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1 Introduction

Figure 1: The Arcminute Microkelvin Im-
ager (Large Array)

Figure 2: WMAP data

In the hot early universe, standard matter (electrons and protons) and radiation (photon) were in equilibrium.
When the temperature of the universe was low enough (400 000 years after the Big Bang), electrons and protons
recombined to form neutral hydrogen atoms and the universe became transparent to radiation. The cosmic
microwave background (CMB) is the remnant of this radiation, in which we are still bathed today and that
cosmologists have been studying for nearly half a century now. According to the concordance cosmological
model the cosmic structures and the CMB originate from Gaussian adiabatic perturbations seeded in the early
phase of inflation, a period of exponential expansion in the very early universe. The corresponding component
of the CMB is thus also Gaussian. Its anisotropies on the celestial sphere are divided into the so-called primary
anisotropies, imprinted at the time of hydrogen recombination itself, and secondary anisotropies, imprinted
during the subsequent evolution of the universe.

Some models motivated by theories for the unification of the fundamental interactions suggest the formation
of topological defects such as cosmic strings, originatingfrom phase transitions at the end of inflation. These
defects would have imprinted a non-Gaussian component in the CMB superimposed to the standard Gaussian
component. The overall string network is parameterized by astring tensionµ (a mass per unit length of string)
which sets the overall amplitude of the string contribution. Current observations of the anisotropies of the
temperature of the CMB radiation from WMAP (Wilkinson Microwave Anisotropy Probe) data1 still allow the
presence of cosmic strings with a string tension below:

Gµ

c2
≤ 2 × 10−7,

whereG = 6.67e− 11 m3kg−1s−2 stands for the gravitational constant andc = 3.00e+ 08 m/s the speed of
light.

Beyond standard radiometers, radio-interferometers are also used to observe the CMB signal. For example,
the Arcminute Microkelvin Imager (AMI) in Cambridge2 is currently mapping the CMB at radio frequencies
between 13.5 Ghz and 18 Ghz on field of view around 1 degree, andwith a resolution between 30 arcseconds
and several arcminutes. Radio interferometry is a powerfultechnique used in astronomy to achieve high angu-
lar resolution. Radio telescope arrays synthesize a very large effective aperture by using only small telescopes.
Considering small field of views on the celestial sphere, onemay see the signal probed as a planar image on
the plane perpendicular to the line of sight. In this context, the synthesized aperture is the same as the one of
a unique telescope whose size would be the maximum projecteddistance between two telescopes of the array
on the plane of the image. A radio interferometer directly acquires measurements in the Fourier plane of this
image. The aim of the project is to develop and test an algorithm for the detection of cosmic strings from such

1http://lambda.gsfc.nasa.gov/
2http://www.mrao.cam.ac.uk/telescopes/ami/
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interferometric data of the CMB.

In Section 2, we present the inverse problem posed to reconstruct a string signal from radio-interferometric
data. Then we describe the statistical models of the string and Gaussian CMB signals in Section 3. In Section
4, we introduce the theory of compressed sensing and describe two algorithms to reconstruct a string signal that
take into account prior information on the signal. Then we present in Section 5 a very common algorithm called
CLEAN and explain how to apply it to our problem. This algorithm is used in radio-astronomy to solve the
general interferometric inverse problem. Finally, we study the performance of these three algorithms in Section
6 and conclude in Section 7.
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2 Radio interferometry

In this section, we describe the principles of radio-interferometry and formulate the general inverse problem
posed for the reconstruction of an image from radio-interferometric data. After presenting briefly the string and
Gaussian CMB signals, the inverse problem is then posed for these specific signals.

2.1 Visibilities

Let us considern radio telescopes that constitute an interferometric array. All these radio telescopes, iden-
tified by an indexk (1 ≤ k ≤ N ), point in the same direction and receive a monochromatic electric field
E(~rk, t) of wavelengthλ (t denotes the time variable, and~rk ∈ R

3 the three-dimensional position of the kth

telescope). The vector~Rk k′ = ~rk − ~rk′ defines the relative position between the two telescopesk andk′, and
is called the baseline. The field of view of each telescope is limited by an illumination functionA(θ, φ) (where
(θ, φ) ∈ [0, 2π) × [0, π] are the celestial coordinates). At each instant of observation, each pair of telescopesk
andk′ measures a complex visibilityyk k′ defined as the correlation between the incoming electric fields:

ykk′ = 〈E(~rk, t)E(~rk′ , t)∗〉∆t , (1)

where 〈·〉∆t represents an average over a time long compared with the period of the wave detected. This
correlation measures a flux and the visibility is in unit of Jansky (1 Jy = 10−26 W m−2 Hz−1). By combining
all pairs of telescopes, it is thus possible to measure

(n
2

)
= n(n−1)/2 visibilities at each instant of observation.

We now assume that the field of view of the telescopes is small enough to consider that the observed patch
of the sphere may be approximated by a planar patchP . The illumination function may now be defined on
this plane as a function of a two dimensional vector~p ∈ R

2 whose origin is set at the pointing direction of the
array. The projected baseline,~R⊥

kk′, is defined as the projection of the baseline~Rkk′ onto the planeP . In these
conditions, the van Cittert-Zernike theorem states that the measured visibilityykk′, defined by expression (1),
is the Fourier transform of the intensity ofE, I(~p) with ~p ∈ R

2, multiplied by the illumination functionA(~p)
at the spatial frequency~uk1k2

defined as the projected baseline divided by the wavelength of observation:

ykk′ =

∫

R2

A(~p)I(~p) exp−2iπ~p·~ukk′ d2~p, (2)

with

~ukk′ =
~R⊥

kk′

λ
. (3)

Thanks to the Earth rotation, the projected baseline~R⊥
kk′ is continuously changing and traces arcs of ellipses

on the Fourier plane. The combination of all arcs for all pairof telescopes results in a non-uniform and non-
complete Fourier coverage withm/2 visibilities characterizing the interferometer. For illustration, Figure 3
shows an example of the Fourier sampling in the so-called(u, v) plan.

2.2 Interferometric inverse problem

2.2.1 General case

Assuming that the signalsI(~p) andA(~p) are band-limited, the Nyquist-Shannon theorem requires touni-
formly sample these signals at a resolution at least twice their bandwidth to fully describe them. We can
thus defined the points~pi ∈ R

2, with 1 ≤ i ≤ N , of the uniform grid of sizeN1/2 × N1/2 where these
signals are sampled. Their sampled version may be denoted asx ∈ R

N = {xi = I(~pi)}1≤i≤N , and
a ∈ R

N = {ai = A(~pi)}1≤i≤N . These sampled signals are also described by their Fourier coefficients,
x̂ ∈ C

N and â ∈ C
N , computed on a discrete uniform grid ofN1/2 × N1/2 spatial frequencies{~ui}1≤i≤N :

x̂ = {Î(~ui)}1≤i≤N andâ = {Â(~ui)}1≤i≤N . The signalsI(~p) andA(~p) being real, we also have the symmetry
Î(~ui) = Î∗(−~ui) andÂ(~ui) = Â∗(−~ui).

3



u

v

Figure 3: An example of the(u, v) sampling over arcs of ellipses.

During an observation period,m/2 complex visibilities are acquired by the interferometric array at different
frequencies~ub ∈ R

2 with 1 ≤ b ≤ m/2. In the general case, the frequencies probed{~ub}1≤b≤m/2 do not
belong to the set of discrete frequencies{~ui}1≤i≤N describing the signalsx anda, and a gridding operation
is usually performed on the visibilities before doing any reconstruction. This operation allows the use of the
standard fast Fourier transform. However, it also induces some artifacts in the reconstructed image and leads
to a loss of information. This gridding operation might be avoided by the use of some fast algorithms which
have been designed to compute the Fourier transform of a signal on non-equispaced frequencies (NFFT3).
For simplicity, we will consider here that the probed frequencies{~ub}1≤b≤m/2 belong to the set of discrete
frequencies{~ui}1≤i≤N . Furthermore, as the signals probed are real, we can also consider that the set of
frequencies{~ub}1≤b≤m/2 is limited to one-half of the Fourier plane. Them/2 measured complex visibilities

{ÂI(~ub)}1≤b≤m/2 might be affected by independent noise:n ∈ C
m/2. The symmetric visibilities can be

deduced afterwards and the resultingm complex visibilities can be regrouped in a vector denotedy ∈ C
m

(the noise vector becomes thusn ∈ C
m but with onlym/2 independent values). In this setting, the number

of independent complex visibilitiesm/2 is smaller than the number of Fourier coefficientsN/2 needed to
characterize exactly the signalsx and an ill-posed inverse problem is defined to reconstruct the image:

y = Φx+ n, (4)

where
Φ = MFD. (5)

In the relation (5),D = {Dij = aiδij}1≤i,j≤N ∈ R
N×N is a matrix representing the illumination function,

F ∈ C
N×N is the matrix notation of the discrete Fourier transform, andM ∈ R

m×N is a binary matrix which
selects them complex visibilities probed by the interferometer. This matrix contains only one non-zero value
per line. The resulting matrixΦ is called the sensing matrix.

2.2.2 Cosmic string case

As explained in the introduction (see Section 1), some theories predict the existence of two components in
the cosmic microwave background. In this context, the overall CMB signal may be seen as a linear superpo-
sition of a string signalXstg(~p) and a pure Gaussian componentG(~p), seen as noise. The amplitude of the
string signalXstg is controlled by the dimensionless string tensionρ: ρXstg(~p) + G(~p). In the following, we
will denoteXρ(~p) the string signal multiplied by the string tension. The discrete versions of these signals are
denoted:xρ ∈ R

N = {xρ
i = Xρ(~pi)}1≤i≤N for the string signal, andg ∈ R

N = {gi = G(~pi)}1≤i≤N for
the Gaussian CMB signal. For illustration, Figure 4 represents simulated maps of both signals (on a field of
view of 1.8◦ × 1.8◦ and at resolution of0.42 arcminute) and their linear superposition for a string tension of
2.0e−07 as well as the corresponding magnitude of gradient. The simulation of the string induced CMB map is
provided by Fraisse et al. ([8]). The simulation of the Gaussian CMB map is performed thanks to the technique
described in article [12] and recalled in Appendix A. We can notice that the strings are not detectable by eye in

3http://www-user.tu-chemnitz.de/ potts/nfft/
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the noisy temperature map (top right) while a part of it appears in the magnitude of the gradient (bottom right).
The gradient operator actually enhance the high frequency features such as the strings.

In the context of radio-interferometry, it is possible to re-write the general inverse problem (4) for this
particular case. It becomes:

y = Φxρ + Φg, (6)

in the absence of any instrumental noise. As the signalg is seen as noise here, the termΦg will be further
denoted asng ∈ C

m = {ng
i }1≤i≤m and the above equation becomes:

y = Φxρ + ng. (7)

The signals at our disposition are in unit of temperature, soto compute the visibilities in Jy, we have to convert
our map in flux density as described in the article [14]. The goal is now to reconstruct the string signalxρ from
them/2 independent measured complex visibilities.
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Figure 4: Top panels: simulated string induced CMB map inµK for a string tension of2.0e − 07 on a field
of view of 1.8◦ × 1.8◦ (left), simulated Gaussian CMB map inµK on the same field of view with the primary
CMB anisotropies only (center), combination of the string induced CMB map and the Gaussian CMB map
(right). Bottom panels: corresponding maps of the magnitude of the gradient.
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3 Bayesian perspective

In this section, we present the statistical model of the Gaussian CMB signal and of the string signal. We
then present a method to estimate the string tension from theinterferometric data acquired and show finally
how to address the inverse problem posed in a Bayesian perspective.

3.1 Statistical model of the Gaussian CMB signal

The Gaussian noise componentg can be modelled as a result of a random Gaussian process with afixed
discrete angular power spectrumCg

l set by the standard cosmological model (see Appendix A). In this applica-
tion, we only consider the primary CMB anisotropies of the power spectrum (see Fig. 6). Let us denotel the
angular frequency which is equal to2π‖~u‖2 (where‖ · ‖2 is theℓ2 norm and~u is the spatial frequency). In this
model, the Fourier coefficientŝg(~u) of g can be seen as independent random Gaussian variables with mean0
and variance:

Cg
l = 〈ĝ(~u)ĝ∗(~u′)〉 = ΩpixN CG

l δll′ , (8)

whereΩpix is the pixel area of the discrete map in the real space andCG
l is the continuous angular power

spectrum of the signalG(~p):
〈Ĝ(~u)Ĝ∗(~u′)〉 = (2π)2CG

l δ(l − l′). (9)

When this signal is observed by an interferometric array as the one defined in the previous section, it is first
multiplied by the illumination functionA. This multiplication induces a convolution in the Fourier domain.
Consequently, the resulting Fourier coefficientŝAg(~u) (i.e. the coefficients{ng

b}1≤b≤m of the vectorng) can
still be considered as zero-mean random Gaussian variablesbut not any more independent. However, the full
width at half maximum (FWHM) of the illumination function islarge enough (40 arcminute for our simulations)
to consider that its FWHM in the Fourier domain is very small (0.022 arcminute-1). The correlations induced
are thus very local and the variables may reasonably be considered independent. In this context, it is possible
to show that the variance of the zero-mean Gaussian discretevariableng

b at the frequency~ub can be computed
as follows:

σ2
b = Cag

l = Cg
l ⋆ |â(l)|2 =

∫
dl Cg

l |â(lb − l)|2. (10)

The total probability distribution of the entire noise vector ng ∈ C
m signal is:

π(ng) ∝ exp



−
m/2∑

b=1

∣∣ng
b

∣∣2

σ2
b



 , (11)

as only the firstm/2 variables are independent (the others being completely fixed by the firstm/2 variables).

3.2 Statistical model of the string signal

The string signal can be understood as a result of a statistical process well modelled by Generalized Gaus-
sian Distribution (GGD) in a wavelet space ([9]). We consider here a redundant steerable wavelet basisΨ
with 6 scalesj (1 ≤ j ≤ 6) including a low pass and a high pass axisymmetric filters and four intermediate
scales defining steerable wavelets with 6 orientationsq (1 ≤ q ≤ 6) ([13]). We denote the wavelet vector
α ∈ R

T = {αi}1≤i≤T : xρ = Ψα. If we assume that the string tensionρ is known, the GGD prior distribution
πj of a wavelet coefficientαi only depends on the scale and can be modelled as follows:

πj(αi|ρ) ∝ exp

[
−

∣∣∣∣
αi

ρuj

∣∣∣∣
vj

]
. (12)

The parametersvj are called shape parameters. A shape parameter equals to2 identifies a Gaussian distribution,
a one equals to 1 identifies a Laplacian distribution. It can be understood as a measure of the compressibility of
the signal. Values close to0 yields very peaked probability distributions with heavy tails, i.e. very compressible
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signals, whereas values close to2 represents a non-sparse distributions. The parametersuj are called scale
parameters and are linked directly to the standard deviation of the GGD distribution. These parameters are
estimated from the wavelet decompositions of16 training simulations of a string signal similar to the one
presented in Section 2.2.2, in the unit of flux density (Jy) and for a string tension of1. To do so, we use a
moment fitting method. The kurtosiskj (the ratio of the fourth central moment to the square of the variance)
and the varianceσ2

j within each scale are estimated assuming statistical isotropy. As the theoretical expressions
of the kurtosis and the variance of a GGD depend only onuj andvj , it is possible to get an estimation of these
last two parameters from the estimated kurtosis and variance by solving numerically:

kj =
Γ(5/vj)Γ(1/vj)

Γ(3/vj)2
(13)

σ2
j = ρ2 Γ(3/vj)

Γ(1/vj)
u2

j , (14)

whereΓ stands for the Gamma function. The values obtained are:{v1 = 0.43, v2 = 0.39, v3 = 0.47, v4 =
0.58, v5 = 0.76, v6 = 1.86} and{u1 = 8.9e − 03, u2 = 2.8e − 03, u3 = 2.2e − 02, u4 = 1.5e − 01, u5 =
9.5e−01, u6 = 5.7e+01}. For illustration, Figure 5 shows the GGD’s corresponding to these estimated shape
and scale parameters, superimposed on the histograms obtained from the16 simulations.

If we now assume that the wavelet coefficients are independent, the total probability distribution of the
entire signal is simply the product of the probability distributions of each wavelet coefficient:

π(α|ρ) ∝ exp

[
−

T∑

i=1

∣∣∣∣
αi

ρuj

∣∣∣∣
vj

]
. (15)
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Figure 5: Logarithm of the generalized Gaussian distributionsπ(αi|ρ) (red solid line) with the corresponding
histograms of the coefficientsαi obtained from the16 training string simulations (black dashed line). Top pan-
els: high pass axisymmetric filter (left), first scale of steerable wavelets (center), second first scale of steerable
wavelets (right). Bottom panels: third scale of steerable wavelets (right), fourth scale of steerable wavelets
(center), low pass axisymmetric filter (right).
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As for the Gaussian CMB signal, the discrete angular power spectrum of the string signalCxρ

l is also known.
An analytical expression of the continuous power spectrumCXρ

l was provided by Fraisse et al. ([8])

∀l > 1000, l(l + 1) CXρ

l = ρ2 14

1000−p
l−p with p = 0.889. (16)

The discrete angular power spectrum is deduced by replacingCG
l by CXρ

l in equation (8):

∀l > 1000, Cxρ

l = ΩpixN CXρ

l δll′ . (17)

When this signal is multiplied by the illumination functionA, the new power spectrum can be computed by
using relation (10) thus obtaining:

Caxρ

l = Cxρ

l ⋆ |â(l)|2 =

∫
dl′ Cxρ

l′ |â(l − l′)|2. (18)

For illustration, Figure 6 shows the continuous angular power spectrum of the string signal for a string tension
of 2.0e − 07.
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Figure 6: Continuous angular power spectrum inµK2 of the primary anisotropies of the CMB (black line) and
of the string signal for a string tension of2e− 07 (red line). The angular frequencies range froml = 1.0e+ 02
andl = 2.0e+ 04 and the data are represented onlog10 − log10 axes.
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3.3 Estimation of the string tension

The estimation of the string tension is done by fitting the power spectrumCy
l of the acquired datay to the

power spectrums of the Gaussian CMB signalCag
l of the string signalCaxρ

l at the available angular frequenciesl
(see article [9]). The model used in this article assumes that both signals arise from two statistically independent
isotropic Gaussian random processes. Under this model, theobserved complex visibilitiesyb have a power
spectrum:

Cy
lb

=
〈
|yb|2

〉
= Caxρ

lb
+ Cag

lb
, (19)

∀lb > 1000 andlb ∈ {2π‖~ub‖2}1≤b≤m/2.

The probability distributionπ(y|ρ) of y givenρ reads as:

π(y|ρ) =
1

π
∏m/2

b=1 Cy
lb

exp



−
m/2∑

b=1

|yb|2
Cy

lb



 . (20)

An estimation of the string tension may be obtained by computing the maximuma posteriori of the proba-
bility π(ρ|y):

ρ̃ = arg max
ρ′∈R

π(ρ′|y) = arg max
ρ′∈R

π(ρ′)π(y|ρ′)
π(y)

with π(y) = Cst (21)

= arg max
ρ′∈R

π(ρ′)π(y|ρ′),

where the priorπ(ρ′) is considered uniform within an interval[0, ρmax] with a upper boundρmax > 2.0e− 07.
Finally, an estimation ofρ is obtained by solving numerically:

ρ̃ = arg min
ρ′∈[0,ρmax]




m/2∑

b=1

|yb|2
Cy

lb

+

m/2∑

b=1

log(πCy
lb
)



 . (22)

3.4 Wavelet domain Bayesian reconstruction scheme

As we have statistical models for both signals, we may designnow a Bayesian method to reconstruct the
string signal from the observed visibilities. The prior distribution of our string signal is modelled in the wavelet
domain, we have thus to re-write the inverse problem (7) as follows, to use this information:

y = ΦΨα+ ng. (23)

The idea is now to recover the vectorα from the visibilitiesy. The original signal might be obtained afterwards
by applyingΨ to the estimated vector̃α: x̃ρ = Ψα̃.

If we assume that the string tensionρ is available or has been estimated thanks to the method described
before, we may find an estimatioñα of the vectorα by computing the maximuma posteriori (MAP) of the
probabilityπ(αρ|y, ρ):

α̃ρ = arg max
α′∈RT

π(α′|y, ρ) (24)

= arg max
α′∈RT

π(y|α′, ρ)π(α′|ρ)
π(y)

= arg max
α′∈RT

π(y|α′, ρ)π(α′|ρ)

whereπ(α′|ρ) is given by equation (15) andπ(y|α′, ρ) is the probability of the noiseng = y − ΦΨα′:

π(y|α′, ρ) = π(ng) ∝ exp



−
m/2∑

b=1

|yb − (ΦΨα′)b|2
σ2

b



 . (25)
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Combining all these equations yields:

α̃ = arg min
α′∈RT




m/2∑

b=1

|yb − (ΦΨα′)b|2
σ2

b

+
T∑

i=1

∣∣∣∣
α′

i

ρuj

∣∣∣∣
vj



 . (26)

In the equation above, some shape parametersvj are smaller than1. The problem to solve is thus non-convex
and finding the MAP estimatioñα is not an easy task. In the next section we show how to address this problem
after reformulating it in the flexible framework of compressed sensing.
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4 Compressed sensing

In this section, we introduce briefly the theory of compressed sensing and its main results. Using these re-
sults, we then describe two possible methods which try to reconstruct a string signal from radio-interferometric
data. The first one is a very general method that uses only the fact that our signal is compressible in a wavelet
basis. The second method is specific to the string signal and uses the statistical prior detailed in the previous
section.

4.1 Introduction to the theory

The theory of compressed sensing shows that it is possible toreconstruct a signal accurately, sometimes
even exactly, from a far smaller number of samples than required by the Nyquist-Shannon theorem ([1], [2],
[3], [7]). This theory applies to sparse or compressible signals. Let us expand a signalx ∈ R

N in a basis
Ψ ∈ R

N×T = {ψ1ψ2 . . . ψT }:

x =

T∑

i=1

αiψi. (27)

The coefficientsαi are the scalar product of the vectorx with the vectorsψi: αi = 〈x, ψi〉. In a matrix notation,
we havex = Ψαwith α ∈ R

T = {αi}1≤i≤T . The signalx is said to be sparse in the basisΨ if it decomposition
α contains only a small numberK ≪ N of non-zero values. It is compressible if it contains a smallnumber of
significant coefficientsK ≪ N .

This signalx is probed by collecting partial information throughm ≈ K linear measurements in a sensing
basisΦ ∈ R

m × RN possibly affected by independent and identically distributed Gaussian noisen ∈ R
m.

We can consider, without any loss of generality, a noise witha mean0 and a variance1. We regroup the
measurements in a vectory ∈ R

m:
y = Φx+ n. (28)

The numberm of measurements being far smaller than the numberN of samples needed to fully describe the
signalx, the above problem is ill-posed. However, as the signalx has a sparse representation in the basisΨ,
it depends on much smaller number of unknowns. The ill-posedproblem is regularized by this assumption of
compressibility. In this context, the theory of compressedsensing states that if the sensing matrixΘ = ΦΨ ∈
R

m × R
T respects the restricted isometry property (RIP), then it ispossible possible to have a very accurate

approximation of the compressible signalx by solving the so-called Basis Pursuit denoise (BPDN) problem.
Let us first re-write the problem above to introduce the vector α and the matrixΘ:

y = ΦΨα+ n = Θα+ n. (29)

The BPDN consists in the minimization of theℓ1 norm of the vectorα under a constraint on theℓ2 norm of the
residual noise:

min
α′∈RT

‖α′‖1 subject to‖y − Θα′‖2 ≤ ǫ. (30)

‖y−Θα′‖2
2 =

∑m
b=1(y−Θα′)2b is an estimate of the noisen and follows thus a chi-square distribution withm

degrees of freedom.ǫ2 is thus equals to some suitable percentile of this distribution. The solution of (30) may
be obtained through convex optimization algorithms.

The matrixΘ respects the restricted isometry property of orderK if, for anyk ≤ K sparse vectorαk in the
basisΨ, there exists a constantδK < 1 such that:

(1 − δK)‖αk‖2
2 ≤ ‖Θαk‖2

2 ≤ (1 + δK)‖αk‖2
2. (31)

This property says that the matrixΘ should preserve theℓ2 norm of anyK sparse signals and, asδK < 1,
means that noK sparse vector can be in the null space ofΘ. This is useful as otherwise there would be no hope
of reconstructing these vectors. The theory of compressed sensing shows that if the matrixΘ satisfies the RIP
of order2K with δ2K <

√
2 − 1, then the solution to (30) provides an accurate reconstruction of the signalα.
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In the absence of noise,ǫ = 0, the problem (30) as a unique solution and the reconstruction is exact if the signal
is exactly sparse. In the presence of noise and for compressible signal, we have:

‖α− α̃‖2 ≤ C1,Kǫ+ C2,K
‖α− αK‖1√

K
, (32)

whereαK is the best approximation ofα obtained by keeping theK largest coefficients of the vectorα. This
relation provides a strong stability result on the quality of the reconstructions. It has been emphasized that the
constantC1,K andC2,K are rather small. For example, forδ2K = 0.2 thenC1,K = 8.5 andC2,K = 4.2.

We can also recall that∀ǫ, there exists a parameterτ > 0 such that the BPDN problem (30) is strictly
equivalent to:

min
α′∈RT

1

2
‖y − ΦΨα′‖2 + τ‖α‖1, (33)

In a Bayesian perspective, the problem (33) is equivalent tofinding the maximuma posteriori of a signal with
a Laplacian prior distribution in presence of independent and identically distributed Gaussian noise.

Finally, other minimization problems have been proposed for the recovery ofα ([4], [6]). We can for
example substitute theℓ1 norm in the BPDN problem by aℓp norm. In a Bayesian perspective, it corresponds to
suppose that the signalα is described by a generalized Gaussian distribution. This description is of a particular
interest for us because one would have already noticed the similarity between the general inverse problem (29)
for the compressed sensing and ours (23), as well as the GGD distribution of our string signal and the possibly
to use aℓp norm in (30).

4.2 Compressed sensing reconstruction of a string signal

We have seen that the string signal is compressible in a wavelet space (see section 3.2 page 6). As only
partial information of it is acquired throughm/2 linear measurements, the first idea is to try to reconstruct
the signal by solving the BPDN problem (30). However, we mustrecall that the noise in the BPDN problem
(30) was assumed identically distributed. It is not the casefor the Gaussian CMB signal and the constraint
‖y − ΦΨα′‖2 ≤ ǫ has not any more any statistical meaning, i.e. it does not follows any more a chi-square
distribution. For the Gaussian CMB noise, we can consider the sum

∑m
b=1 |yb − (ΦΨα′)b|2/σ2

b . Because of the
symmetry in the Fourier domain, we have:

m∑

b=1

|yb − (ΦΨα′)b|2
σ2

b

= 2

m/2∑

b=1

|yb − (ΦΨα′)b|2
σ2

b

=

m/2∑

b=1

(nre
b )2

σ2
b/2

+
(nim

b )2

σ2
b/2

. (34)

wherenre
b is the real part ofyb − (ΦΨα′)b andnim

b its imaginary part.(nre
b )2/(σ2

b/2) and(nim
b )2/(σ2

b /2) are
independent and identically real Gaussian variables of mean 0 and variance1. The previous sum follows thus a
chi-square distribution withm degrees of freedom. The level of the noise residualǫ2 is chosen equals to some
100 θth percentile of this chi-square distribution, i.e.p(χ2 ≤ ǫ2) = θ. Finally, the problem to solve reads as:

min
α′∈RT

‖α′‖1 subject to
m∑

b=1

|n′b|2
σ2

b

≤ ǫ2. (35)

As already explained in the previous section, theℓ1 norm in the above problem can be linked to the fact that the
signalα to recover is well described by a Laplacian distribution. However, we know in our case that the signal
α is well described by GGD’s. The idea is know to replace thel1 by another one to take into account thisa
priori information.

12



If a signal is well modeled by a GGD with a shape parameterp, we can replace theℓ1 norm in the BPDN
problem by aℓp norm. The string signal is well modeled by the product of6 different GGD’s in the wavelet
domain, we can thus define the corresponding “s norm” and use it to recover the signal. We define the “s norm”
as follows:

‖α‖s =
T∑

i=1

∣∣∣∣
α′

i

ρuj

∣∣∣∣
vj

. (36)

And by replacing theℓ1 norm in the BPDN problem by thiss norm and the problem to solve becomes:

min
α′∈RT

‖α′‖s subject to
m∑

b=1

|n′b|2
σ2

b

≤ ǫ2, (37)

and will be called statistical basis pursuit (SBP) problem.As for the MAP problem (26), the SBP problem is
not convex. However there exists some techniques to converge to the solution. Candès et al. present a simple
iterative algorithm to converge to theℓ0 norm in article [4]. The algorithm presented here is a modification of
the former to converge to the s-norm (36):

1. Set the weightsω(0)
i = 1, i = 1, . . . , T .

2. Solve the weighted BPDN problem:

α(l) = arg min

T∑

i=1

ω
(l)
i |αi| subject to

m∑

b=1

|n′b|2
σ2

b

≤ ǫ2. (38)

3. Update the weights:

ω
(l+1)
i =

1

(ρuj)vj (|α(l)
i |(1−vj) + ξ)

, i = 1, . . . , T. (39)

4. Terminate on converge or after a given number of iterations. Otherwise, incrementl and go to step 2.

The valueξ is a regularization parameter and is here to avoid numericalerrors if α(l)
i is equal to zero. It

should be negligible and we choose it equal to a small percentage of the standard deviation of the GGD at the
considered scalej (14). No proof of convergence of this algorithm and stability results of the reconstructed
signal are yet provided. Its performances are just assessedon the basis of simulations (see Section 6). However,
we can easily check that if the algorithms converge (i.e.α(l+1) = α(l)) and the value ofξ is negligible, then it
converges to the solution of (37):

T∑

i=1

ω
(l+1)
i |α(l+1)

i | =

T∑

i=1

|α(l+1)
i |

(ρuj)vj (|α(l)
i |(1−vj ) + ξ)

(40)

≈
T∑

i=1

|α(l)
i |

(ρuj)vj (|α(l)
i |(1−vj ))

=

T∑

i=1

|α(l)
i |vj

(ρuj)vj

=
T∑

i=1

∣∣∣∣∣
α

(l)
i

ρuj

∣∣∣∣∣

vj

= ‖α(l)‖s.

Finally, we can also notice that this algorithm needs the knowledge of the string tensionρ. Its value is
estimated prior to any reconstruction thanks to the techniques detailed in Section 3.3.
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5 CLEAN

In this section, we describe a very common algorithm used in radio astronomy to reconstruct an image from
radio-interferometric data. This algorithm is called CLEAN. We then explain how to apply it to reconstruct our
string signal.

5.1 The CLEAN algorithm

CLEAN is an iterative algorithm that aims at solving the general inverse problem (4) ([10]). This algorithm
tries to reconstruct the initial imagex multiplied by the illumination function:̄x = Ax ∈ R

N . The measured
visibilities are first put on the uniform discrete Fourier grid of sizeN1/2 × N1/2 (a zero value is affected to
the Fourier coefficients at all non-probed frequencies), and a discrete inverse Fourier transform is performed.
The resulting image is called the dirty imagex̄(d) ∈ R

N . In our case, this operation is actually equivalent to
apply the adjoint operator̄Φ†, of Φ̄ = MF , to the visibilitiesy: x̄(d) = Φ̄†y. The inverse Fourier transform
of the binary mask which selects the frequencies probed is called the dirty beam:d ∈ R

N = Φ̄†1m, where
1m = {ci = 1}1≤i≤m. We can also compute the expression of the noise in real space: n̄(d) = Φ̄†n. The general
inverse problem (4) becomes in real space:

x̄(d) = d ⋆ x̄+ n̄(d). (41)

The problem above being ill-posed, an assumption on the signal x̄ must be made to regularize it. The
assumption here is that the initial signalx̄ can be expressed as a sum of Dirac spikes. The convolved image
d ⋆ x̄ is thus constituted of a sum of dirty beamsd centered at each location of a Dirac spikes. Based of this
interpretation, the CLEAN algorithm is actually very simple:

1. Initialize the residual map̄x(0) ∈ R
N to x̄(d)/c (c is the central value of the dirty beam) and the recon-

structed map̃x ∈ R
N to the null vector.

2. At the iterationl, find the indeximax where the residual imagēx(l) = {x̄(l)
i }1≤i≤N has its maximum

absolute value and create a vectorβ ∈ R
N{βi = x̄

(l)
i δiimax}1≤i≤N .

3. Compute the residual map at the next iteration(l+1): x̄(l+1) = x̄(l)−γΦ̄†Φβ/c. γ is called the loop-gain
factor and its value (smaller than1) is usually equals to a few tenths. This factor enhances a lotthe quality
of the reconstruction even if it also increases the computational cost.

4. Add the vectorβ to the reconstructed map:x̃ = x̃+ γβ

5. Terminate if the noise level in the residual image is low enough or after a certain number of iteration.
Otherwise go to step 2.

With this algorithm, the only assumption is that the original signal can be expressed as a sum of Dirac spikes.
The sparsity or compressibility of the original signal is not explicitly imposed but implicitly assumed: the
original signal should have its energy concentrated at specific location in real space. We can also acknowledge
that some multi-scale versions of CLEAN are under development ([5]). The idea here is that the signal can be
represented as a sum of wavelets. The algorithms is the same but the matrixΦ is replaced byΦΨ whereΨ is a
wavelet basis. Some other techniques exists to solve the interferometric inverse problem (MEM, WIPE). They
regularize the problem by the introduction of a smoothness prior and thus do not use the fact that a lot of signals
in the Nature have a sparse or compressible representation like our string signal.

5.2 CLEAN reconstruction of a string signal

CLEAN can be directly be applied to our problem. Let us re-write the problem (41) to introduce the string
and the Gaussian CMB signals:

x̄(d) = d ⋆ x̄ρ + d ⋆ ḡ. (42)
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The string signal̄xρ is completely buried in the Gaussian CMB signal (see Section2.2.2). Before trying to
reconstruct the string signal from the dirty imagex̄(d), a pre-filtering must be performed. One very simple and
common solution is to do a matched filtering: the visibilities are divided by the variance of the Gaussian CMB
noise. To do so, a diagonal matrixW ∈ Rm×m = {1/σb}1≤b≤m, called a whitening operator, is introduced in
the operator̄Φ. This filter maximizes the signal-to-noise ratio in real space. We denote this new operatorΦ̃:
Φ̃ = W Φ̄. CLEAN can now be applied by replacinḡΦ by Φ̃ in the above description. In a statistical sense, the
stopping criterion used is set in terms of (34). For a given candidate reconstructioñx, the noise residualy− Φ̄x̃
is computed and the algorithm is stopped if the level of the noise is low enough.

The goal is now to compare the performances of CLEAN, which isa very standard algorithm in radio-
astronomy and does not use anya priori information for the reconstruction of the signal, to the ones of BPDN
which explicitly impose the compressibility of the signal,and the ones of SBP which is adapted to the statistical
model of the string signal.
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6 Simulations and results

In this section we discuss the performance of the three algorithms proposed to reconstruct a string signal
from radio-interferometric data. We describe the experimental set up and the criteria measured to evaluate the
performance and interpret the results.

6.1 Experimental set up

The performance of the three methods considered (BPDN (35),SBP (37), CLEAN) are studied at different
string tensions and for different distributions of the visibilities. The string tensions are equi-spaced on the
logarithmic scale and read as follows:{ρ1 = 1.0e− 09, ρ2 = 3.2e− 09, ρ3 = 1.0e− 08, ρ4 = 3.2e− 08, ρ5 =
1.0e− 07}. The distribution of the visibilities are very dependent ofthe interferometric array. In order to draw
general conclusions, these distributions are simulated byuniformly selecting random visibilities in one half
of the Fourier plane (the others being obtained by symmetry). We consider here5 different distributions by
selectingm/2 visibilities in one half of the Fourier plane, so thatm/N is equal to5, 10, 15, 20, and25 percent.
For one given distribution and one given string tension, theperformance are evaluated over30 simulations
which consist of the superposition of one unique string induced CMB map with30 simulations of the Gaussian
CMB signal. Three different criteria are used to assess the performance. The first one is the signal-to-noise
ratio between the magnitude of gradient of the original signal xρ multiplied by the illumination function and
the magnitude of gradient the reconstructed imagesx̃ obtained with CLEAN, BPDN and SBP (for the last two
algorithms the reconstructed signals are first re-multiplied by the illumination function):

SNR(|~∇xρ|,|~∇x̃|) = 20 log10
σ|

~∇xρ|

σ(|~∇xρ|−|~∇x̃|)
, (43)

where|~∇ · | denotes the magnitude of gradient andσ(·) is the standard deviation of the considered signal. We
also measure the correlation coefficient of these signals:

r(|
~∇xρ|,|~∇x̃|) =

cov(|~∇xρ|,|~∇x̃|)

σ|~∇xρ|σ|~∇x̃|
, (44)

where cov(|~∇xρ|,|~∇x̃|) stands for the covariance between|~∇xρ| and|~∇x̃|. Finally, we measure the kurtoses of
the magnitudes of gradient of the reconstructed maps and compare them to the kurtosis of the magnitude gradi-
ent of the original signal.

The illumination functionA(~p) is modelled as a Gaussian window with a FWHM of40 arcminute. For
BPDN and SBP, the constraint on the noiseǫ2 (see (34)) is chosen equal to the95th percentile of the chi-square
distribution withm degrees of freedom. This constraint is also chosen to be the stopping criterion of CLEAN.
The loop gain factor for CLEAN is taken equal to0.1. The BPDN problem is solved by using the SPGL14

toolbox.
To solve the SBP problem, a value ofξ has to be set. We take it equals to1% of the standard deviation

in the scalej considered. This value is very critical and controls the converge or not of the algorithm. These
problems of convergence lead us to use a value ofv6 equal to1 instead of1.86. This restriction should in-
duce only negligible artifacts because the coefficients of this scale (the last one, i.e. the low pass filter) do not
participate to the identification of the string network as the string signal is buried in the noise at large scale ([9]).

For illustration, Figure 7 shows the magnitude of gradient of the simulated string signal multiplied by the
illumination function. Figure 8 shows the magnitudes of gradient of the reconstructed maps obtained with
CLEAN and SBP for two different Fourier coverages (5% and10%), as well as the magnitudes of gradient of
the dirty maps renormalized by the central value of the dirtybeam.

4http://www.cs.ubc.ca/labs/scl/spgl1/
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Figure 7: Magnitude of the gradient of the original simulated string signal inµK multiplied by the illumination
function.
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Figure 8: Magnitude of gradient of the dirty map (µK) renormalized by the center value of the dirty beam
(left), the CLEAN reconstruction (µK) (center), the SBP reconstruction (µK) re-multiplied by the illumination
function (right) for a Fourier coverage of5% (top panels) and10% (bottom panel).
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6.2 Performance of the estimation of the string tension

The string tension is estimated prior to any SBP reconstruction thanks to the method described in Section
3.3 (page 9). For illustration, Figure 9 shows the posteriorprobability distributions ofπ(ρ|y) at two string
tensions (1.0e−08 and3.2e−08) for three different Fourier coverages (5, 15, and25 percent). The accuracy of
this method was already outlined in article [9]. Here, the results presented in Figure 9 show that the estimated
string tensions are quite close to the true string tension (7.9e − 08 for 1.0e − 08 and2.5e − 08 for 3.2e − 08)
even if at least75% percent of the Fourier coefficients are not available to estimate the power spectrum of the
superposition of the string and the Gaussian CMB signals.
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Figure 9: Posterior probability distribution of the stringtensionρ given the visibilitiesy (red solid line). Top
panels: true string tension of1.0e − 08 (black dashed line) and a Fourier coverage equals to5% (left), 15%
(center),25% (right). Bottom panels: true string tension of of3.2e − 08 (black dashed line) and a Fourier
coverage equals to5% (left), 15% (center),25% (right).

6.3 Performance of the reconstruction algorithms

The mean signal-to-noise ratio, correlation coefficient and kurtosis of the gradient magnitude of the recon-
structed maps as well as the1σ error bars are presented respectively Figure 10, Figure 11,and Figure 12. These
values are presented as a function of the string tension for the5 different distributions considered.

At 1.0e − 09, which is the limit of eye detectibility of the strings in thegradient magnitude of the recon-
structed maps, the SNR’s are roughly the same whatever the method used. However, it also means that there
exist some techniques which are able to reconstruct a stringsignal from radio-interferometric data at a string
tension lower than the experimental limit of2.0e − 07 in the presence of the primary anisotropies of the CMB
only. At higher string tensions, BP and CLEAN give SNR’s close to each other but the SNR’s obtained with
SBP are much higher even if the difference decreases when thenumber of visibilities increases.

For the Fourier coverage of5% and10%, the correlation coefficient shows that the reconstructions obtained
with BP and SBP are much better than those obtained with CLEAN. The difference decreases when the Fourier
coverage increases but the mean value is always higher for SBP.

The huge error bars of the kurtosis at1.0e − 09 shows that we are at the limit of the detectibility of the
strings. At higher string tension, we notice that CLEAN always fails to recover the original kurtosis. It can be
explained by the fact that CLEAN reconstructs the string mapby a sum of Dirac spikes and the kurtoses are
thus higher than for BP and SBP which reconstruct the string map by a sum of steerable wavelets. Whatever
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the string tension and the Fourier coverage, the kurtoses ofSBP are the closest of the original one. The errors
bars of SBP are much smaller than for BP which shows the stability of SBP.

Finally, we should also outline the fact that no value of the SNR, correlation coefficient, and kurtosis are
yet available for CLEAN at1.0e − 07. This is due to the fact CLEAN needs 1 day to converge to solution at
this string tension whereas only7 hours are sufficient for SBP.
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Figure 10: Graph of the mean signal-to-noise ratio in decidels (dB) of the magnitude of gradient at different
string tension in the range[1.0e− 09, 1.0e − 07] for different Fourier coverages:5% (top left panel),10% (top
right panel),15% (middle left panel),20% (middle right panel),25% (bottom panel). The vertical lines on the
curves represent the1σ error bars estimated over 30 simulations.
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Figure 11: Graph of the mean correlation coefficient of the magnitude of gradient at different string tension in
the range[1.0e−09, 1.0e−07] for different Fourier coverages:5% (top left panel),10% (top right panel),15%
(middle left panel),20% (middle right panel),25% (bottom panel). The vertical lines on the curves represent
the1σ error bars estimated over 30 simulations.
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Figure 12: Graph of the mean kurtosis of the magnitude of gradient at different string tension in the range
[1.0e − 09, 1.0e − 07] for different Fourier coverages:5% (top left panel),10% (top right panel),15% (middle
left panel),20% (middle right panel),25% (bottom panel). The vertical lines on the curves represent the 1σ
error bars estimated over 30 simulations.
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7 Conclusion and perspectives

A radio-interferometer probes an astrophysical signal through much smaller Fourier measurements than
required by the Nyquist-Shannon theorem. The number of measurements being far smaller than the number of
unknowns, an ill-posed inverse problem is defined to reconstruct the original signal. If this signal is compress-
ible in a certain basis, the theory of compressed sensing shows that these measurements may be sufficient to
have an accurate reconstruction. In this context, the sensing matrix must respect the restricted isometry property
and a very accurate reconstruction may be obtained by solving the basis pursuit denoise (BPDN) problem. This
problem consists in the minimization of theℓ1 norm of the signal to recover under a constraint on theℓ2 norm
of the residual noise. The string signal being compressiblein a steerable wavelet basis ([9]), a first possibility
to reconstruct it is to solve this BPDN problem.

However, this method does not use all the prior information available on the string signal. We might want
to use the fact that it is well modelled by GGD’s in the steerable wavelet basis. Here we used the flexibility of
the compressed sensing to introduce this prior informationby changing theℓ1 norm of the BPDN problem by a
“s norm” directly linked to the GGD’s. We called this method statistical basis pursuit (SBP).

The third and last method that we tested is a very common algorithm used in radio-astronomy which does
not use explicitly any prior information. This algorithm iscalled CLEAN. We implemented it to assess the
performance of BPDN and SBP compared to a standard algorithm.

The simulations show that the performance of BPDN is quite similar to that of CLEAN in term of SNR,
correlation coefficient and kurtosis. However, SBP is always better than the two others whatever the evaluation
criterium considered. As already emphasized in [15], this work shows that the introduction of prior information
in the reconstruction techniques improves the quality of the recovered maps.

Another important information is that it is possible to recover a string signal at string tensions much below
the current experimental limit of2.0e− 07 when we only consider the primary anisotropies of the CMB. This
result leaves strong hope for string detection from currentand forthcoming interferometric data.

In this perspective, further evolution of the algorithms developed may be envisaged. Firstly, the convergence
of the SBP algorithm was found to be sensitive to the way the regularization parameter is set in the reweighted
algorithm. A smaller value of this parameter at0.1% of the variance of the GGD was tried. It allows us to take
the right value for the shape parameter of the largest scale.It increases the performance a lot (+1dB compared
to CLEAN at a string tension of3.2e− 08) but the time of computation quadruples.

Secondly, some other techniques have also to be tested and compared to the results presented in this doc-
ument. For example, the gradient of the string signal is compressible and well modelled by a generalized
Gaussian distribution with a shape parameter of0.4. We can thus think of minimizing the TV norm of the
signal or even the TV norm to the power0.4. Some preliminary results also show that minimizing theℓ0 norm
of the signal in real space gives good results. This solutionhas to be tested.

The secondary anisotropies of CMB and the introduction of instrumental noise will also have to be consid-
ered for a complete study of the performance in realistic conditions.

Finally, in regard of the forthcoming radio-telescopes with wide field of views such as the future Square
Kilometer Array (SKA), we may think to extend these methods developed on the plane to the sphere ([11]).
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A Simulation of Gaussian CMB maps

A method for simulation of statistically-isotropic non-Gaussian CMB maps was developped by Rocha et
al. and is presented in the article [12]. In this section, we only focus on the flat-sky approximation (article [12],
Appendix C) applied for the simulation of Gaussian CMB maps.

Let sp = s(xp), p ∈ [0, Npix] be a pixelised map of Gaussian white noise. Each pixel of thismap are drawn
from the standard normal distribution (with a mean of zero and a variance of one). The Fourier transformŝ can
be approximated as follows in the discrete case:

ŝ(l) =

∫
d2xs(x) e−il·x ≈ Ωpix

∑

p

s(xp) e
−il·xp , (45)

whereΩpix is the pixel-area. The power spectrum of these coefficients is given by:

〈ŝ(l)ŝ∗(l′)〉 = Ω2
pixNpixδll′ , (46)

In the continuum limit, we have:

δll′ =
1

Npix

∑

p

ei(l−l′)·xp ≈ 1

NpixΩpix

∫
d2xei(l−l′)·x =

(2π)2

NpixΩpix
δ(l − l′), (47)

and equation (46) becomes thus
〈ŝ(l)ŝ∗(l′)〉 = (2π)2Ω2

pixδ(l − l′). (48)

In order to obtain a final map with a particular power spectrum(2π)2Cl, we rescale all the Fourier coefficients
as follows:

ˆ̄s(l) =

√
Cl

Ωpix
ŝ(l), (49)

so that, in the continuum limit:
〈ˆ̄s(l)ˆ̄s∗(l′)〉 = (2π)2Clδ(l − l′). (50)

The final Gaussian CMB map̄sp with the given power spectrum is obtain by inverting the Fourier transform:

s̄p =
2π

NpixΩpix

∑

l

ˆ̄s(l) eil·xp ≈
∫
d2x

4π2
ˆ̄s(l) e−il·x. (51)
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