levels below the critical values, the author investigated how
the real and imaginary parts of the complex viscosity varied with frequency,
since it was now reasonable to suppose that the rheological behaviour of the
blood samples could be described by a linear viscoelastic model. Thurston
[37] chose higher upper values of the frequencies than in the experiments of
either Coulter and Singh [11] or Kunz and Coulter [21]. For frequencies less
than about 0.1Hz the viscous (real) part of the complex viscosity seemed to
be constant and the imaginary part of the complex viscosity (related to the
elastic modulus) was an increasing function of oscillation frequency. However,
for much larger frequencies both components were decreasing functions of fre-
quency. The experimentally determined complex viscosity of [37] was used by
the same author some three years later in order to accurately predict using lin-
ear viscoelastic theory the magnitude and phase of the hydraulic impedance of
blood undergoing oscillatory flow in a number of different diameter tubes, over
a frequency range of 2Hz to 200Hz. Again, all experiments were performed at
mean shear rates kept sufficiently small that the fluid behaviour remained linear
throughout. That in all cases the phase of the impedance passed from negative,
at low frequency, to π/2, at sufficiently high frequency, meant that the blood
exhibited a viscous response at low frequencies, an elastic solid response at high
frequencies and a viscoelastic response at intermediate values of the frequency.
Re-expressed in terms of the pressure gradient - volume flow rate relationship,
this means that at low frequency oscillations the pressure gradient may be ex-
pected to be approximately in phase with the volume flow rate but that, as the
frequency gets very large the pressure gradient oscillations will now be in phase
with the strain, and π/2 out of phase with the volume flow rate.

The non-homogeneous blood model of Moyers-Gonzalez et al. [25, 26, 27]
and its simpler homogeneous flow variant [16, 29] have been thoroughly validated
against experimental data. In [29], Owens showed that close agreement existed
between the predictions of the proposed homogeneous hemorheological model
and the hysteretic shear stress data of [7] in a Couette viscometer. In the ex-
periments of Bureau et al. the outer cylinder was accelerated and subsequently
decelerated to produce a triangular variation of shear rate with time. Depending
on the maximum shear rate attained and the timescales over which the entire
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experiment was performed, both elastic and thixotropic behaviour could be dis-
cerned from the resulting shear stress curves. Measurements by Thurston [38]
of the in-phase and quadrature components of the pressure gradient amplitude
as functions of the volume flow rate amplitude in oscillatory and pulsatile blood
flow in rigid tubes have proved a valuable source of data for the validation of
the time-dependent homogeneous and non-homogeneous models [27]. The sim-
pler homogeneous version of the model [16, 29] had earlier been tested in a
similar way but the improvement in the capacity of the non-homogenous model
to accurately predict the experimental pressure gradient-volume flow rate data
demonstrated the non-negligible role played by wall effects in a tubes of this size.
The decrease of the ratio of the tube hematocrit to the discharge hematocrit
as the diameter of the tube in which a blood sample flows decreases was first
discovered by Robin Fåhraeus in 1929 [14] and is due to red cell migration from
the tube walls. In [31] Pries et al. developed an empirical formula relating the
tube hematocrit to the discharge hematocrit on the basis of data from experi-
ments in which human red blood cell suspensions were perfused through glass
tubes of different diameters [9, 14]. Two years later, Pries et al. [30] assembled
the results of sixty years of steady flow viscosity measurements done with hu-
man, porcine and canine blood in capillary tubes in an attempt to elucidate the
relationship that exists between the apparent viscosity and tube diameter (the
so-called Fåhraeus-Lindqvist effect [15]). By using the empirical parametric de-
scription of the Fåhraeus effect from [31] Moyers-Gonzalez et al. [25] were able
to accurately predict the apparent viscosity data curve presented in [30].

In our recent paper [27] on the modelling of oscillatory blood flow in a tube
we observed that as the frequency of the (constant amplitude) pressure gradient
oscillations increases

(1) the velocity field and shear stress continue to oscillate with the same fre-
quency but with a frequency-dependent phase shift,

(2) the peak values of the velocity field and shear stress decrease,

(3) flow variables such as the red cell number density, average aggregate size
and rr-component of the red cell contribution to the stress tensor tend to
steady functions of the radial coordinate r.

It is the primary purpose of the present paper to provide a mathematical analysis
of the equations of the non-homogeneous model of Moyers-Gonzalez et al. [25,
26, 27] in the limit of high-frequency and to thus shed light on the observations
(1) - (3) above. To accomplish this we employ the method of multiple time
scales (see, for example, chapter 13 of [19]) and Section 4.2 and Appendix C,
where we do this, form the mathematical core of the present article.

The outline of the paper is as follows: In Section 3 we present some of
the established mathematical theory of axisymmetric oscillatory flow of a linear
viscoelastic fluid in an infinitely long right circular cylindrical tube (see, for
example, [36]). This material will later be used to interpret both the small
flow rate amplitude and the high oscillatory frequency results of the blood flow
simulations in Section 5.
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The linear viscoelastic theory is followed in Section 4.1 by a recapitulation
of the governing equations of the non-homogeneous hemorheological model of
Moyers-Gonzalez et al. [25, 27]. Unlike in the case of a linear viscoelastic fluid,
no explicit expression is available directly from the constitutive equations and
equation of linear momentum for the components of the pressure gradient that
are in-phase and π/2 out of phase with the volume flow rate. However, for a
given pressure gradient amplitude and oscillatory frequency, we indicate how
these two components may be numerically computed. In Section 4.2 we use
a multiple time scales analysis in order to derive new simplified time-averaged
differential equations for the macroscopic properties of blood undergoing rapid
oscillations in a tube. The multiple time scales analysis relies, for simplicity
and clarity, upon the assumption that the axial velocity field vz is sinusoidal.
However, as is made plain in Section 2, it is an oscillatory pressure gradient

−∂p

∂z
= PM cos ω̂t,

that is, in fact, prescribed. The justification for why, when volume flow rates
are sufficiently small, the volume flow rate oscillates with the same frequency
as the pressure gradient is simply that in this case the fluid behaves like a
linear viscoelastic model. In Appendix C we show that U also oscillates with
approximately the same frequency ω̂ as ∂p/∂z when a modified Womersley
number W ≫ 1.

Finally, in Section 5 we demonstrate the excellent agreement that exists

(a) between our numerical predictions and the experimental results of Thurston
[38] for the in-phase and π/2 out of phase components of the pressure gra-
dient as functions of the volume flow rate amplitude, at modest oscillatory
frequencies,

and

(b) between the predictions of numerical simulations based on the time-averaged
equations and the full set of model equations for high oscillatory frequen-
cies.

2. Oscillatory tube flow

Consider the axisymmetric oscillatory flow of an incompressible fluid in an in-
finitely long right circular cylindrical tube. Let us introduce dimensionless cylin-
drical coordinates x = (r, θ, z) and suppose that the tube has equation r = 1.
The fluid velocity is assumed to be of the form v = (vr, vθ, vz) = (0, 0, vz(r, t)).
The z-component of the non-dimensional equation of linear momentum may
then be written as

Re
∂vz

∂t
= −∂p

∂z
+

1

r

∂

∂r
(rTrz) , (1)

5



where Re is a Reynolds number, Trz is the shear stress component of the extra-
stress tensor T and p is the pressure. The total Cauchy stress tensor σ is defined
as

σ := −pδ + T , (2)

where δ denotes the identity tensor, so that the right-hand side of (1) is just
the (r, z) component of the divergence of σ.

Throughout this paper we suppose that the flow is driven by a sinusoidally
varying pressure gradient of the form

−∂p

∂z
= PM cos ω̂t, (3)

where PM denotes the pressure gradient amplitude and ω̂ is the dimensionless
angular frequency. Suppose now that the volume flow rate

U := 2π

∫ 1

r=0

vz rdr,

is also sinusoidal, oscillating with the same frequency ω̂ as the pressure gradient,
but with a possible phase shift. This is shown to be true in the case of a linear
viscoelastic fluid in Section 3 and may therefore be assumed to be approximately
true for the (nonlinear) blood model of Section 4, provided that the volume flow
rate amplitude is sufficiently small. For a justification of this hypothesis in the
case of ω̂ ≫ 1 we refer to the discussion in Appendix C. We may now write U
in complex form as

U = U∗
M exp(iω̂t), (4)

where U∗
M := U ′

M + iU ′′
M is a complex amplitude and it is understood that the

real part of the right-hand side should be taken. Evaluating the real part of the
right-hand side of (4) we therefore have

U = U ′
M cos ω̂t − U ′′

M sin ω̂t = UM cos(ω̂t + A), (5)

where now UM =
√

U ′2
M + U ′′2

M is the (real) volume flow rate amplitude and
A = tan−1(U ′′

M/U ′
M ) is the phase shift. Note that the pressure gradient (3)

may also be represented in complex form as

−∂p

∂z
= P ∗

M exp(i(ω̂t + A)), (6)

where the real and imaginary parts of the complex pressure gradient amplitude
P ∗

M , denoted by P ′
M and P ′′

M , respectively, are given by

P ′
M = PM cosA and P ′′

M = −PM sinA. (7)

3. Oscillatory tube flow of a linear viscoelastic fluid

Let us seek solutions to (1) of the (complex) form

vz = v∗z(r) exp(iω̂t), Trz = η∗ ∂vz

∂r
and − ∂p/∂z = P ∗

M exp(i(ω̂t + A)), (8)
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v∗z being a complex valued function and η∗ = η′ − iη′′ a dimensionless complex
viscosity. Note that v∗z and the complex amplitude U∗

M appearing in (4) are
related through

U∗
M := 2π

∫ 1

r=0

v∗z rdr. (9)

Inserting the complex representations (8) into (1) and dividing throughout by
exp(iω̂t) yields the equation

iω̂Rev∗z − η∗

r

d

dr

(
r
dv∗z
dr

)
= P ∗

M exp(iA). (10)

We may solve (10) for v∗z subject to a no-slip condition v∗z = 0 on the wall r = 1
and dv∗z/dr = 0 on r = 0. The resulting solution for the axial velocity vz is

vz = v∗z exp(iω̂t) =
i

ω̂Re
P ∗

M exp(iA)

(
J0(κr)

J0(κ)
− 1

)
exp(iω̂t), (11)

where J0 denotes a zeroth order Bessel function of the first kind and κ is a
complex parameter defined by

κ2 := − iω̂Re

η∗
. (12)

We now integrate both sides of (10) over a unit disk and divide throughout by
2π exp(iA). This leads to the volume flow rate - pressure gradient amplitude
relation

UM = − iπ

ω̂Re
P ∗

M

(
1 − 2J1(κ)

κJ0(κ)

)
, (13)

where use has been made of the relation UM = U∗
M exp(iA). The above devel-

opments generalize those of Womersley [44] who derived a relation analogous
to (13) for a Newtonian fluid (in which case η′ is just the fluid viscosity and
η′′ = 0).

The modulus of κ (see (12)) may be interpreted as a modified Womersley
number W (cf. Eqn. (56) of [16]):

W :=

√
ω̂Re

|η∗| . (14)

The Cox-Merz rule [12] may now be used to establish approximate upper and
lower bounds on W as follows:

Wa < W < Wb, (15)

where

W 2
a :=

η∞
(η0 + ηN )

Reω̂

De∞
, W 2

b :=
η∞

(η∞ + ηN )

Reω̂

De∞
. (16)
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In (16) η0, η∞ and ηN denote, respectively, the zero shear-rate polymeric vis-
cosity (i.e. due to the red cells), the infinite shear-rate polymeric viscosity and
the Newtonian (plasma) viscosity (see Table 1). The bounds in (15) with Wa

and Wb as defined in (16) come from the fact that the dimensionless infinite
shear rate viscosity is (η∞ + ηN )De∞/η∞ and the dimensionless zero shear rate
viscosity is (η0 + ηN )De∞/η∞ so that the modulus of η∗ is between the two.

3.1. P ∗
M − UM relations when W ≪ 1 and W ≫ 1

In [36], Thurston derived leading order expressions for P ′
M and P ′′

M from
(13) for W ≪ 1. In terms of our non-dimensional variables these translate into

P ′
M ≈ 8UM

π
η′, (17)

P ′′
M ≈ 8UM

π

(
−η′′ +

ω̂Re

6

)
. (18)

We note from (17)-(18) that, as commented on already in the Introduction, in
the case of a Newtonian fluid the volume flow rate will not be in phase at any
frequency with the pressure gradient because of inertia. However, in the case of
a linear viscoelastic fluid there is an additional phase shift due to the presence of
the η′′ term in (18). Relations (17)-(18) will be used in Section 5 to interpret the
results that we obtain for small flow rate amplitude, low frequency oscillations
of blood in a tube. In this case η∗ should be interpreted as an apparent (space-
averaged) complex viscosity, since, in general, the complex viscosity for small
amplitude oscillations of blood in a tube is r-dependent.

To derive an asymptotic relation for very large Womersley numbers we begin
by writing the complex viscosity in polar form, so that, as in [36],

η∗ = η′ − iη′′ = |η∗|e−iϕ, (19)

where
|η∗| =

√
η′2 + η′′2 and tan ϕ = η′′/η′.

We remark that ϕ is just π/2 minus the, so-called “loss angle” (see, for example,
Eqn. (3.44) of [4]) and physically, we require that

0 ≤ ϕ ≤ π/2. (20)

Small values of ϕ indicate that the viscous component of the complex viscosity
is very much more important than the elastic component. Values of ϕ close to
π/2 mean that the opposite is true. Now if we take

√
−i = e−iπ/4 then

κ =

√
ω̂Re

|η∗| ei(ϕ/2−π/4) = Wei(ϕ/2−π/4). (21)

From (20) we see that −π/4 ≤ ϕ/2 − π/4 ≤ 0. Therefore, the imaginary part
of κ = W sin(ϕ/2 − π/4) ≤ 0. For sin(ϕ/2 − π/4) < 0 and W → ∞ we get

J1(κ)

J0(κ)
∼ −i.
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(Note the sign error in (17) of [36]). From Eqn. (13) we then get

UM ∼ −iπ

ω̂Re
P ∗

M

(
1 +

2i

κ

)
, (22)

which, inverting the formula, implies that

P ∗
M ∼ ω̂Re

−iπ
UM

(
1 − 2i

κ

)
=

ω̂Re

π
UM

(
i +

2

κ

)
. (23)

Therefore, taking real and imaginary parts, expressions for P ′
M and P ′′

M are

P ′
M ∼ 2UM

π

√
|η∗|ω̂Re cos(ϕ/2 − π/4), (24)

P ′′
M ∼ UM

(
ω̂Re

π
− 2

π

√
|η∗|ω̂Re sin(ϕ/2 − π/4)

)
. (25)

(Note that had we used
√

i = −e−iπ/4 in the definition of κ in (21), its imaginary
part would have become positive and under these circumstances

J1(κ)

J0(κ)
∼ i,

so that the expressions (24)-(25) would remain unchanged).
|η∗|, the modulus of η∗, is expected to remain bounded for all ω̂ and, indeed,

experimental evidence (see, for example, Fig. 7 of [39]) indicates that, for
sufficiently high values of the frequency, it is a monotonic decreasing function
of ω̂. We may infer from (24)-(25) that as the oscillation frequency increases
sufficiently

i. the fluid behaves more and more like an elastic solid, in the sense that
P ′

M/P ′′
M → 0 as ω̂ → ∞,

ii. the volume flow rate amplitude will decrease to zero if the pressure gradient
amplitude PM is fixed.

4. Oscillatory tube flow of human blood.

In a series of recent papers Moyers-Gonzalez et al. [25, 26, 27] derived
and used a new microstructure-based constitutive model for the prediction of
non-homo-geneous flows of whole healthy human blood. As pointed out in
the Introduction, this model and its simpler homogeneous flow variant [16, 29]
have been thoroughly validated against experimental data for time-dependent
Couette flow [7], steady non-homogeneous Poiseuille flow [30] and low frequency
oscillatory and pulsatile tube flow [38].

The model is based upon the representation of red cell aggregates (the so-
called rouleaux) by Hookean dumbbells. Each dumbbell has properties that
depend upon the number of cells in the rouleaux and it may be stretched,
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transported and orientated by the surrounding fluid motion, as well as frag-
ment into two smaller dumbbells or coalesce with another to represent a longer
rouleau. Interactions between dumbbells are assumed to be binary and the
rates of aggregation and fragmentation are given by experimentally-inspired
functions of the local shear rate [28]. The interested reader is referred to the pa-
per of Moyers-Gonzalez et al. [25] for a more detailed explanation of the kinetic
theory underpinning the derivation of the governing equations of the model.

4.1. Recapitulation of governing equations and calculation of P ′
M and P ′′

M

Let N0(x, t) denote the number density of red cells at some point in the
flow domain having position vector x and at some time t. If M(x, t) denotes
the aggregate number density then n(x, t) := N0(x, t)/M(x, t) is the average
aggregate size. In the case of whole blood, the extra-stress T (see (1)-(2)) is
the sum of a Newtonian and elastic contribution, the former coming from the
plasma and the latter the ensemble of dumbbells. We thus write T in the form

T = η(∇v + ∇v
T ) + τ , (26)

where η denotes the dimensionless plasma viscosity and

τ =

∞∑

k=1

τk, (27)

is the elastic stress tensor, calculated as the sum of the elastic stress tensors τk

that give the contribution to the Cauchy stress tensor from aggregates of size k
(k = 1, 2, 3, . . .). We will henceforth refer to an aggregate of k cells as a k-mer.

Suppose that the rate at which an (i+ j)-mer is formed from the coalescence
of an i-mer and a j−mer is given by the function a = a(γ̇) where γ̇ is the local
shear rate. Suppose too that the function b(γ̇) determines the rate at which
an (i + j)-mer fragments to form an i-mer and a j-mer. Then, the system of
coupled convection-diffusion-reaction equations describing the evolution of the
continuum variables N0, M , τ , v and p in the model of Moyers-Gonzalez et al.
[25, 26, 27] for axisymmetric tube flow is as follows:

∂N0

∂t
− 1

Pe

1

r

∂

∂r

(
r
∂N0

∂r

)
+

1

Pe

1

r

∂

∂r

(
r
∂τrr

∂r

)
= 0, (28)

∂M

∂t
− 1

Pe

1

r

∂

∂r

(
r
∂M

∂r

)
+

1

Pe

1

r

∂

∂r

(
r
∂σrr

∂r

)
+

aN0

2n
M − b

2
(N0 − M) = 0,

(29)

De
∂τrr

∂t
− De

Pe

(
2

r

∂

∂r

(
r
∂τrr

∂r

))
+ τrr = 0, (30)

De
∂τrz

∂t
− De

Pe

(
1

r

∂

∂r

(
r
∂τrz

∂r

)
− τrz

r2

)
− (τrr + N0)De

∂vz

∂r
+ τrz = 0, (31)
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De
∂τzz

∂t
− De

Pe

(
1

r

∂

∂r

(
r
∂τzz

∂r

)
+

1

r

∂

∂r

(
r
∂τrr

∂r

))
− 2De

∂vz

∂r
τrz + τzz = 0,

(32)

De
∂σrr

∂t
− De

Pe

(
2

r

∂

∂r

(
r
∂σrr

∂r

))
+ σrr = 0, (33)

Re
∂vz

∂t
− η

1

r

∂

∂r

(
r
∂vz

∂r

)
− 1

r

∂

∂r
(rτrz) +

∂p

∂z
= 0. (34)

In (29) and (33) σrr denotes the rr-component of the second-order tensor σ,
defined as

σ :=

∞∑

k=1

τk

k
. (35)

The fragmentation rate function b(γ̇), appearing in (29), is expressed in terms
of the aggregation rate a according to the relation that holds in a homogeneous
flow:

b :=
aN0,hom

nst(nst − 1)
, (36)

where nst is the average rouleau size and N0,hom is the (constant) number
density in steady homogeneous flow. Let us introduce the dimensionless frag-
mentation rate coefficient

gn(γ̇) := a(γ̇)M + b(γ̇)
(n − 1)

2
. (37)

Then, in (30)-(33) the (shear rate and time-dependent) Deborah number De (a
non-dimensional relaxation time of the fluid) is defined as

De :=
nDe∞

1 + gnnDe∞
, (38)

where De∞ is a (constant, dimensionless) Maxwellian relaxation time, to which
De tends as γ̇ → ∞. The Péclet number Pe, appearing in Eqn.s (28)-(33)
relates the rate of convection of the flow to the rate of mass diffusion. The
boundary layer at r = 1 was shown by Moyers-Gonzalez and Owens [26] to
be of thickness O((De∞/Pe)1/2). For details of the physical parameters that
require prescription and of the values that they have been assigned in this paper
we refer the reader to the beginning of Section 5 and to Table 1.

At this point we note from (28)-(34) that in order to find the other field
variables we have no need of the elastic normal stress component τzz. There-
fore, in order to determine the P ′

M and P ′′
M predicted by the non-homogeneous

blood model described above, PM and ω̂ are first prescribed in (3) and then
the system of equations (28)-(31) and (33)-(34) is solved numerically subject to
suitable initial and boundary conditions. These are supplied in Appendix A.
Once periodic conditions have been established, the phase difference A between
the volume flow rate and the pressure gradient may be measured. The in phase
and π/2 out of phase components of the pressure gradient amplitude are then

11



found from (7). It is expected that such a procedure will work in two limiting
cases:

(a). When the volume flow rate amplitude UM ≪ 1. In this case the model is
expected to behave as a linear viscoelastic fluid.

(b). When the angular oscillatory frequency ω̂ ≫ 1. For a justification in this
case, see the discussion in Appendix C.

4.2. A multiple time scales analysis of (28)-(30) and (33)-(34) for high-frequency
oscillatory tube flow

We now turn our attention to the behaviour of the non-homogeneous blood
model in high frequency oscillatory tube flow. To this end, we employ a multiple
time scales analysis of the governing model equations (28)-(34). Considerable
simplifications may be brought to bear on our approach firstly, by noting, as
we did above, that τzz is not required for the computation of the other kine-
matic and stress variables and second, and more importantly, by assuming an
oscillatory axial velocity profile,

vz = v̂z(r) exp(iω̂t). (39)

Since, as explained above, it is the pressure gradient and not the velocity field
that is prescribed, however, we simply assume for the moment that ∂p/∂z may
be chosen in (34) in such a way that the corresponding axial velocity profile is
of the form given by (39). An explanation of how, at least for ω̂ sufficiently
large, a velocity profile of the form (39) may be expected from the imposition
of an oscillatory pressure gradient is deferred to Appendix C.

We now define a fast time scale ϑ = ω̂t and seek multiple time scale expan-
sions for N0, τrr, M, σrr and De as follows:

N0 = N
(0)
0 (r, t, ϑ) + εN

(1)
0 (r, t, ϑ) + ε2N

(2)
0 (r, t, ϑ) + . . . , (40)

τrr = τ (0)
rr (r, t, ϑ) + ετ (1)

rr (r, t, ϑ) + ε2τ (2)
rr (r, t, ϑ) + . . . , (41)

M = M (0)(r, t, ϑ) + εM (1)(r, t, ϑ) + ε2M (2)(r, t, ϑ) + . . . , (42)

σrr = σ(0)
rr (r, t, ϑ) + εσ(1)

rr (r, t, ϑ) + ε2σ(2)
rr (r, t, ϑ) + . . . , (43)

De = De(0)(r, t, ϑ) + εDe(1)(r, t, ϑ) + ε2De(2)(r, t, ϑ) + . . . , (44)

where ε := ω̂−1. In (44) the Deborah function De is defined as

De =
nDe∞

1 + gnnDe∞
. (45)

To take account of the fact that all dependent variables now depend upon a fast
time (ϑ) and a slow time (t), the partial time derivative in each of (28)-(34) is
rewritten in the form

∂

∂t
→ ∂

∂t
+ ω̂

∂

∂ϑ
=

∂

∂t
+

1

ε

∂

∂ϑ
. (46)

12



4.2.1. τrr

From (41), (44) and (46) we see that (30) may be rewritten as

(De(0) + εDe(1) + ε2De(2) + . . .)

[(
∂τ

(0)
rr

∂t
+

1

ε

∂τ
(0)
rr

∂ϑ

)
+ ε

(
∂τ

(1)
rr

∂t
+

1

ε

∂τ
(1)
rr

∂ϑ

)

+ ε2

(
∂τ

(2)
rr

∂t
+

1

ε

∂τ
(2)
rr

∂ϑ

)
+ . . .

]

− (De(0) + εDe(1) + ε2De(2) + . . .)
1

Pe

2

r

∂

∂r

(
r

(
∂τ

(0)
rr

∂r
+ ε

∂τ
(1)
rr

∂r
+ ε2 ∂τ

(2)
rr

∂r
+ . . .

))

+
(
τ (0)
rr + ετ (1)

rr + ε2τ (2)
rr + . . .

)
= 0. (47)

Let’s equate all O(ε−1), O(1), etc. terms in (47) to zero, which gives

(O(ε−1)) : De(0) ∂τ
(0)
rr

∂ϑ
= 0 ⇒ ∂τ

(0)
rr

∂ϑ
= 0, (48)

(O(1)) : De(0) ∂τ
(0)
rr

∂t
+ De(1) ∂τ

(0)
rr

∂ϑ
+ De(0) ∂τ

(1)
rr

∂ϑ
− De(0)

Pe

2

r

∂

∂r

(
r
∂τ

(0)
rr

∂r

)

+ τ (0)
rr = 0.

(49)

4.2.2. N0

Using (40), (41) and (46), Eqn. (28) is transformed to

(
∂N

(0)
0

∂t
+

1

ε

∂N
(0)
0

∂ϑ

)
+ ε

(
∂N

(1)
0

∂t
+

1

ε

∂N
(1)
0

∂ϑ

)
+ ε2

(
∂N

(2)
0

∂t
+

1

ε

∂N
(2)
0

∂ϑ

)
+ . . .

− 1

Pe

1

r

∂

∂r

(
r

(
∂N

(0)
0

∂r
+ ε

∂N
(1)
0

∂r
+ ε2 ∂N

(2)
0

∂r
+ . . .

))

+
1

Pe

1

r

∂

∂r

(
r

(
∂τ

(0)
rr

∂r
+ ε

∂τ
(1)
rr

∂r
+ ε2 ∂τ

(2)
rr

∂r
+ . . .

))
= 0.

(50)

As before, we now equate all O(ε−1), O(1), etc. terms in (50) to zero, which
gives

(O(ε−1)) :
∂N

(0)
0

∂ϑ
= 0 ⇒ N

(0)
0 = N

(0)
0 (r, t), (51)

(O(1)) :
∂N

(0)
0

∂t
+

∂N
(1)
0

∂ϑ
− 1

Pe

1

r

∂

∂r

(
r
∂N

(0)
0

∂r

)
+

1

Pe

1

r

∂

∂r

(
r
∂τ

(0)
rr

∂r

)
= 0.

(52)
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From (52) we solve for N
(1)
0 to get

N
(1)
0 =

∫ (
−∂N

(0)
0

∂t
+

1

Pe

1

r

∂

∂r

(
r
∂N

(0)
0

∂r

)
− 1

Pe

1

r

∂

∂r

(
r
∂τ

(0)
rr

∂r

))
dϑ+f1(r, t),

(53)

for some function f1 of r and t. Since, from (48) and (51) τ
(0)
rr and N

(0)
0 are

both independent of ϑ, the solution (53) becomes

N
(1)
0 =

(
−∂N

(0)
0

∂t
+

1

Pe

1

r

∂

∂r

(
r
∂N

(0)
0

∂r

)
− 1

Pe

1

r

∂

∂r

(
r
∂τ

(0)
rr

∂r

))
ϑ + f1(r, t).

(54)
We set the secular term on the righthand side of (54) to zero (otherwise we have

unbounded growth of N
(1)
0 as ϑ → ∞), which gives

∂N
(0)
0

∂t
− 1

Pe

1

r

∂

∂r

(
r
∂N

(0)
0

∂r

)
+

1

Pe

1

r

∂

∂r

(
r
∂τ

(0)
rr

∂r

)
= 0. (55)

4.2.3. σrr

In an entirely analogous manner to the procedure followed for τrr, we obtain

∂σ
(0)
rr

∂ϑ
= 0 ⇒ σ(0)

rr = σ(0)
rr (r, t), (56)

De(0) ∂σ
(0)
rr

∂t
+ De(1) ∂σ

(0)
rr

∂ϑ
+ De(0) ∂σ

(1)
rr

∂ϑ
− De(0)

Pe

2

r

∂

∂r

(
r
∂σ

(0)
rr

∂r

)
+ σ(0)

rr = 0.

(57)

4.2.4. M

We adopt a similar approach to that used in Section 4.2.2 for the solution
of Eqn. (29). Since the aggregation and disaggregation rate functions a and b
depend only upon the local shear rate γ̇, it follows from (39) that a = a(r, ϑ) and
b = b(r, ϑ). To avoid the notation becoming unduly cumbersome, we indicate
explicitly in what follows, however, only the dependence of these two functions
on ϑ. Using (40),(42) and (43) allows us to write down
(

∂M (0)

∂t
+

1

ε

∂M (0)

∂ϑ

)
+ ε

(
∂M (1)

∂t
+

1

ε

∂M (1)

∂ϑ

)
+ ε2

(
∂M (2)

∂t
+

1

ε

∂M (2)

∂ϑ

)
+ . . .

− 1

Pe

1

r

∂

∂r

(
r

(
∂M (0)

∂r
+ ε

∂M (1)

∂r
+ ε2 ∂M (2)

∂r
+ . . .

))

+
1

Pe

1

r

∂

∂r

(
r

(
∂σ

(0)
rr

∂r
+ ε

∂σ
(1)
rr

∂r
+ ε2 ∂σ

(2)
rr

∂r
+ . . .

))

+
a(ϑ)

2

(
M (0) + εM (1) + ε2M (2) + . . .

)2

− b(ϑ)

2

(
(N

(0)
0 − M (0)) + ε(N

(1)
0 − M (1)) + ε2(N

(2)
0 − M (2)) + . . .

)
= 0. (58)
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By setting the sum of terms of O(ε−1), O(1) etc. to zero we see that

(O(ε−1)) :
∂M (0)

∂ϑ
= 0 ⇒ M (0) = M (0)(r, t), (59)

(O(1)) :
∂M (0)

∂t
+

∂M (1)

∂ϑ
− 1

Pe

1

r

∂

∂r

(
r
∂M (0)

∂r

)
+

1

Pe

1

r

∂

∂r

(
r
∂σ

(0)
rr

∂r

)

+
a(ϑ)

2
(M (0))2 − b(ϑ)

2
(N (0) − M (0)) = 0. (60)

Let us define the function R(r, t, ϑ) as

R : =
∂M (0)

∂t
− 1

Pe

1

r

∂

∂r

(
r
∂M (0)

∂r

)
+

1

Pe

1

r

∂

∂r

(
r
∂σ

(0)
rr

∂r

)

+
a(ϑ)

2
(M (0))2 − b(ϑ)

2
(N (0) − M (0)), (61)

and write this function in the following way:

R = 〈R〉 + H, (62)

where the average over one cycle 〈·〉 is defined as

〈·〉 :=
1

2π

∫ 2π

o

· dϑ. (63)

Then, solving (60) for M (1) and noting that 〈R〉 is independent of ϑ gives

M (1) = −〈R〉ϑ −
∫

H dϑ + f2(r, t), (64)

for some function f2 of r and t. Eqn. (64) allows us to conclude (since the
secular term must be zero) that

∂M (0)

∂t
− 1

Pe

1

r

∂

∂r

(
r
∂M (0)

∂r

)
+

1

Pe

1

r

∂

∂r

(
r
∂σ

(0)
rr

∂r

)

+ (M (0))2
〈a〉
2

− (N
(0)
0 − M (0))

〈b〉
2

= 0. (65)

De(0) is, in general, a function of r, t and ϑ. From (49) let us define

S :=
∂τ

(0)
rr

∂t
− 1

Pe

2

r

∂

∂r

(
r
∂τ

(0)
rr

∂r

)
+

1

De(0)
τ (0)
rr . (66)

Then, requiring that τ
(1)
rr be a bounded function of ϑ, and following the same

line of reasoning that allowed us to conclude that 〈R〉 = 0 (see the argument

leading up to (65)), we write down 〈S〉 = 0. This means that τ
(0)
rr satisfies

∂τ
(0)
rr

∂t
− 1

Pe

2

r

∂

∂r

(
r
∂τ

(0)
rr

∂r

)
+

〈
1

De(0)

〉
τ (0)
rr = 0. (67)
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By analogy, σ
(0)
rr satisfies

∂σ
(0)
rr

∂t
− 1

Pe

2

r

∂

∂r

(
r
∂σ

(0)
rr

∂r

)
+

〈
1

De(0)

〉
σ(0)

rr = 0. (68)

Eqn.s (55), (65), (67) and (68) may be solved subject to the boundary conditions
and the non-local condition (100) supplied in Appendix A. It follows that if
(55), (65), (67) and (68) supplemented with these conditions forms a well-posed
system of equations, then the solutions will depend only upon r. In the next
Section we investigate the linear stability of the time-dependent equations for

N
(0)
0 , M (0), τ

(0)
rr and σ

(0)
rr .

4.3. Linear stability of (55), (65), (67) and (68)

We now take a closer look at the O(1) equations (55), (65), (67) and (68)

for N
(0)
0 , M (0), τ

(0)
rr and σ

(0)
rr , respectively, and, in particular, examine the linear

stability of their solutions about the steady solutions Ns, Ms, τs and σs to the
equations

− 1

Pe

2

r

d

dr

(
r
dτs

dr

)
+

〈
1

Des

〉
τs = 0, (69)

− 1

Pe

2

r

d

dr

(
r
dσs

dr

)
+

〈
1

Des

〉
σs = 0, (70)

− 1

Pe

1

r

d

dr

(
r
dMs

∂r

)
+

1

Pe

1

r

d

dr

(
r
dσs

dr

)

+ (Ms)
2 〈a〉

2
− (Ns − Ms)

〈b〉
2

= 0, (71)

and

− 1

Pe

1

r

d

dr

(
r
dNs

dr

)
+

1

Pe

1

r

d

dr

(
r
dτs

dr

)
= 0. (72)

As shown in Section 2.2.4 of [25], Ns and τs must satisfy the simple linear
relation

Ns = τs + C, (73)

where the constant C is chosen so that the integral condition (100) holds. The
averaged steady zeroth order reciprocal Deborah number 〈De−1

s 〉 appearing in
(69)-(70) is defined as

〈
1

Des

〉
:=

M2
s +

(
〈b〉Ns(Ns − Ms)/2 + 〈a〉NsM

2
s

)
De∞

NsMsDe∞
. (74)

16



Suppose that N
(0)
0 , M (0), τ

(0)
rr and σ

(0)
rr may be written as small, time t-dependent

perturbations about Ns, Ms, τs and σs of the form

N
(0)
0 = Ns + ǫN

(0)
1 := Ns + ǫN̂(r) exp(λt), (75)

M (0) = Ms + ǫM
(0)
1 := Ms + ǫM̂(r) exp(λt), (76)

τ (0)
rr = τs + ǫτ

(0)
1 := τs + ǫϑ̂(r) exp(λt), (77)

σ(0)
rr = σs + ǫσ

(0)
1 := σs + ǫσ̂(r) exp(λt), (78)

where |ǫ| ≪ 1 and each of the perturbations has been supposed to be a function
of r alone multiplied by exp(λt) for some parameter λ. The consequence of
the perturbations (75)-(78) upon the Deborah number De(0) is that it too is
perturbed and we write

De(0) = Des + ǫDe1 + O(ǫ2) := Des + ǫD̂e(r, ϑ) exp(λt) + O(ǫ2). (79)

In Appendix B we derive an expression for D̂e in terms of N̂ , M̂ , Ns and Ms.
Substituting each of (75)-(78) into Eqns. (55), (65), (67) and (68) and neglecting
all terms of O(ǫ2) may now be shown to lead to the system of equations for

(N̂ , ϑ̂, M̂ , σ̂):

λN̂ − 1

Pe

1

r

d

dr

(
r
dN̂

dr

)
+

1

2

((
λ +

〈
1

Des

〉)
ϑ̂ − (αN̂ + βM̂)τs

)
= 0, (80)

(
λ +

〈
1

Des

〉)
ϑ̂ − 1

Pe

2

r

d

dr

(
r
dϑ̂

dr

)
− (αN̂ + βM̂)τs = 0, (81)

λM̂ − 1

Pe

1

r

d

dr

(
r
dM̂

dr

)
+

1

2

((
λ +

〈
1

Des

〉)
σ̂ − (αN̂ + βM̂)σs

)

+ MsM̂〈a〉 − (N̂ − M̂)
〈b〉
2

= 0, (82)
(

λ +

〈
1

Des

〉)
σ̂ − 1

Pe

2

r

d

dr

(
r
dσ̂

dr

)
− (αN̂ + βM̂)σs = 0, (83)

where the functions α and β are defined in Eqns. (111)-(112). The system
(80)-(83) may be written in more compact form as

Lv ≡ 2

Pe

1

r

d

dr

(
r
dv

dr

)
= (λA + C)v, (84)

17



where v = (N̂ , ϑ̂, M̂ , σ̂)T and the matrices A and C are given by

A =




2 1 0 0
0 1 0 0
0 0 2 1
0 0 0 1


 , (85)

C =




−ατs

〈
De−1

s

〉
−βτs 0

−ατs

〈
De−1

s

〉
−βτs 0

(−ασs − 〈b〉) 0 (−βσs + 2〈a〉Ms + 〈b〉)
〈
De−1

s

〉

−ασs 0 −βσs

〈
De−1

s

〉


 . (86)

Now suppose that P is a transition matrix effecting the diagonalization of the
matrix A. Then, introducing a change of variables v = Pw the generalized
eigenvalue problem (84) may be rewritten in the form

2

Pe

1

r

d

dr

(
r
dw

dr

)
= (λdiag(2, 1, 2, 1) + P

−1
CP )w, (87)

so that (84) may be seen to be a perturbation of a self-adjoint vector Sturm-
Liouville problem. Unfortunately, P−1CP is both a complicated function of r
and non-symmetric, so that we resort to numerical methods to approximate the
eigenvalues λ of (84). Details are supplied in Section 5.3.

5. Results

5.1. Choice of parameters

The physical parameters that require prescribing in order to use our non-
homogeneous model are the plasma viscosity ηN , the infinite shear rate viscosity
due to the red cells η∞, the characteristic relaxation time λH for a single red cell,
the infinite shear rate Deborah number De∞ (see (38) defined as the product of
λH and a characteristic shear rate, the tube radius R, a characteristic cell length
ℓ0 and, finally, the fluid density ρ. The values of these parameters are supplied
in Table 1. All values, except for De∞ in Section 5.3, are the same as in [27].
For details of how the aggregation and fragmentation functions a(γ̇) and b(γ̇)
are chosen, see Appendix A of [27]. Once these parameters have been chosen,
the manner in which the non-dimensionalization of the governing equations is
done means that the Reynolds number Re, Péclet number Pe and dimensionless
viscosity η, appearing in (28)-(34) are defined as

Re :=
ρR2De2

∞

λHη∞
, P e :=

(
24De∞

ℓ2
0

)
R2, η :=

ηNDe∞
η∞

. (88)

5.2. P ′
M and P ′′

M computations for ω ∈ [4πrads−1, 400πrads−1]

In this Section we will perform and interpret numerical computations of
the in-phase and π/2 out of phase components of the pressure gradient ampli-
tude, P ′

M and P ′′
M as functions of both the frequency and the volume flow rate
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Parameter symbol value units

fluid density ρ 1053.6 kgm−3

plasma viscosity ηN 0.001 Pa.s
zero shear rate polymeric viscosity η0 0.0326 Pa.s
high shear rate polymeric viscosity η∞ 0.003 Pa.s
Maxwell relaxation time λH 0.005 s
infinite shear rate Deborah number De∞ 1.4 (§5.2), 1.0 (§5.3) -
tube radius R 430 (§5.2), 100 (§5.3) µm
characteristic cell length ℓ0 13.8 µm

Table 1: Material and flow parameters and their assigned values

amplitude. Physiological values of the angular frequency of pulsatile flow in
the arteries of a healthy human adult at rest would typically be in the range
of 2πrads−1 to 2.67πrads−1 (60 to 80 heart beats per minute), although in a
healthy twenty year old engaging in vigorous exercise this could go as high as
200 beats per minute (6.67πrads−1) [1]. The range of angular frequencies con-
sidered in our numerical experiments therefore includes physiological values but
goes far beyond these in an effort to better understand the rheology of blood at
very high frequency oscillations. So that we can compare our results with those
of the experiments of Thurston [38] we use physical (dimensional) values of these
variables and display our results in terms of the root mean-square (rms) values
(cyclical averages) of P ′

M , P ′′
M and UM . In the case of UMrms, for example, this

is calculated in terms of UM as follows:

UMrms :=

√
1

T

∫ T

0

U2
M cos2

(
2πt

T

)
dt =

1√
2
UM , (89)

where T is the period of oscillation. Likewise, P ′rms = P ′
M/

√
2 and P ′′rms

= P ′′
M/

√
2. We define

PM rms :=
√

P ′rms2 + P ′′rms2,

so that the relationship between the rms values of the components of the pres-
sure gradient amplitude and PM rms is the same as in Eqn. (7). The physical
frequency ω is related to the dimensionless value ω̂ via ω = ω̂De∞/λH . All
numerical results for the non-homogeneous model were obtained with a second-
order finite element method and a simple fractional time step method, as out-
lined in Section 3 of an earlier paper [27].

Fig. 1 shows how |P ′|rms , |P ′′|rms and PM rms vary as functions of UM rms
over a range of frequencies varying from ω = 4πrads−1 to 400πrads−1. At the
lowest frequency we compare the theoretical predictions with the experimental
data of Thurston [38]. The agreement is seen to be excellent. At this frequency,
we see from Fig. 2(a) that the phase shift A passes from being positive to
negative as the volume flow rate increases, and is equal to zero at UM rms ≈
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1.35 × 10−9m3s−1. The same phenomenon may be seen from the surface plot,
Fig. 2(b) where, for small pressure gradient magnitudes and low frequencies
A > 0. This corresponds to viscoelastic behaviour: the aggregates are largely
intact and may be deformed elastically. As the pressure gradient amplitude
(and therefore the volume flow rate amplitude) increases, the microstructure is
increasingly broken up and the fluid response becomes viscous. Referring to (7)
we see that although P ′rms remains positive over the whole range of volume flow
rates considered here, P ′′rms is negative for UMrms / 1.35 × 10−9m3s−1 and
positive otherwise. Thus, the local "minimum" visible in the graph of |P ′′|rms
is, in fact, the crossover point of P ′′rms from negative to positive values.

Since volume flow rates in the vicinity of 1.35 × 10−9m3s−1 are small (cor-
responding to dimensionless volume flow rates around 0.0606 ≪ 1), the fluid
may be considered to be approximately a linear viscoelastic fluid with the com-
plex viscosity η∗ in (8) now interpreted as an apparent (space-averaged, in some
sense) complex viscosity. To convince ourselves that the modified Womersley
number W in (14) is small for the ω = 4πrads−1 results shown in Figs. 1(a)-(c)
we use the bounds in (15). In this case the bounds on the modified Womersley
number are Wa = 0.2699 and Wb = 0.7823. Let us now refer to (17) and (18)
to shed further light upon the behaviour of P ′rms and P ′′rms at ω = 4πrads−1

in Figs. 1 (a) and (b). P ′rms is expected to be approximately a linear function
of UMrms for |A| ≪ 1 with a positive slope and this translates into saying that
the dynamic viscosity η′ (representing the viscous contribution to η∗) is positive
and insensitive to small changes in UMrms near the point where P ′′rms changes
sign. By looking at (18) we understand the sign change in P ′′rms for values
of UMrms in the same range to indicate that the elastic contribution η′′ to the
complex viscosity decreases in magnitude, allowing the inertial terms ω̂Re/6 to
become more important for UMrms' 1.35 × 10−9m3s−1.

From Fig. 1(b) we see that the crossover point (coinciding with A = 0, and
where the curve seems to have a minimum) on the |P ′′|rms curve corresponding
to ω = 40πrads−1 occurs at a smaller value of UMrms than when ω = 4πrads−1.
This is in keeping with the position of the last data point on Fig. 2(a), this latter
Fig. predicting that had we chosen to plot P ′′rms in Fig. 1(b) for intermediate
values of ω we would have seen a right shift (increasing UM rms along the A = 0
curve) in the minimum in |P ′′|rms before this moved left again. This non-
monotonic behaviour may, from (18), be seen to be associated with an increase
in the magnitude of η′′, indicating that at low volume flow rates blood becomes
more elastic with small increases in oscillatory frequency. Referring now to the
surface plot Fig. 2 (b) we see that the right and then left shift of the minimum
in the graphs of |P ′′|rms for ω ∈ [4πrads−1, 40πrads−1] is associated with an
increase followed by a decrease in the phase shift A with increasing ω in the top
left-hand (small PM rms-small ω) corner of the figure.

Undoubtedly related to the observations above is the non-monotonic be-
haviour for sufficiently small values of ω of the rms pressure gradient amplitude
PM rms. From Fig. 1(c) it may be seen that in order to maintain a given
volume flow rate amplitude the required value of PM rms first decreases and
then increases with ω. Otherwise stated, if we were to fix the pressure gradi-
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ent the volume flow rate amplitude would first increase and then decrease with
increasing oscillatory frequency. The frequency ωr (say) where the maximum
occurs may be viewed as a resonant frequency. The phenomena of resonant
frequencies and flow enhancement in oscillatory pipe flow is well known in both
the experimental and theoretical viscoelastic literature and further discussion
of these may be found, for example, in [2, 8, 13, 32, 41, 46]. A helpful review
of earlier work is to be found in the article of Siginer [35]. The analyses in
these articles indicate that were we to produce plots of PM rms against UM rms
for many more values of ω and for different size tubes then, depending upon
the tube radius, multiple resonant frequencies might be in evidence. For the
present tube (R = 430µm) it appears that there is only one resonant frequency
ωr and that for ω > ωr PM rms is an increasing function of ω when UMrms is
fixed. This is to be expected, since, as shown in Fig. 3(a)-(b), the peak axial
velocity values decrease (and with them, the volume flow rate amplitude) as ω
increases beyond the resonant value. Thus, to maintain a given, fixed value of
the volume flow rate with growing ω > ωr the pressure gradient amplitude has
to be increased.

Resonance as described above occurs due to the coupling between the elastic
nature of the fluid and the tube geometry [8]. The same behaviour may occur
even in oscillatory flows of linear viscoelastic fluids [2] and, indeed, may be
predicted from Eqn. (13) by plotting the modulus of UM/P ∗

M against ω̂ and
taking the complex viscosity η∗ to be that of a single mode linear Maxwell
fluid, for example. The asymptotic expressions (24)-(25) for P ′

M and P ′′
M for a

linear viscoelastic fluid would then predict that at sufficiently high frequencies
the pressure gradient amplitude would need to be increased with increasing
ω just to maintain the volume flow rate amplitude. This last conclusion is
by no means unique to viscoelastic fluids: the volume flow rate amplitude in
the oscillatory tube flow of a Newtonian fluid may be shown to decrease with
oscillatory frequency if the pressure gradient amplitude is held fixed [47].

In Appendix C we show, using our non-homogeneous hemorheological model,
that high frequency oscillatory pipe flow of healthy human blood may be de-
scribed using the equation of motion (114) of a generalised linear viscoelastic
model. We use the adjective “generalised” because the leading order complex
viscosity is shown to be a function of r, rather than being a constant. It is
therefore legitimate to interpret the pressure gradient-volume flow rate results
that we obtain using our model using the relations (24)-(25) provided that both
the modified Womersley number (14) and the oscillatory frequency ω̂ are large.
Since the relations (24)-(25) are for a (constant viscosity) linear viscoelastic
model, however, the complex viscosity appearing in these equations should be
considered to be an apparent complex viscosity for the blood model i.e. an
r− averaged value. By numerically calculating values of P ′rms and P ′′rms at
particular values of the rms volume flow rate amplitude UMrms and of the os-
cillatory frequency ω we may then divide the dimensional forms of (24)-(25) to
compute tan(ϕ/2 − π/4) and hence obtain ϕ. The phase angle A (see (7)) is
just the arctangent of the ratio of −P ′′rms and P ′rms. Eqn.s (24)-(25) lead us
to conclude that as ω → ∞, the ratio P ′

M/P ′′
M → 0 so that the phase angle A
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decreases towards −π/2.
For the non-homogeneous model we may deduce from (126) that for ω̂ ≫ 1

the polar angle ϕ in (19) may be bounded approximately as follows:

0 ≤ ϕ / arctan

(
2ε

η
max

0≤r≤1
(Ns(r) − Ns(1))

)
, (90)

so that, in particular ϕ → 0 as ω̂ → ∞, since (for physical reasons) the leading
order cell number density Ns is a bounded function. Accurate computations of
P ′rms and P ′′rms at large values of ω are extremely difficult due to the require-
ment of using highly refined meshes near the wall and taking very small time
steps. Using a second-order finite element method (see above) with a maximum
dimensionless time step of ∆t = 0.001 in order to compute non-homogeneous
results at ω = 400πrads−1, 800πrads−1 and 1000πrads−1 we obtain the results
shown in the first three lines of Table 2. From the approximate bounds (15)
we estimate that the modified Womersley numbers for the three cases lie in
the intervals [2.7, 7.82], [3.81, 11.06] and [4.27, 12.37]. With ω = 400π the up-
per bound in (90) equals 0.4568 so that from Table 2 the computed value of
ϕ at ω = 400π is seen to be well within the theoretical bounds. Similarly, the
computed values of ϕ at ω = 800π and at ω = 1000π fall within the bounds
predicted by (90). A is seen to be a monotonic decreasing function of ω and for
all values of ω, A > −π/2.

More convincing results in verification of (24)-(25) and (124) are more easily
possible with the homogeneous blood model [16, 29]. One reason for this is be-

cause in Eqn. (124) τ
(0)
rr = 0 and N

(0)
0 = 1 so that the leading order components

of the complex viscosity are independent of r. From (126) we therefore expect,
as the frequency ω̂ grows to be very large, that the polar angle ϕ will behave
asymptotically as

ϕ ∼ arctan

(
1

ω̂η

)
. (91)

We further expect that the agreement between the results for ϕ computed from
(24)-(25) and predicted by the asymptotic result (91) will get better and better
with increasing ω (for ω sufficiently large), tube radius R and pressure gradient
amplitude, the latter quantities being important because of their influence on
the modified Womersley number W . The homogeneous model results in the
last column of Table 2 were computed using a second order finite difference
method with a non-uniform grid and smallest step size ∆r = 8 × 10−5. Time
stepping was achieved using an adaptive Runge-Kutta method, as described
in [16]. Minimum modified Womersley numbers for these calculations, using
(15), were 62.77, 88.77, 108.73 and 153.76 and the corresponding values of the
dimensionless oscillatory frequency ω̂ were 4.49, 8.98, 13.46 and 26.93. The
results of the finite difference computations displayed in the table compare ex-
tremely well with the predictions 0.4455, 0.2387, 0.1592 and 0.079 coming from
(91). The percentage relative difference between the calculated value of ϕ at
ω = 400πrads−1 and the corresponding asymptotic value is 1.85% and this has
shrunk yet further to 1.04% by the time we compute the percentage relative
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H/NH ω (rads−1) UMrms (m3s−1) P ′rms(Nm−3) P ′′rms (Nm−3) A(rad) ϕ(rad)

NH 400π 6.3521× 10−10 141.3072 1.5701× 103 −1.4810 0.1445
NH 800π 3.2417× 10−10 106.0427 1.5728× 103 −1.5035 0.1088
NH 1000π 2.6147× 10−10 88.3893 1.5739× 103 −1.5147 0.0511
H 400π 1.6725× 10−7 3.4989 707.0981 −1.565848 0.437206
H 800π 8.3686× 10−8 2.1972 707.1034 −1.567689 0.235094
H 1200π 5.5812× 10−8 1.7218 707.1047 −1.568361 0.159644
H 2400π 2.7921× 10−8 1.1682 707.1058 −1.569144 0.080236

Table 2: Phase and polar angles A and ϕ for frequencies ω ∈ [400πrads−1, 2400πrads−1].
NH: Non-homogeneous model [25, 26, 27], tube radius R = 4.3 × 10−4m, pressure gradient
amplitude PM = 2229.7Nm−3. H: Homogeneous model [16, 29], tube radius R = 1× 10−2m,
pressure gradient amplitude PM = 1000Nm−3.

difference for ω = 2400πrads−1. Note, however, that even if there were no nu-
merical error at all in the calculations (an impossibility!) we would not expect
to get exactly the value predicted by (91) since this is an asymptotic result.
The gradual decrease of A towards −π/2 with increasing oscillatory frequency
is to be seen from the sixth column of Table 2 and the consequence is that, as
remarked on in the Introduction, the fluid behaves increasingly like an elastic
solid in the sense that the volume flow rate oscillations tend towards being π/2
out of phase with those of the applied pressure gradient. In fact, what is hap-
pening is that the inertial term ω̂Re/π dominates over all others in (24)-(25)
so that, despite the fact that the elastic component η′′ tends to zero and the
fluid therefore becomes increasingly Newtonian, the stress is proportional to the
strain rather than to the strain rate.

5.3. Multiple time scales

In order to investigate the long term growth of infinitesimal perturbations
to the steady leading order equation set (69)-(70) the system

(L − C)v = λAv, (92)

(see (84)) was discretized using a Chebyshev collocation method (see, for ex-
ample, [23, 24, 34]) and the resulting generalized eigenvalue problem was solved
using the MATLAB routine eig.

We note here that even though spectral methods have enjoyed much use for
the discretisation of eigenvalue problems, it is well known in the case of second-
order spectral differentiation operators, for example, that only a fraction 2/π
of the eigenvalues of the continuous problem can be approximated accurately
[42, 43]. Since it is only the dominant normal mode that interests us, however,
this is not anticipated to be problematic in the present case.

Fig. 4 shows the dominant computed eigenvalue of the generalized eigenvalue
problem (92) for values of the tube radius R = 50µm, 100µm and 200µm,
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Figure 1: R = 430µm. (a) |P ′|rms (Nm−3), (b) |P ′′|rms (Nm−3) and (c) PM rms (Nm−3)
against UM rms (m3s−1). ◦: ω = 4πrads−1, ∗: ω = 4πrads−1, Thurston’s [38] data, ▽:
ω = 40πrads−1, △: ω = 80πrads−1, �: ω = 400πrads−1.
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Figure 2: R = 430µm. Phase shift A. (a) A = 0 contour plot in ω(rads−1)−UM rms (m3s−1)
space, (b) surface plot of A in ω − PM space. The data points shown in (a) correspond
to ω = 4πrads−1, 10πrads−1, 20πrads−1, 30πrads−1 and 40πrads−1 with A > 0 below the
curve and A < 0 above it.
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Figure 3: R = 430µm. Dimensionless axial velocity profiles at times t = 0, T/10, . . . , 9T/10.
(a) ω = 4π rads−1, (b) ω = 400π rads−1. (Reproduced from Figs. 9(a) and 11(a) of M. A.
Moyers-Gonzalez et al. (2008), J. Non-Newtonian Fluid Mech. 155:161–173, with permis-
sion. c©2008 Elsevier B.V.)
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plotted against the infinite shear rate Deborah number De∞. The results show
that σR < 0 for all cases considered, even though for large tubes σR → 0− as
De∞ becomes large. This gives us grounds for hoping that any (small) numerical
differences between the solutions to the time-dependent equations (55), (65),
(67), (68) and the steady values Ns, Ms, τs and σs when the time dependent
equation set is solved subject to the boundary conditions detailed in Appendix
A and with initial conditions the steady variable values will eventually decay to
zero. It should be noted, however, that the linear stability analysis performed
here, only predicts the long-term behaviour of infinitesimal disturbances to the
steady variables Ns, Ms, τs and σs. Note, from (87) that

D
−1(L − P

−1
CP ),

where D = diag(2, 1, 2, 1), is non-normal and that therefore, although its spec-
trum is predicted, for all values of De∞ and R, to lie in the negative real half-
plane, transient growth of infinitesimal disturbances is theoretically possible,
so that, depending upon the value of De∞ and the accuracy of the numeri-
cal method, these disturbances may grow and begin to interact in a non-linear
fashion, possibly driving the flow unstable. See, for example, [3, 22, 40] for
a detailed discussion of the consequences of non-normality upon the stability
of flows. In the present case no such behaviour was observed, however, and,
accordingly, the leading order solutions from the multiple time scales analysis
described in Section 4.2 were set equal to their steady values.

In Figs. 5 and 6 we show, for ω = 4πrads−1 and ω = 400πrads−1, respec-
tively, the leading order dimensionless value NsDes of the polymeric viscosity
N0De as well as profiles of the full dimensionless numerical solution. The profiles
of N0De are shown at ten equally spaced points in time t = 0, T/10, . . . , 9T/10
throughout a full cycle (of period T ). The tube radius is equal to 100µm. Since,
at the higher frequency the underlying microstructure does not have as much
time to respond to changes in the local shear rate, variation in time of N0De
in Fig. 6(b) is smaller than that shown in Fig. 5(a). Convergence towards the
steady leading order profile is clear as ω increases. Note that the steady leading
order solutions Ns, Ms, σs, τs are independent of t and ϑ but do change with ω.
This is because we fix the flow rate amplitude PM in all our simulations which
results, as explained in Section 5.2 in a volume flow rate amplitude which varies
with ω. Particularly simple expressions for the leading order variables result in
the homogeneous (Pe → ∞ or infinite radius tube) case. Here the dimensionless
variables N0 = Ns = 1 and τrr = τs = 0. The homogeneous analogue of (71) is
then just

(Ms)
2 〈a〉

2
− (Ns − Ms)

〈b〉
2

= 0, (93)

so that, writing the steady leading order average aggregate size as ns = 1/Ms

we get

ns(ns − 1) =
〈a〉
〈b〉 . (94)

In Figs. 7(a) and (b) we demonstrate the convergence, for both the homogeneous
model and the non-homogeneous model, of the physical average aggregate size
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Figure 4: Maximum real part σR of leading eigenvalue of the generalized eigenvalue problem
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Figure 5: R = 100µm, ω = 4πrads−1. (a) NsDes, (b) N0De at times t =
0, T/10, . . . , 9T/10, (c) superposition of (a) and (b).
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Figure 6: R = 100µm, ω = 400πrads−1. (a) NsDes, (b) N0De at times t =
0, T/10, . . . , 9T/10, (c) superposition of (a) and (b).

30



(a) (b)
0 0.5 1 1.5 2 2.5 3 3.5

x 10
−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−3

1/ω

||n
−

n(0
) || 2

Figure 7: Maximum over one cycle of ‖ns − n‖2. (a) Homogeneous model of [16, 29], (b)
R = 100µm, non-homogeneous model.

to the leading order multiple time scales values as ω increases. Shown in both
graphs is the the maximum over one complete cycle of the L2 norm of the
difference in the two variables and the convergence rate appears to be very
similar in the two cases. If n is written out in a multiple time scales expansions
(cf. (40)-(44)) as

n = ns + εn(1) + ε2n(2) + . . . ,

it follows that the gradient of the curves in Figs. 7(a) and (b) as 1/ω → 0 tends
to

max
t∈[0,T ]

‖n(1)‖2.

Convergence with increasing values of the frequency is also clear from Fig. 8
(a) and (b) where we show the results of computing the maximum L2 norm of
the difference between M and Ms and between N0 and Ns. Were we to show
the corresponding results for τrr they would similarly show convergence to τs

as 1/ω → 0.

6. Conclusions

The high frequency behaviour of healthy human blood in rapid oscillatory
tube flow has been described via computations of the pressure gradient ampli-
tude - volume flow rate amplitude relationship and via a multiple time scales
analysis of the governing equations of the hemorheological model of Moyers-
Gonzalez et al. [25, 26, 27].

The pressure gradient amplitude - volume flow rate amplitude results in
a tube of radius 430µm and at an oscillatory frequency of ω = 2Hz have been
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Figure 8: R = 100µm. (a) Maximum over one cycle of ‖Ms − M‖2, (b) Maximum over one
cycle of ‖Ns − N0‖2 .

shown to be in excellent agreement with the experimental data of Thurston [38].
Allowing the oscillatory frequency to increase beyond far beyond 2Hz we have
then presented evidence of the existence of a single resonant frequency ωr at
which the volume flow rate is maximized at a fixed pressure gradient amplitude.
For frequencies higher than ωr the pressure gradient amplitude required to main-
tain a constant volume flow rate must be continuously increased with increasing
oscillatory frequency. The existence of a resonant frequency in oscillatory tube
flow of viscoelastic fluids is well documented and may be present even for linear
viscoelastic fluids. It is important to distinguish resonance from flow enhance-
ment in pulsatile flows, however, where any increase in the time-averaged flow
rate relative to its value at zero frequency is a non-linear viscoelastic effect [2],
although this mechanism might be most effective near resonant frequencies.

A key outcome of the multiple time scales analysis has been that the red cell
number density, average aggregate size and rr-component of the elastic stress
are all functions of the radius alone, to leading order. A consequence of this is
that the equation of linear momentum for blood undergoing rapid oscillatory
flow is predicted to be that of a generalized linear viscoelastic fluid (114) with
an r-dependent complex viscosity (126).

Our demonstration of generalized linear viscoelastic behaviour in our non-
homogeneous blood model when volume flow rate amplitudes are small or os-
cillatory frequencies very high has enabled us to interpret the computed results
in these cases. For example, we have shown, at least over a certain range of
oscillatory frequencies, that the phase shift A (see (5)) of the volume flow rate
oscillations relative to those of the pressure gradient passes from positive (more
viscoelastic behaviour) to negative (more viscous behaviour) as the volume flow
rate amplitude increases. At some oscillatory frequencies and at critical values
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of the volume flow rate amplitude the volume flow rate and the pressure gra-
dient might be seen to oscillate perfectly in phase and this has been shown to
be caused by a phase shift due to elasticity cancelling that due to inertia. As
oscillatory frequencies grow to be sufficiently large the fluid behaves more and
more like an elastic solid in the sense that A → π/2, although what is really
happening is that the inertial term ω̂Re/π dominates over all others in (24)-(25)
so that, despite the fact that the elastic component η′′ of the complex viscosity
tends to zero and the fluid therefore becomes increasingly Newtonian, the stress
becomes proportional to the strain rather than to the strain rate.
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Appendix A: Initial and boundary conditions for (28)-(34)

For a well-posed problem we need to prescribe suitable initial and boundary
conditions for the coupled system of equations (28)-(34). For all computations
performed in this paper the initial conditions were chosen to the solutions of
the steady Poiseuille problem with ∂p/∂z = −PM . Elastic stress boundary
conditions have been derived from the assumption (see, too, [5, 10, 33]) that
all microstructures on the wall lie with their principal axes aligned in the z-
direction. From the Kramers [20] expression for the elastic stress tensor this
means that

τ (1, t) = N0(1, t)Q2
0ezez − N0(1, t)δ, (95)

where, Q0 is a scaled dumbbell length and ez is a unit vector in the z-direction.
Fortunately, and as remarked in Section 4.1 we have no need of the zz-component
of τ in order to compute the other variables. Thus, it is unnecessary to estimate
Q0 in the Kramers expression above and the wall boundary condition for the
remaining components of τ is just

τij(1, t) = −N0(1, t)δij . (96)

The boundary condition on r = 1 for the axial component of the velocity is that
of the no-slip condition:

vz(1, t) = 0, (97)

whereas the wall conditions for N0 and M are the natural boundary conditions

∂N0

∂r
(1, t) − ∂τrr

∂r
(1, t) = 0 and

∂M

∂r
(1, t) − ∂σrr

∂r
(1, t) = 0. (98)

The above wall condition on N0 is equivalent to ensuring that there is no flux
of rouleaux through the tube walls.
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Along the axis of symmetry r = 0 shear-free and symmetry conditions are
imposed on all variables except N0, leading to

τrz(0, t) = 0,
∂vz

∂r
(0, t) = 0,

∂M

∂r
(0, t) = 0 and

∂τrr

∂r
(0, t) = 0. (99)

Finally, a non-local condition integral condition,

∫ 1

r=0

N0 rdr =
1

2
, (100)

meaning that the number of dumbbells in any cylindrical section of the tube
is a constant, is imposed on N0. In fact, it should be borne in mind that
what appears in (100) is the dimensionless N0. The same volume integral of
the physical (dimensional) N0 would not be a constant, but vary with the tube
radius, due to particle migration (the Fåhraeus effect, [14]).

Appendix B: Zeroth order Deborah number De
(0)

From (38) we may write down the zeroth order term in the multiple time
scales expansion (44) for De as follows:

De(0) =
n(0)De∞

1 + gn(0)n(0)De∞,
(101)

where n(0) = N
(0)
0 /M (0) is the zeroth order average aggregate size and

gn(0)n(0) =
b

2
n(0)(n(0) − 1) + aN

(0)
0 . (102)

Therefore, the zeroth order Deborah number De(0) becomes

De(0) =
N

(0)
0 M (0)De∞

M (0)2 +

(
b

2
N

(0)
0 (N (0) − M (0)) + aN

(0)
0 M (0)2

)
De∞

. (103)

We thus have

De(0) =

(
NsMs + ǫ

(
N

(0)
1 Ms + NsM

(0)
1

)
+ O(ǫ2)

)
De∞

A + Bǫ + O(ǫ2)
, (104)

where the functions A and B appearing in the denominator of (104) are given
by

A = M2
s +

(
b

2
Ns(Ns − Ms) + aNsM

2
s

)
De∞ (105)
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and

B = 2MsM
(0)
1

+

(
b

2
Ns(N

(0)
1 − M

(0)
1 ) +

b

2
N

(0)
1 (Ns − Ms) + 2aNsMsM

(0)
1

+aN
(0)
1 M2

s

)
De∞. (106)

Thus, using the binomial theorem to expand the denominator we get

De(0) =
De∞

A

(
NsMs + ǫ

(
N

(0)
1 Ms + NsM

(0)
1

)
+ O(ǫ2)

)(
1 − ǫ

B

A
+ O(ǫ2)

)
,

= Des + ǫDe1 + O(ε2), (107)

where

Des =
De∞NsMs

M2
s +

(
b

2
Ns(Ns − Ms) + aNsM

2
s

)
De∞

, (108)

and

De1 =
Des

NsMs

(
N

(0)
1 Ms + NsM

(0)
1

)

− De2
s

De∞NsMs

(
2MsM

(0)
1 +

b

2
De∞

(
Ns

(
N

(0)
1 − M

(0)
1

)
+ N

(0)
1 (Ns − Ms)

)

+aDe∞

(
2NsMsM

(0)
1 + N

(0)
1 M2

s

))

⇒ De1 =
N

(0)
1 Des

NsMs

(
Ms − Des

(
b

2
(2Ns − Ms) + aM2

s

))

+
M

(0)
1 Des

NsMsDe∞

(
NsDe∞ − 2MsDes + De∞Des

(
b

2
Ns − 2aNsMs

))
.

(109)

Thus, writing De1 = D̂e exp(λt), N
(0)
1 = N̂ exp(λt) and M

(0)
1 = M̂ exp(λt) and

computing the ϑ-cyclical average 〈·〉 of all terms, we conclude that

D̂e

De2
s

=
N̂

NsMs

(
Ms

Des
−
(

b

2
(2Ns − Ms) + aM2

s

))

+
M̂

NsMsDe∞

(
NsDe∞

Des
− 2Ms + De∞

(
b

2
Ns − 2aNsMs

))
,

⇒
〈

D̂e

De2
s

〉
= αN̂ + βM̂, (110)

where the functions α = α(r), β = β(r) are given by

α =
1

NsMs

(
Ms

〈
1

Des

〉
−
( 〈b〉

2
(2Ns − Ms) + 〈a〉M2

s

))
, (111)
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and

β =
1

NsMsDe∞

(
NsDe∞

〈
1

Des

〉
− 2Ms + De∞

( 〈b〉
2

Ns − 2〈a〉NsMs

))
.

(112)

Appendix C: Generalization of (10) for the blood model of Moyers-
Gonzalez et al. [25, 26, 27]

In this Appendix we seek to show that an axial velocity field vz of the
complex form

vz = v∗z(r) exp(iω̂t), (113)

(see (39)) may be obtained from the non-homogeneous hemorheological model
of Moyers-Gonzalez et al. [25, 26, 27], when ω̂ ≫ 1, by imposing an oscillatory
pressure gradient (3), having the same oscillatory frequency, albeit with a phase
shift. This would certainly be true if vz were to satisfy the equation of motion
of a generalized linear viscoelastic model

Re
∂vz

∂t
− 1

r

d

dr

(
rη∗(r)

∂vz

∂r

)
= PM exp(iω̂t), (114)

with an r-dependent complex viscosity η∗ since, in this case, we would only have
to solve a two-point boundary value problem for v∗z

iω̂Rev∗z − 1

r

d

dr

(
rη∗(r)

dv∗z
dr

)
= PM , (115)

subject to the boundary conditions

v∗z (1) = 0 and
∂v∗z
∂r

(0) = 0. (116)

We take the remainder of this Appendix to show that vz of the form (113) leads
to a well-defined complex viscosity η∗ in (114), at least up to O(1/ω̂). This
necessitates determining the shear stress-velocity gradient relationship.

To this end, we write out the elastic shear stress τrz in a multiple time scales
expansion thus:

τrz = τ (0)
rz (r, t, ϑ) + ετ (1)

rz (r, t, ϑ) + ε2τ (2)
rz (r, t, ϑ) + . . . . (117)

Then, using the expansions (40), (41), (44) and (117) in the shear stress equation
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(31) and supposing the axial velocity vz to be of the form (113), we obtain

(
De(0) + εDe(1) + ε2De(2) + . . .

)[(∂τ
(0)
rz

∂t
+

1

ε

∂τ
(0)
rz

∂ϑ

)
+ ε

(
∂τ

(1)
rz

∂t
+

1

ε

∂τ
(1)
rz

∂ϑ

)

+ ε2

(
∂τ

(2)
rz

∂t
+

1

ε

∂τ
(2)
rz

∂ϑ

)
+ . . .

]

−
(
De(0) + εDe(1) + ε2De(2) + . . .

) 1

Pe

(
1

r

∂

∂r

[
r

(
∂τ

(0)
rz

∂r
+ ε

∂τ
(1)
rz

∂r
+ ε2 ∂τ

(2)
rz

∂r
+ . . .

)]

− 1

r2

(
τ (0)
rz + ετ (1)

rz + ε2τ (2)
rz + . . .

))

−
(
τ (0)
rr + ετ (1)

rr + ε2τ (2)
rr + . . . + N

(0)
0 + εN

(1)
0 + ε2N

(2)
0 + . . .

)

×
(
De(0) + εDe(1) + ε2De(2) + . . .

) ∂vz

∂r

+
(
τ (0)
rz + ετ (1)

rz + ε2τ (2)
rz + . . .

)
= 0. (118)

From considering the O(ε−1) term we deduce immediately that τ
(0)
rz is indepen-

dent of the fast time ϑ. Equating all O(1) terms leads to

De(0) ∂τ
(0)
rz

∂t
+ De(0) ∂τ

(1)
rz

∂ϑ
− De(0)

Pe

(
1

r

∂

∂r

(
r
∂τ

(0)
rz

∂r

)
− τ

(0)
rz

r2

)

− (τ (0)
rr + N

(0)
0 )De(0) ∂vz

∂r
+ τ (0)

rz = 0. (119)

Define

Q :=
∂τ

(0)
rz

∂t
− 1

Pe

(
1

r

∂

∂r

(
r
∂τ

(0)
rz

∂r

)
− τ

(0)
rz

r2

)
− (τ (0)

rr + N
(0)
0 )

∂vz

∂r
+

1

De(0)
τ (0)
rz .

(120)
Then, since all variables appearing on the right-hand side of (120) are either

independent of ϑ (τ
(0)
rz , τ

(0)
rr , N

(0)
0 ) or, when dependent on ϑ, are 2π-periodic

(∂vz/∂r, De(0)), we may write Q in the form

Q := 〈Q〉 + G,

where G represents the part of Q that oscillates about 〈Q〉. We may now argue,
as in the case of R and S in Section 4.2, to conclude that 〈Q〉 = 0. That is,

∂τ
(0)
rz

∂t
− 1

Pe

(
1

r

∂

∂r

(
r
∂τ

(0)
rz

∂r

)
− τ

(0)
rz

r2

)
+

〈
1

De(0)

〉
τ (0)
rz = 0, (121)

where we have used the fact that vz of the form (39) has zero cyclical average.
i.e. 〈

∂vz

∂r

〉
= 0. (122)
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The solution to (121), subject to zero Dirichlet conditions on r = 0 and r = 1

and zero initial conditions, is just τ
(0)
rz = 0. Therefore, from (119) the equation

for τ
(1)
rz to be solved, subject to zero Dirichlet conditions on r = 0 and r = 1 is

∂τ
(1)
rz

∂ϑ
=
(
τ (0)
rr + N

(0)
0

) ∂vz

∂r
, (123)

which, integrating throughout with respect to ϑ and using the rr-component of
(96) and the Neumann condition on vz in (99), yields

τ (1)
rz =

1

i

(
τ (0)
rr + N

(0)
0

) ∂vz

∂r
. (124)

Note that since we may take τ
(0)
rr = τs and N

(0)
0 = Ns (see Section 4.3), the

simple linear relation (73) and the rr− component of (96) imply that (124) may
be rewritten as

τ (1)
rz =

2

i
(Ns(r) − Ns(1))

∂vz

∂r
. (125)

Using (125) we may now write down the complex viscosity η∗ appearing in (114)
in terms of its real and imaginary parts as

η∗(= η′ − iη′′) = η − 2iε (Ns(r) − Ns(1)) + O(ε2), (126)

where η is the (constant) plasma viscosity.
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