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1 Introduction
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Figure 1: The Arcminute Microkelvin Im- Figure 2: WMAP data
ager (Large Array)

Inthe hot early universe, standard matter (electrons antdmps) and radiation (photon) were in equilibrium.
When the temperature of the universe was low enough (400 €8G wafter the Big Bang), electrons and protons
recombined to form neutral hydrogen atoms and the univeesarbe transparent to radiation. The cosmic
microwave background (CMB) is the remnant of this radiatimnwhich we are still bathed today and that
cosmologists have been studying for nearly half a century. faccording to the concordance cosmological
model the cosmic structures and the CMB originate from Gansadiabatic perturbations seeded in the early
phase of inflation, a period of exponential expansion in #my early universe. The corresponding component
of the CMB is thus also Gaussian. Its anisotropies on thestalesphere are divided into the so-called primary
anisotropies, imprinted at the time of hydrogen recomimnaitself, and secondary anisotropies, imprinted
during the subsequent evolution of the universe.

Some models motivated by theories for the unification of timeldmental interactions suggest the formation
of topological defects such as cosmic strings, originafiogn phase transitions at the end of inflation. These
defects would have imprinted a non-Gaussian componenei€¥B superimposed to the standard Gaussian
component. The overall string network is parameterized $tyiag tensiorn. (a mass per unit length of string)
which sets the overall amplitude of the string contributiocBurrent observations of the anisotropies of the
temperature of the CMB radiation from WMAP (Wilkinson Migvave Anisotropy Probe) datatill allow the
presence of cosmic strings with a string tension below:

G—g‘ <2x1077,

C
whereG = 6.67e — 11 m?kg~'s~2 stands for the gravitational constant ane: 3.00e + 08 m/s the speed of
light.

Beyond standard radiometers, radio-interferometerslaoauged to observe the CMB signal. For example,
the Arcminute Microkelvin Imager (AMI) in Cambriddés currently mapping the CMB at radio frequencies
between 13.5 Ghz and 18 Ghz on field of view around 1 degreewidhd resolution between 30 arcseconds
and several arcminutes. Radio interferometry is a powégftinique used in astronomy to achieve high angu-
lar resolution. Radio telescope arrays synthesize a veyg keffective aperture by using only small telescopes.
Considering small field of views on the celestial sphere, mag see the signal probed as a planar image on
the plane perpendicular to the line of sight. In this contéxt synthesized aperture is the same as the one of
a unigue telescope whose size would be the maximum projeiiseahce between two telescopes of the array
on the plane of the image. A radio interferometer directlguiices measurements in the Fourier plane of this
image. The aim of the project is to develop and test an algaribr the detection of cosmic strings from such

http:/lambda.gsfc.nasa.gov/
2http://www.mrao.cam.ac.uk/telescopes/ami/



interferometric data of the CMB.

In Section 2, we present the inverse problem posed to recanst string signal from radio-interferometric
data. Then we describe the statistical models of the strdg@aussian CMB signals in Section 3. In Section
4, we introduce the theory of compressed sensing and dederibalgorithms to reconstruct a string signal that
take into account prior information on the signal. Then wespnt in Section 5 a very common algorithm called
CLEAN and explain how to apply it to our problem. This algbnit is used in radio-astronomy to solve the
general interferometric inverse problem. Finally, we gttite performance of these three algorithms in Section
6 and conclude in Section 7.



2 Radiointerferometry

In this section, we describe the principles of radio-irdesfnetry and formulate the general inverse problem
posed for the reconstruction of an image from radio-interfestric data. After presenting briefly the string and
Gaussian CMB signals, the inverse problem is then posethésetspecific signals.

2.1 Visbilities

Let us consider radio telescopes that constitute an interferometric avdythese radio telescopes, iden-
tified by an indext (1 < k& < N), point in the same direction and receive a monochromaéctet field
E(7,t) of wavelength) (¢ denotes the time variable, amd € R3 the three-dimensional position of th& k
telescope). The vectdt,,, = ), — 7 defines the relative position between the two telescépasd k', and
is called the baseline. The field of view of each telescopiidd by an illumination functiom (0, ¢) (where
(0,9) € [0,27) x [0, ] are the celestial coordinates). At each instant of observatach pair of telescopés
andk’ measures a complex visibility, .- defined as the correlation between the incoming electriddiel

Y = (E (T, ) E(Thr, 8)") ag 5 1)

where (-) ,, represents an average over a time long compared with thedpefithe wave detected. This
correlation measures a flux and the visibility is in unit ofisky (1 Jy =10726 W m~2 Hz~!). By combining
all pairs of telescopes, it is thus possible to meagljfe= n(n — 1) /2 visibilities at each instant of observation.

We now assume that the field of view of the telescopes is smaligh to consider that the observed patch
of the sphere may be approximated by a planar p&tchrhe illumination function may now be defined on
this plane as a function of a two dimensional vegiaz R? whose origin is set at the pointing direction of the
array. The projected baseliné,ﬁk,, is defined as the projection of the baselifig, onto the planeP. In these
conditions, the van Cittert-Zernike theorem states thatmtieasured visibilityyx./, defined by expression (1),
is the Fourier transform of the intensity &, I(p) with 5 € R?, multiplied by the illumination functiom ()
at the spatial frequencyy, ., defined as the projected baseline divided by the wavelerfgibservation:

nir = [ AT exp 2P @
with L
Rkk’
T4 = . 3
g = — 3)

Thanks to the Earth rotation, the projected baseﬁt;lg, is continuously changing and traces arcs of ellipses
on the Fourier plane. The combination of all arcs for all gditelescopes results in a non-uniform and non-
complete Fourier coverage with /2 visibilities characterizing the interferometer. For dttation, Figure 3
shows an example of the Fourier sampling in the so-cdlled) plan.

2.2 Interferometric inverse problem
221 General case

Assuming that the signalg5) and A(p) are band-limited, the Nyquist-Shannon theorem requiresito
formly sample these signals at a resolution at least twie& thandwidth to fully describe them. We can
thus defined the pointg; € R2, with 1 < i < N, of the uniform grid of sizeN'/2 x N'/2 where these
signals are sampled. Their sampled version may be denoted @sR" = {z; = I(p;)}1<i<n, and
a € RV = {a; = A(pi)h1<i<n. These sampled signals are also described by their Fowefigents,

i € CN anda € CV, computed on a discrete uniform grid &f'/2 x N'/2 spatial frequencie$i; }1<;<n:
& = {I(i;) }1<i<y anda = {A(;) }1<i< . The signald (5) and A(p) being real, we also have the symmetry
I(@) = I*(—;) and A(@;) = A*(—;).



Figure 3: An example of théu, v) sampling over arcs of ellipses.

During an observation periodh /2 complex visibilities are acquired by the interferometritag at different
frequenciesi, € R? with 1 < b < m/2. In the general case, the frequencies probég <<, > do not
belong to the set of discrete frequencigs };<;<n describing the signals anda, and a gridding operation
is usually performed on the visibilities before doing angamstruction. This operation allows the use of the
standard fast Fourier transform. However, it also inducesesartifacts in the reconstructed image and leads
to a loss of information. This gridding operation might beided by the use of some fast algorithms which
have been designed to compute the Fourier transform of alsam non-equispaced frequencies (NBEFT
For simplicity, we will consider here that the probed freggies {i }, << /2 belong to the set of discrete
frequencies{u; }1<;<ny. Furthermore, as the signals probed are real, we can alssideorthat the set of
frequencies{ i }1<y<m /2 is limited to one-half of the Fourier plane. The/2 measured complex visibilities

{f/l\f(ﬁb)hgbgm/z might be affected by independent noise:c C”/2. The symmetric visibilities can be
deduced afterwards and the resultimgcomplex visibilities can be regrouped in a vector denagjed C™
(the noise vector becomes thuse C™ but with only m /2 independent values). In this setting, the number
of independent complex visibilities: /2 is smaller than the number of Fourier coefficie?N$2 needed to
characterize exactly the signalsand an ill-posed inverse problem is defined to reconstrcintage:

y=®x +n, 4)

where
® =MFD. (5)

In the relation (5),D = {D;; = ai0;;}1<ij<n € RN*N is a matrix representing the illumination function,
F € CN*N is the matrix notation of the discrete Fourier transforng ah € R™*" is a binary matrix which
selects then complex visibilities probed by the interferometer. Thistrixacontains only one non-zero value
per line. The resulting matrig is called the sensing matrix.

2.2.2 Cosmic gtring case

As explained in the introduction (see Section 1), some thegredict the existence of two components in
the cosmic microwave background. In this context, the dv&B signal may be seen as a linear superpo-
sition of a string signalX*!¢(5) and a pure Gaussian componé#p), seen as noise. The amplitude of the
string signalXs% is controlled by the dimensionless string tensiorp X $%9(p) + G(p). In the following, we
will denote X (p) the string signal multiplied by the string tension. The di$e versions of these signals are
denoted:z? € RY = {2 = X?(p;)}1<i<n for the string signal, ang € RY = {g; = G(5;) }1<i<n for
the Gaussian CMB signal. For illustration, Figure 4 repnésaimulated maps of both signals (on a field of
view of 1.8° x 1.8° and at resolution of.42 arcminute) and their linear superposition for a string itemef
2.0e—07 as well as the corresponding magnitude of gradient. Thelation of the string induced CMB map is
provided by Fraisse et al. ([8]). The simulation of the Gaars€MB map is performed thanks to the technique
described in article [12] and recalled in Appendix A. We catige that the strings are not detectable by eye in

Shttp:/iwww-user.tu-chemnitz.de/ potts/nfft/



the noisy temperature map (top right) while a part of it appéathe magnitude of the gradient (bottom right).
The gradient operator actually enhance the high frequesstiyifes such as the strings.

In the context of radio-interferometry, it is possible tewdte the general inverse problem (4) for this
particular case. It becomes:
y = dxf + g, (6)

in the absence of any instrumental noise. As the signalseen as noise here, the tedm will be further
denoted as? € C™ = {n!},<,<,» and the above equation becomes:

y = dxP 4+ nI. @)

The signals at our disposition are in unit of temperaturégpsmmpute the visibilities in Jy, we have to convert
our map in flux density as described in the article [14]. Thalgonow to reconstruct the string signal from
them /2 independent measured complex visibilities.

Figure 4: Top panels: simulated string induced CMB map i for a string tension o2.0e — 07 on a field

of view of 1.8° x 1.8° (left), simulated Gaussian CMB map jirf{ on the same field of view with the primary
CMB anisotropies only (center), combination of the stringuced CMB map and the Gaussian CMB map
(right). Bottom panels: corresponding maps of the magamitftthe gradient.



3 Bayesian perspective

In this section, we present the statistical model of the GansCMB signal and of the string signal. We
then present a method to estimate the string tension fronmtaderometric data acquired and show finally
how to address the inverse problem posed in a Bayesian péspe

3.1 Statistical model of the Gaussian CMB signal

The Gaussian noise compongntan be modelled as a result of a random Gaussian process fikibda
discrete angular power spectruifi set by the standard cosmological model (see Appendix Ahignapplica-
tion, we only consider the primary CMB anisotropies of thevppspectrum (see Fig. 6). Let us denbtbe
angular frequency which is equal 2a ||i||» (where|| - |2 is thels norm andi is the spatial frequency). In this
model, the Fourier coefficienty ) of g can be seen as independent random Gaussian variables vétitome
and variance: B

) = (§(@)g" () = QpiaN CEp, (8)

where(,;, is the pixel area of the discrete map in the real spaceaﬁuﬁs the continuous angular power
spectrum of the signal(p):

A~

(GG (@)) = (2m)Cf 51~ 1). (©)

When this signal is observed by an interferometric arrajpa®he defined in the previous section, it is first
multiplied by the illumination functiond. This multiplication induces a convolution in the Fouriemagin.
Consequently, the resulting Fourier coefficierts() (i.e. the coefficient{n{ }1<;<,, of the vectorn9) can
still be considered as zero-mean random Gaussian variabtesot any more independent. However, the full
width at half maximum (FWHM) of the illumination function iarge enough40 arcminute for our simulations)
to consider that its FWHM in the Fourier domain is very smal0g2 arcminute!). The correlations induced
are thus very local and the variables may reasonably bedsnesi independent. In this context, it is possible
to show that the variance of the zero-mean Gaussian dis@gtblen at the frequencyi;, can be computed
as follows:

op =CM =C) x|a(l)]* = /dl ¢/ laly, — ). (10)
The total probability distribution of the entire noise wact? € C™ signal is:

2
‘ 9

(11)

S|

m/2 |7’L

m(nd) xexp |— Z
o

b=1

as only the firsin /2 variables are independent (the others being completelg fiyehe firstm /2 variables).

3.2 Statistical model of the string signal

The string signal can be understood as a result of a statigtiocess well modelled by Generalized Gaus-
sian Distribution (GGD) in a wavelet space ([9]). We consitere a redundant steerable wavelet bdsis
with 6 scalesj (1 < j < 6) including a low pass and a high pass axisymmetric filters and ihtermediate
scales defining steerable wavelets with 6 orientatip(s < ¢ < 6) ([13]). We denote the wavelet vector
aeRT = {aihi<i<rt 2? = Ya. If we assume that the string tensipris known, the GGD prior distribution
w; of a wavelet coefficient;; only depends on the scale and can be modelled as follows:

%)

P

vj
mj(0glp) o exp [— ] . (12)
The parameters; are called shape parameters. A shape parameter eq@atietatifies a Gaussian distribution,
a one equals to 1 identifies a Laplacian distribution. It canfiderstood as a measure of the compressibility of
the signal. Values close toyields very peaked probability distributions with heaviysta.e. very compressible
6



signals, whereas values close2aepresents a non-sparse distributions. The parameiease called scale
parameters and are linked directly to the standard dewiatfahe GGD distribution. These parameters are
estimated from the wavelet decompositions16ftraining simulations of a string signal similar to the one
presented in Section 2.2.2, in the unit of flux density (JyJ &or a string tension of. To do so, we use a
moment fitting method. The kurtosis (the ratio of the fourth central moment to the square of theaaae)
and the variancejz- within each scale are estimated assuming statisticabisptiAs the theoretical expressions
of the kurtosis and the variance of a GGD depend only.pandv;, it is possible to get an estimation of these
last two parameters from the estimated kurtosis and vagiagisolving numerically:
i, = LO/0T/) 13)
I'(3/v))?
2 2T (3/v;) 5
7= (o) o

wherel" stands for the Gamma function. The values obtained @re:= 0.43,v9 = 0.39,v3 = 0.47,v4 =
0.58,v5 = 0.76,v6 = 1.86} and{u; = 8.9¢ — 03,us = 2.8¢ — 03, u3 = 2.2e — 02,uy = 1.5e — 01, u5 =
9.5e — 01, ug = 5.7e+01}. For illustration, Figure 5 shows the GGD'’s correspondmthese estimated shape
and scale parameters, superimposed on the histogramaeibfadm thel 6 simulations.

If we now assume that the wavelet coefficients are independem total probability distribution of the
entire signal is simply the product of the probability disfitions of each wavelet coefficient:

] . (15)

T

m(alp) x exp [—Z

i=1

Q

P

o
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Figure 5: Logarithm of the generalized Gaussian distringir(«;|p) (red solid line) with the corresponding
histograms of the coefficients; obtained from thd 6 training string simulations (black dashed line). Top pan-
els: high pass axisymmetric filter (left), first scale of sédxe wavelets (center), second first scale of steerable
wavelets (right). Bottom panels: third scale of steerabdwelets (right), fourth scale of steerable wavelets
(center), low pass axisymmetric filter (right).



As for the Gaussian CMB signal, the discrete angular powaetspm of the string signal*” is also known.
An analytical expression of the continuous power spectﬁﬁ% was provided by Fraisse et al. ([8])

14
1000—P

VI > 1000, I(1+1)C~" = p? 7P with p = 0.889. (16)
The discrete angular power spectrum is deduced by repléiﬁrtgy CIX" in equation (8):
VI > 1000, C" = QN CX 6. (17)

When this signal is multiplied by the illumination functiof, the new power spectrum can be computed by
using relation (10) thus obtaining:

C’ = «|a(l))* = /dl’ ci’la(l = 1))2. (18)

For illustration, Figure 6 shows the continuous angular grospectrum of the string signal for a string tension
of 2.0e — 07.

10° 10° 10

l

Figure 6: Continuous angular power spectrunuii? of the primary anisotropies of the CMB (black line) and
of the string signal for a string tension 2 — 07 (red line). The angular frequencies range frbg 1.0e + 02
and! = 2.0e + 04 and the data are representedlegy, — log,, axes.



3.3 Estimation of the string tension

The estimation of the string tension is done by fitting the @ospectrunC} of the acquired data to the
power spectrums of the Gaussian CMB sigfjdl of the string signal?l”p at the available angular frequencies
(see article [9]). The model used in this article assumedatbth signals arise from two statistically independent
isotropic Gaussian random processes. Under this modebltberved complex visibilitieg, have a power
spectrum:

= (lwl*) = ™" + ¢}, (19)
VZb > 1000 andlb < {271'”7,_[{)”2}1§b§m/2.
The probability distributionr(y|p) of y givenp reads as:

1 2
m(ylp) = 2 g <P —Z ‘ZLJ - (20)
Tl lp=1 Czb
An estimation of the string tension may be obtained by coinguhe maximurma posteriori of the proba-
bility 7(p|y):
/ /
p = arg r;lgﬂggﬂ(p ly) = argmax % with 7 (y) = C* (21)
= argmax(p')m(ylp),
p'ER

where the priotr(p’) is considered uniform within an intervél, p,,,...| with a upper boung,,,,,, > 2.0e — 07.
Finally, an estimation op is obtained by solving numerically:

m/2 ’ b‘2 m/2

p=arg min + ) log(nCl)| . (22)
P E[prmaz] b=1 lb ; b

3.4 Wavelet domain Bayesian reconstruction scheme

As we have statistical models for both signals, we may desan a Bayesian method to reconstruct the
string signal from the observed visibilities. The priortdisution of our string signal is modelled in the wavelet
domain, we have thus to re-write the inverse problem (7) B, to use this information:

y=®Wa+ nJ. (23)

The idea is now to recover the vectefrom the visibilitiesy. The original signal might be obtained afterwards
by applying¥ to the estimated vectar: i” = Va.

If we assume that the string tensipris available or has been estimated thanks to the methodilolegcr
before, we may find an estimatian of the vectora by computing the maximura posteriori (MAP) of the
probability 7 (a”|y, p):

&f = arg max 7(/|y, p) (24)
o’ eRT

m(yle/, p)m(d/|p)
= arg max
o/ €RT m(y)
= arg max 7(y|a’, p)m(/[p)
o/ eRT

wherer(d|p) is given by equation (15) and(y|«’, p) is the probability of the noise? = y — dV /-

m/2 9
73], p) = m(n9) o exp Z’yb ‘”’“)‘” | (25)

9



Combining all these equations yields:

m/2

- lyp — ‘I’\I’Oé )bl?
Q= ar mln +
g min Z Zzl

/
Y

pu;

Uj

(26)

In the equation above, some shape parametease smaller than. The problem to solve is thus non-convex
and finding the MAP estimatiofi is not an easy task. In the next section we show how to addrissgroblem
after reformulating it in the flexible framework of compredssensing.

10



4 Compressed sensing

In this section, we introduce briefly the theory of comprdssensing and its main results. Using these re-
sults, we then describe two possible methods which try tongicuct a string signal from radio-interferometric
data. The first one is a very general method that uses onhatitiétfat our signal is compressible in a wavelet
basis. The second method is specific to the string signal ses the statistical prior detailed in the previous
section.

4.1 Introduction tothetheory

The theory of compressed sensing shows that it is possibiectmstruct a signal accurately, sometimes
even exactly, from a far smaller number of samples than reduy the Nyquist-Shannon theorem ([1], [2],
[3], [7]). This theory applies to sparse or compressiblanaig, Let us expand a signal € RY in a basis
U € RVXT = Lapyapy .. .pr}:

T
i=1

The coefficientsy; are the scalar product of the vectowith the vectors);: «; = (x, ;). In a matrix notation,
we haver = Va with o € RT = {a;}1<;<7. The signak: is said to be sparse in the badisf it decomposition
« contains only a small numbéf < N of non-zero values. It is compressible if it contains a smathber of
significant coefficientd{ <« N.

This signalx is probed by collecting partial information through~ K linear measurements in a sensing
basis® € R™ x R" possibly affected by independent and identically disteduGaussian noise € R™.
We can consider, without any loss of generality, a noise witmean0 and a variancd. We regroup the
measurements in a vectgre R™:

y=®r +n. (28)

The numbem of measurements being far smaller than the nunmb@f samples needed to fully describe the
signalz, the above problem is ill-posed. However, as the signahs a sparse representation in the bdsis

it depends on much smaller number of unknowns. The ill-pgsedlem is regularized by this assumption of
compressibility. In this context, the theory of compressedsing states that if the sensing ma®ix= ¢U <

R™ x RT respects the restricted isometry property (RIP), then fiossible possible to have a very accurate
approximation of the compressible signaby solving the so-called Basis Pursuit denoise (BPDN) bl
Let us first re-write the problem above to introduce the veatand the matri>©:

y=®Va+n=0a+n. (29)

The BPDN consists in the minimization of tlienorm of the vectory under a constraint on thie norm of the
residual noise:
min_|[|o/||; subject tolly — ©a/||; < . (30)
o’ eRT

ly —©d’|13 = "L, (y — ©c’)? is an estimate of the noiseand follows thus a chi-square distribution with
degrees of freedons? is thus equals to some suitable percentile of this disiobutThe solution of (30) may
be obtained through convex optimization algorithms.

The matrix© respects the restricted isometry property of orldef, for any ¥ < K sparse vectow in the
basis¥, there exists a constadi < 1 such that:

(1= 0wl < [1Oakll3 < (14 6x)llewll3- (31)

This property says that the matr& should preserve thé, norm of anyK sparse signals and, dg < 1,
means that nd’ sparse vector can be in the null spac®ofThis is useful as otherwise there would be no hope
of reconstructing these vectors. The theory of compressesirsg shows that if the matri® satisfies the RIP
of order2K with 25 < /2 — 1, then the solution to (30) provides an accurate reconsruct the signaky.

11



In the absence of noise= 0, the problem (30) as a unigue solution and the reconstuiiexact if the signal
is exactly sparse. In the presence of noise and for comptessgnal, we have:

o — aklls
VK

whereay is the best approximation ef obtained by keeping th& largest coefficients of the vecter. This
relation provides a strong stability result on the qualityhe reconstructions. It has been emphasized that the
constantC; x andC, x are rather small. For example, &k = 0.2 thenC) x = 8.5 andCy i = 4.2.

la —alls < Crge+ Co i (32)

We can also recall thate, there exists a parameter> 0 such that the BPDN problem (30) is strictly
equivalent to:

1
in —[ly — ®Wa/||s + : 33
min ol — @Wa’|l> + 7ol (33)
In a Bayesian perspective, the problem (33) is equivalefibtting the maximuma posteriori of a signal with
a Laplacian prior distribution in presence of independeat identically distributed Gaussian noise.

Finally, other minimization problems have been proposeditie recovery ofx ([4], [6]). We can for
example substitute thg norm in the BPDN problem by &, norm. In a Bayesian perspective, it corresponds to
suppose that the signalis described by a generalized Gaussian distribution. Téssniption is of a particular
interest for us because one would have already noticedntitagty between the general inverse problem (29)
for the compressed sensing and ours (23), as well as the Gghlibdtion of our string signal and the possibly
to use &, norm in (30).

4.2 Compressed sensing reconstruction of a string signal

We have seen that the string signal is compressible in a etasphce (see section 3.2 page 6). As only
partial information of it is acquired throughu/2 linear measurements, the first idea is to try to reconstruct
the signal by solving the BPDN problem (30). However, we nrastll that the noise in the BPDN problem
(30) was assumed identically distributed. It is not the daseghe Gaussian CMB signal and the constraint
ly — ®¥d/||2 < e has not any more any statistical meaning, i.e. it does né@ivisl any more a chi-square
distribution. For the Gaussian CMB noise, we can considestim) ;" | |y, — (PVa/),|?/o2. Because of the
symmetry in the Fourier domain, we have:

i lyp — (PW)y* 5 Z lyp — (W) |2
2 - 2
b=1 Th b=1 Th
m/2

- AL (34)

wheren® is the real part ofy, — (P¥a’), andn}™ its imaginary part(n;®)?/(c2/2) and(ni™)?/(c}/2) are
independent and identically real Gaussian variables ohri@ad variancd. The previous sum follows thus a
chi-square distribution witi» degrees of freedom. The level of the noise residéia chosen equals to some
100 o™ percentile of this chi-square distribution, iyfx? < €?) = 6. Finally, the problem to solve reads as:

m /12
. / . || 2
Jnin fla’||; subject to; 2 < é (35)
As already explained in the previous section, theorm in the above problem can be linked to the fact that the
signala to recover is well described by a Laplacian distributionwdaer, we know in our case that the signal

a is well described by GGD’s. The idea is know to replacelthby another one to take into account thés
priori information.
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If a signal is well modeled by a GGD with a shape paramgteve can replace thé norm in the BPDN
problem by &, norm. The string signal is well modeled by the product dfifferent GGD’s in the wavelet
domain, we can thus define the correspondingdrm” and use it to recover the signal. We define thadrm”

as follows:
T

lalls =

=1
And by replacing th&; norm in the BPDN problem by thisnorm and the problem to solve becomes:

/
)

P

o |V

(36)

m /12
: / ; |nb| 2
min ||| s subject tobz; 3 < é, (37)
and will be called statistical basis pursuit (SBP) probleXs.for the MAP problem (26), the SBP problem is
not convex. However there exists some techniques to coenverthe solution. Candes et al. present a simple

iterative algorithm to converge to thig norm in article [4]. The algorithm presented here is a maodalifos of
the former to converge to the s-norm (36):

1. Setthe weights”) =1, i =1,...,T.

2. Solve the weighted BPDN problem:

T m /2
o) = arg min E wl-(l)|ozl-| subject to E @ < € (38)
g
i=1 b=1 b
3. Update the weights:
1
Wit = i=1,...,T. (39)

(puz)s (o |0 + €)°
4. Terminate on converge or after a given number of iterati@therwise, incremeiitand go to step 2.

The value¢ is a regularization parameter and is here to avoid humeeigaks if agl) is equal to zero. It
should be negligible and we choose it equal to a small peagendf the standard deviation of the GGD at the
considered scalg (14). No proof of convergence of this algorithm and stapitgsults of the reconstructed
signal are yet provided. Its performances are just assessttk basis of simulations (see Section 6). However,
we can easily check that if the algorithms converge (&) = (")) and the value of is negligible, then it
converges to the solution a$7):

ZT: wgl-l—l) ’agl—i—l) ‘ _ Z

i=1 i—1 (pug-)”j(!ocﬁl)\(l‘”f) +£)

|a(l+1)|

(40)

Finally, we can also notice that this algorithm needs thestadge of the string tensiop. Its value is
estimated prior to any reconstruction thanks to the teclesgletailed in Section 3.3.



5 CLEAN

In this section, we describe a very common algorithm useddiorastronomy to reconstruct an image from
radio-interferometric data. This algorithm is called CLIEANe then explain how to apply it to reconstruct our
string signal.

5.1 TheCLEAN algorithm

CLEAN is an iterative algorithm that aims at solving the gahewverse problem (4) ([10]). This algorithm
tries to reconstruct the initial imagemultiplied by the illumination functionz = Az € RY. The measured
visibilities are first put on the uniform discrete Fourieidgof size N1/2 x N'/2 (a zero value is affected to
the Fourier coefficients at all non-probed frequenciesy, adliscrete inverse Fourier transform is performed.
The resulting image is called the dirty imagé” < RY. In our case, this operation is actually equivalent to
apply the adjoint operatobf, of ® = MF, to the visibilitiesy: (¥ = ®Ty. The inverse Fourier transform
of the binary mask which selects the frequencies probedllisdctne dirty beam:d € RY = &f1,,, where
1y = {¢ = 1}i<i<m. We can also compute the expression of the noise in real spée= ®n. The general
inverse problem (4) becomes in real space:

D =dxz+a. (41)

The problem above being ill-posed, an assumption on theakigmust be made to regularize it. The
assumption here is that the initial sigmaktan be expressed as a sum of Dirac spikes. The convolved image
d x z is thus constituted of a sum of dirty beamigentered at each location of a Dirac spikes. Based of this
interpretation, the CLEAN algorithm is actually very sirapl

1. Initialize the residual map® e RN to z(9) /¢ (¢ is the central value of the dirty beam) and the recon-
structed mag: € RY to the null vector.

2. At the iterationl, find the indexi,,,, where the residual imagel!) = {fgl)}lgiSN has its maximum
absolute value and create a vegoe RV {3; = fgl)éiimw}lgg N

3. Compute the residual map at the next iterafion1): z(+1) = z) —®T®3/c. v is called the loop-gain
factor and its value (smaller thahis usually equals to a few tenths. This factor enhancesthdajuality
of the reconstruction even if it also increases the comjaunal cost.

4. Add the vectops to the reconstructed map:= & + v

5. Terminate if the noise level in the residual image is lowwagh or after a certain number of iteration.
Otherwise go to step 2.

With this algorithm, the only assumption is that the origisignal can be expressed as a sum of Dirac spikes.
The sparsity or compressibility of the original signal ist maplicitly imposed but implicitly assumed: the
original signal should have its energy concentrated atiipémcation in real space. We can also acknowledge
that some multi-scale versions of CLEAN are under develapr({8]). The idea here is that the signal can be
represented as a sum of wavelets. The algorithms is the satntisebmatrix® is replaced byp ¥ whereV is a
wavelet basis. Some other techniques exists to solve tedeémmetric inverse problem (MEM, WIPE). They
regularize the problem by the introduction of a smoothneiss and thus do not use the fact that a lot of signals
in the Nature have a sparse or compressible representigoour string signal.

5.2 CLEAN reconstruction of a string signal

CLEAN can be directly be applied to our problem. Let us retevtine problem (41) to introduce the string
and the Gaussian CMB signals:
D = dx 7"+ d*g. (42)
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The string signalz” is completely buried in the Gaussian CMB signal (see Se@i@r?). Before trying to
reconstruct the string signal from the dirty imag€, a pre-filtering must be performed. One very simple and
common solution is to do a matched filtering: the visibitere divided by the variance of the Gaussian CMB
noise. To do so, a diagonal matiik € R™*™ = {1/0} }1<p<m, Called a whitening operator, is introduced in
the operator®. This filter maximizes the signal-to-noise ratio in real@paWe denote this new operatér

® = W®. CLEAN can now be applied by replacidgby @ in the above description. In a statistical sense, the
stopping criterion used is set in terms of (34). For a giverdiate reconstructiof, the noise residua) — 2

is computed and the algorithm is stopped if the level of thsenis low enough.

The goal is now to compare the performances of CLEAN, which i@ry standard algorithm in radio-
astronomy and does not use ampriori information for the reconstruction of the signal, to the ®0&éBPDN
which explicitly impose the compressibility of the signahd the ones of SBP which is adapted to the statistical
model of the string signal.
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6 Simulations and results

In this section we discuss the performance of the three ighgas proposed to reconstruct a string signal
from radio-interferometric data. We describe the expenialeset up and the criteria measured to evaluate the
performance and interpret the results.

6.1 Experimental set up

The performance of the three methods considered (BPDN $8, (37), CLEAN) are studied at different
string tensions and for different distributions of the bilfies. The string tensions are equi-spaced on the
logarithmic scale and read as followfg); = 1.0e — 09, p, = 3.2e — 09, p3 = 1.0e — 08, py = 3.2e — 08, p5 =
1.0e — 07}. The distribution of the visibilities are very dependenttdd interferometric array. In order to draw
general conclusions, these distributions are simulatedrifprmly selecting random visibilities in one half
of the Fourier plane (the others being obtained by symmeWg consider heré different distributions by
selectingm /2 visibilities in one half of the Fourier plane, so thay N is equal tob, 10, 15, 20, and25 percent.
For one given distribution and one given string tension, ghgformance are evaluated o simulations
which consist of the superposition of one unique string @asdLICMB map witt80 simulations of the Gaussian
CMB signal. Three different criteria are used to assess énfopnance. The first one is the signal-to-noise
ratio between the magnitude of gradient of the original aigrt multiplied by the illumination function and
the magnitude of gradient the reconstructed imagebtained with CLEAN, BPDN and SBP (for the last two
algorithms the reconstructed signals are first re-mudtipby the illumination function):
olVz?|

SNRIV=LIVED — 2010 -
8101 Gar|—|Va))

(43)

where|V - | denotes the magnitude of gradient arid is the standard deviation of the considered signal. We
also measure the correlation coefficient of these signals:

L e coIVePLIVE])
T(|Vmp|,|Vm\) = =) (44)
olVzr| 51V

where coVlVe’LIVZ) stands for the covariance betweldiw| and|Vz|. Finally, we measure the kurtoses of
the magnitudes of gradient of the reconstructed maps angamenthem to the kurtosis of the magnitude gradi-
ent of the original signal.

The illumination functionA(p) is modelled as a Gaussian window with a FWHM46f arcminute. For
BPDN and SBP, the constraint on the naidésee (34)) is chosen equal to " percentile of the chi-square
distribution withm degrees of freedom. This constraint is also chosen to bedppiag criterion of CLEAN.
The loop gain factor for CLEAN is taken equal @ol. The BPDN problem is solved by using the SPGL1
toolbox.

To solve the SBP problem, a value $has to be set. We take it equalsit¥ of the standard deviation
in the scalej considered. This value is very critical and controls theveoge or not of the algorithm. These
problems of convergence lead us to use a valugsaqual tol instead of1.86. This restriction should in-
duce only negligible artifacts because the coefficientdisfdcale (the last one, i.e. the low pass filter) do not
participate to the identification of the string network as string signal is buried in the noise at large scale ([9]).

For illustration, Figure 7 shows the magnitude of gradidrthe simulated string signal multiplied by the
illumination function. Figure 8 shows the magnitudes ofdigat of the reconstructed maps obtained with
CLEAN and SBP for two different Fourier coveragé§yand10%), as well as the magnitudes of gradient of
the dirty maps renormalized by the central value of the diggm.

“http://www.cs.ubc.ca/labs/scl/spgl1/
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Figure 7: Magnitude of the gradient of the original simutbstring signal inu K multiplied by the illumination
function.
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Figure 8: Magnitude of gradient of the dirty mapK) renormalized by the center value of the dirty beam
(left), the CLEAN reconstructioni{K) (center), the SBP reconstructionK') re-multiplied by the illumination
function (right) for a Fourier coverage 6% (top panels) and0% (bottom panel).
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6.2 Performance of the estimation of the string tension

The string tension is estimated prior to any SBP reconstmu¢hanks to the method described in Section
3.3 (page 9). For illustration, Figure 9 shows the postepimbability distributions ofr(p|y) at two string
tensions [.0e — 08 and3.2e — 08) for three different Fourier coverages (5, and25 percent). The accuracy of
this method was already outlined in article [9]. Here, theutes presented in Figure 9 show that the estimated
string tensions are quite close to the true string tensidie (— 08 for 1.0e — 08 and2.5¢ — 08 for 3.2¢ — 08)
even if at least5% percent of the Fourier coefficients are not available tovesti: the power spectrum of the
superposition of the string and the Gaussian CMB signals.

0.0 01 . 014
w —
| 0.09F i
005} “ } 012 }
| 0.08¢ | ‘
I
ood I 007 ‘ | 01 ‘
.04 ‘ I
— — | —
> ‘ 006 ‘ ! Doos ‘
So0sl | Soo0st ‘ ! S ‘
= ‘ S ! & .06
‘ 0.04f ‘ }
0.02r [ | ‘
Il 0031 | | 0.04
I
, | |
0.01F ‘ ‘\ 002 ‘ | ! ‘
|| | 002 |
[ 0.01 [ ! ‘
J L ! i
4 6 8 10 12 14 % 6 8 10 12 14 % 6 8 10 12 14
P 10 P 10 P 10
0.07 T 012 ! ! 016 !
r« | |
I
L 014
0.06 ‘\ | 0.1} ‘H ‘\ |
I
005 ‘ | ‘ ‘ 012 ‘
’ ‘ “ 0.08F |
— — —~ 01 |
Soos [l = H = ‘ !
2 | | oo Zoos
& 003 | ‘ & ‘ ‘ & ‘ ‘
0.06
| ‘ 0.04} ‘ ‘ !
0.02F | | |
[ o4 i 1
[ ] 0.02F ‘ |
0.01 [ \‘ ‘ 0.02 ‘ |
\ |
\ || ||
. J, \ . . . . J . . . . J\ . | . .
0 2 24 28 32 36 4 0 2 24 28 32 36 4 0 2 24 28 32 36 4
P x10° P x10° P x10°

Figure 9: Posterior probability distribution of the stritensionp given the visibilitiesy (red solid line). Top
panels: true string tension @f0e — 08 (black dashed line) and a Fourier coverage equal®idleft), 15%
(center),25% (right). Bottom panels: true string tension of &Re — 08 (black dashed line) and a Fourier
coverage equals @ (left), 15% (center),25% (right).

6.3 Performance of the reconstruction algorithms

The mean signal-to-noise ratio, correlation coefficiemt lrtosis of the gradient magnitude of the recon-
structed maps as well as tihe error bars are presented respectively Figure 10, FiguraridliFigure 12. These
values are presented as a function of the string tensiomédr different distributions considered.

At 1.0e — 09, which is the limit of eye detectibility of the strings in tiggadient magnitude of the recon-
structed maps, the SNR’s are roughly the same whatever thiethased. However, it also means that there
exist some techniques which are able to reconstruct a sl from radio-interferometric data at a string
tension lower than the experimental limit2be — 07 in the presence of the primary anisotropies of the CMB
only. At higher string tensions, BP and CLEAN give SNR’s elds each other but the SNR'’s obtained with
SBP are much higher even if the difference decreases wheamthber of visibilities increases.

For the Fourier coverage 6/ and10%, the correlation coefficient shows that the reconstrustiaintained
with BP and SBP are much better than those obtained with CLEAN difference decreases when the Fourier
coverage increases but the mean value is always higher fer SB

The huge error bars of the kurtosislabe — 09 shows that we are at the limit of the detectibility of the
strings. At higher string tension, we notice that CLEAN ajwéails to recover the original kurtosis. It can be
explained by the fact that CLEAN reconstructs the string @@ sum of Dirac spikes and the kurtoses are
thus higher than for BP and SBP which reconstruct the string by a sum of steerable wavelets. Whatever
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the string tension and the Fourier coverage, the kurtos&86fare the closest of the original one. The errors
bars of SBP are much smaller than for BP which shows the &jabilSBP.

Finally, we should also outline the fact that no value of ttNRS correlation coefficient, and kurtosis are
yet available for CLEAN at.0c — 07. This is due to the fact CLEAN needs 1 day to converge to smiuait
this string tension whereas orifyhours are sufficient for SBP.
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Figure 10: Graph of the mean signal-to-noise ratio in ddsi(#B) of the magnitude of gradient at different
string tension in the randé.Oe — 09, 1.0e — 07] for different Fourier coverage$% (top left panel),10% (top
right panel),15% (middle left panel)20% (middle right panel)25% (bottom panel). The vertical lines on the
curves represent thier error bars estimated over 30 simulations.
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Figure 11: Graph of the mean correlation coefficient of thgmitade of gradient at different string tension in
the rangg1.0e — 09, 1.0e — 07] for different Fourier coverage$% (top left panel),10% (top right panel),15%
(middle left panel)20% (middle right panel)25% (bottom panel). The vertical lines on the curves represent
the 1o error bars estimated over 30 simulations.
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Figure 12: Graph of the mean kurtosis of the magnitude ofigracht different string tension in the range
[1.0e — 09, 1.0e — 07] for different Fourier coverage$% (top left panel),10% (top right panel),15% (middle
left panel),20% (middle right panel)25% (bottom panel). The vertical lines on the curves repredesl ¢
error bars estimated over 30 simulations.
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7 Conclusion and per spectives

A radio-interferometer probes an astrophysical signaltgh much smaller Fourier measurements than
required by the Nyquist-Shannon theorem. The number of uneaents being far smaller than the number of
unknowns, an ill-posed inverse problem is defined to recoaisthe original signal. If this signal is compress-
ible in a certain basis, the theory of compressed sensingsstitat these measurements may be sufficient to
have an accurate reconstruction. In this context, thesgmsatrix must respect the restricted isometry property
and a very accurate reconstruction may be obtained by gpllimbasis pursuit denoise (BPDN) problem. This
problem consists in the minimization of tiie norm of the signal to recover under a constraint onftheorm
of the residual noise. The string signal being compresgibéesteerable wavelet basis ([9]), a first possibility
to reconstruct it is to solve this BPDN problem.

However, this method does not use all the prior informatiegilable on the string signal. We might want
to use the fact that it is well modelled by GGD’s in the stekratmavelet basis. Here we used the flexibility of
the compressed sensing to introduce this prior informdipohanging the; norm of the BPDN problem by a
“s norm” directly linked to the GGD'’s. We called this methodtistical basis pursuit (SBP).

The third and last method that we tested is a very commonitigoused in radio-astronomy which does
not use explicitly any prior information. This algorithm é¢slled CLEAN. We implemented it to assess the
performance of BPDN and SBP compared to a standard algorithm

The simulations show that the performance of BPDN is quitglar to that of CLEAN in term of SNR,
correlation coefficient and kurtosis. However, SBP is avgtter than the two others whatever the evaluation
criterium considered. As already emphasized in [15], troskvehows that the introduction of prior information
in the reconstruction techniques improves the quality efrdttovered maps.

Another important information is that it is possible to reepa string signal at string tensions much below
the current experimental limit af.0e — 07 when we only consider the primary anisotropies of the CMBsTh
result leaves strong hope for string detection from curagat forthcoming interferometric data.

In this perspective, further evolution of the algorithmseleped may be envisaged. Firstly, the convergence
of the SBP algorithm was found to be sensitive to the way thalagization parameter is set in the reweighted
algorithm. A smaller value of this parametertat% of the variance of the GGD was tried. It allows us to take
the right value for the shape parameter of the largest sltalereases the performance a latl(dB compared
to CLEAN at a string tension df.2e — 08) but the time of computation quadruples.

Secondly, some other techniques have also to be tested amghoed to the results presented in this doc-
ument. For example, the gradient of the string signal is cesgible and well modelled by a generalized
Gaussian distribution with a shape parametef.df We can thus think of minimizing the TV norm of the
signal or even the TV norm to the pow@r. Some preliminary results also show that minimizing gh@orm
of the signal in real space gives good results. This solltemto be tested.

The secondary anisotropies of CMB and the introduction stiiimental noise will also have to be consid-
ered for a complete study of the performance in realisticlitmms.

Finally, in regard of the forthcoming radio-telescopeshwitide field of views such as the future Square
Kilometer Array (SKA), we may think to extend these methodsadoped on the plane to the sphere ([11]).
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A Simulation of Gaussian CM B maps

A method for simulation of statistically-isotropic non-@Gsian CMB maps was developped by Rocha et
al. and is presented in the article [12]. In this section, wiy éocus on the flat-sky approximation (article [12],
Appendix C) applied for the simulation of Gaussian CMB maps.

Lets, = s(zp),p € [0, Npiz| be a pixelised map of Gaussian white noise. Each pixel oftiais are drawn
from the standard normal distribution (with a mean of zerd awariance of one). The Fourier transfogroan
be approximated as follows in the discrete case:

5(1) = /dQCES(CE) e 2 Qi Y s(xp) e, (45)
P

where(2,,;, is the pixel-area. The power spectrum of these coefficisngs/en by:

<‘§(l)‘§*(l/)> = QIQ)ipr’i$5ll’7 (46)
In the continuum limit, we have:
1 o 1 1 (2m)?
Npia: » Npiprix Npia: pix

and equation (46) becomes thus
(3& (1)) = 2m)* Q0 = 1'). (48)

In order to obtain a final map with a particular power spect(@m)C;, we rescale all the Fourier coefficients
as follows:

R C
= S 4
0 =1/ g5, (49)
so that, in the continuum limit;
()5 (1)) = 2m)?C( = 1). (50)
The final Gaussian CMB mag), with the given power spectrum is obtain by inverting the Feurransform:
- 2T ~ ilzy d2x N ilx
Sp = m ZZ:S(Z) e P / mS(Z) e . (51)
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