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Abstract 

System identification using multiple-model strategies may involve thousands of models with 

several parameters. However, only a few models are close to the correct model. A key task 

involves finding which parameters are important for explaining candidate models. The application 

of feature selection to system identification is studied in this paper. A new feature selection 

algorithm is proposed. It is based on the wrapper approach and combines two algorithms. The 

search is performed using stochastic sampling and the classification uses a support vector machine 

strategy. This approach is found to be better than GA-based strategies for feature selection on 

several benchmark data sets. Applied to system identification, the algorithm supports subsequent 

decision making. 
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Introduction  

More and more structures are equipped with measurement systems in order to determine real 

in-service behavior.  However, interpreting the data produced by these measurements is not easy. 

During the last decade, many researchers have applied system identification and model updating 

techniques for making structural health assessments using measurements (Catbas et al. 2007; 

Farrar and Jauregui 1998). System identification (Ljung 1999) is a model-based reasoning 

approach that involves determining the state of a system and values of system parameters from 

observed responses. While model-free methods have also been proposed using signal analysis 

methods, for example (Posenato et al. 2008), models provide more support for structural 

management tasks.  

Traditionally, system identification is treated as an optimization problem to determine the 

values for model parameters such that the difference between model predictions and 

measurements is minimized. This approach is not reliable because different types of modeling 

and measurement errors are present (Catbas et al. 2007; Sanayei et al. 1997). Moreover, they may 

compensate each other such that the global minimum indicates models that are far from the model 

representing the correct state of the system (Robert-Nicoud et al. 2005b). Therefore, instead of 

optimizing one model, Robert-Nicoud et al. (2005b) proposed the selection of a set of candidate 

models such that their prediction errors lie below a certain threshold value. In this work, a model 

is defined as a distinct set of values for a set of parameters. Modeling assumptions define the 

parameters for the identification problem. The set of model parameters may consist of quantities 

such as elastic modulus, connection stiffness and moment of inertia. The threshold is computed 
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using an estimate of the upper bound of errors due to modeling assumptions as well as 

measurements (Saitta et al. 2008).  

Complex structures often involve many model parameters leading to a large multi-dimensional 

space of candidate models. The set of candidate models is iteratively filtered using results from 

measurement-interpretation cycles for system identification. Since all candidate models are 

equally capable of representing the structure, identification of a single model is often not possible 

without advanced methods for interpretation and filtering. Furthermore, visualization of spaces of 

candidate models is difficult without computing support. Earlier research by the authors 

investigated data mining techniques such as decision trees, k-means clustering and principal 

component analyses to estimate the number of model classes and to visualize more effectively the 

model space (Saitta et al. 2005).  

In addition to knowing the number of model classes, engineers may also benefit from 

knowledge of the most relevant parameters with respect to the set of candidate models. Values of 

a small subset of model parameters may determine whether or not a given model is a candidate 

model. Such knowledge reduces the dimensionality of the model space and supports subsequent 

decision-making. For example, the stiffness of a connection at a particular location may be an 

important feature of a set of candidate behavior models of a truss bridge. This implies that the 

parameter has a strong correlation with the measured response. Changes in measured values may 

indicate that this connection stiffness has changed due to damage or deterioration. Engineers use 

such information for inspection and repair. 

Key parameters of a data set can be found using a concept known as feature selection (Dash 

and Liu 1997). Feature selection techniques may employ a wrapper-based approach where a 

classification algorithm is used to find the best set of features. These methods are popular since it 

offers the flexibility of using any search strategy (Kohavi and John 1998). Wrapper-based 
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approaches that combine support vector machines (SVM) - a classifier technique with search 

methods such as simulated annealing (SA) and genetic algorithms (GA) have already been 

proposed. Probabilistic Global Search Lausanne (PGSL) is a search technique that has shown 

superior performance when compared with GA and SA for continuous variables (Raphael and 

Smith, 2003a). Since the performance of a wrapper-based approach is dependent on the search 

method used, combining PGSL with SVM may result in a better feature selection method.  

This paper presents a new wrapper-based feature-selection algorithm that offers better 

performance than existing feature selection methods. It combines support vector machine (SVM) 

and a global search algorithm (PGSL). The next section provides an overview of feature selection 

techniques. This is followed by an introduction to PGSL and SVM algorithms. The new 

algorithm is tested on benchmark data sets in order to compare its performance with existing 

techniques. The algorithm is then applied to the system identification task and the case of the 

Schwandbach Bridge in Switzerland illustrates the approach.  

Feature selection techniques 

Feature selection (Dash and Liu 1997) is a method used to reduce the number of features 

(parameters) before applying data mining algorithms. Irrelevant features may have negative 

effects on prediction tasks. Moreover, the computational complexity of a classification algorithm 

may suffer from the excessive dimensionality caused by several features, often referred to as the 

curse of dimensionality. When a data set has too many irrelevant variables and only a few 

examples, over fitting is likely to occur. From an engineering point of view, data are best 

characterized using as few variables as possible (Cheng et al. 2007).  

Feature selection techniques can be classified into three main categories  (Tan et al. 2006): 

embedded approaches (feature selection is a part of the classification algorithm), filter approaches 

(features are selected before the classification algorithm is used) and wrapper approaches (the 
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classification algorithm is used to find the best subset of attributes). Due to their definition, 

embedded approaches are limited since they only suit a particular classification algorithm. As 

noted in Molina et al. (2002), a relevant feature is not necessarily relevant for a given 

classification algorithm. Filter methods, however, make the assumption that the feature selection 

process is independent of the classification step. The work done by (Kohavi and Sommerfield 

1995) recommends replacement of the filter approach by wrappers. This usually provides better 

results, at the expense of more computation (Weston et al. 2001). The over fitting problem is 

avoided by  using a k-fold cross-validation strategy (Hsu et al. 2003). The accuracy of the 

classification algorithm may be used as the objective function of the search strategy. 

Several feature selection methods exist in the literature. A comprehensive study of feature 

selection techniques is given in Saitta (2008). Individual ranking procedures are often called 

naive methods. The idea is to individually rank each feature at a time, according to its prediction 

power. This technique is valid only if every feature is independent, which is usually not the case 

in practice. Caruana and Freitag (1994) examine five hill-climbing procedures for feature 

selection. The main limitation of these methods is that they are greedy strategies. Greedy 

strategies are a class of search methods that choose only the best solution for exploration in 

subsequent iterations. Inferior solutions that may eventually lead to the global optima are ignored. 

Thus, greedy strategies are susceptible to local optima. To avoid being stuck in local optima of 

the feature selection objective function, random-based search strategies are used instead of 

greedy-like strategies. Using random-based search strategies is appropriate since the feature 

selection problem is exponential (Oh et al. 2004). An advantage of random-based search strategy 

is the avoidance of the monotonic assumption made by sequential methods (Yang and Honavar 

1998). Lin et al. (2006) propose to combine simulated annealing (SA) with support vector 

machine (SVM) for feature selection and hyper-parameter optimization. Several studies have also 

been carried out using genetic algorithms (GA) for feature selection (Huang and Liu 2006; Yang 
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and Honavar 1998). Hybrid GA procedures have been proposed as well (Huang et al. 2007; Oh et 

al. 2004). Both SA and GA have a wide range of hyper-parameters to tune before obtaining 

convincing results (Kudo and Sklansky 2000; Oh et al. 2004). For SA, they are annealing 

schedule, number of loops, initial temperature and transition rate. For GA, they are population 

size, crossover rate, mutation rate and number of generations. If tuning is not carried out 

correctly, this leads to poor results. PGSL is a stochastic search algorithm that has many 

advantages over GA and SA. In this paper, the performance of a feature selection technique 

combining PGSL with SVM is studied.  

Probabilistic Global Search Lausanne (PGSL) 

The aim of feature selection is to find a subset of m features from a total of d that best satisfy a 

given criterion. For a given subset, a feature is either present or not. When finding all possible 

subsets m among d, Equation (1) gives the number of possibilities: 
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Therefore, according to Equation (1), the number of possible feature combinations is 

combinatorial. A methodology for treating combinatorial problems involves the use of stochastic 

search. 

PGSL is a direct search algorithm that employs stochastic sampling to find the global 

minimum of a user defined objective function. PGSL has been successfully applied to 

optimization problems involving non-linear objective functions containing a large number of 

local minima (Raphael and Smith 2003a). It has proven its efficiency for structural control 

(Domer et al. 2003), system identification (Robert-Nicoud et al. 2005a) and leak detection 

(Raphael and Smith 2005). 
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PGSL has advantages over SA and GA regarding hyper-parameter tuning (Domer et al. 2003). 

It has only three parameters that can be fixed using a simple guideline proposed in Raphael and 

Smith (2003a). Moreover, PGSL gives competitive results when compared to SA and GA (Domer 

et al. 2003; Raphael and Smith 2003a; Raphael and Smith 2005). PGSL performs global search 

through sampling the solution space using a probability density function (PDF). PGSL has three 

tuning parameters (for more details, see Raphael and Smith (2003a)): 

• NS: number of samples (sampling cycle)

• NFC: number of loops in the focusing cycle

• NSDC: number of loops in the sub-domain cycle

At the beginning of search, a uniform PDF is assumed for the entire search space so that 

solutions are generated randomly. When good solutions are found, probabilities in those regions 

are increased so that more intense sampling is carried out in regions containing good solutions. 

The key assumption is that better sets of solutions are found in the neighborhood of good sets of 

solutions. The search space is gradually reduced so that convergence is achieved. The total 

number of PGSL iterations corresponds to the product of these three tuning parameters 

(NS∙NFC∙NSDC) or the satisfaction of a convergence criterion. 

Support Vector Machine (SVM) 

SVM have been successfully applied in domains such as text classification (Zhuang et al. 

2005) and face recognition (Kotsia and Pitas 2007) among others. SVM hyper-parameters can be 

found through grid search (Soares et al. 2004). Chapelle et al. (2002) propose a gradient descent 

algorithm. In Luxburg et al. (2004), data compression is used on the training labels for hyper-

parameter selection. Although a hybrid Monte Carlo technique is proposed in Gold and Sollich 

(2003), it is computationally expensive. As proposed in Frohlich et al. (2003) for GA, in the 
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approach suggested in this thesis, selection of SVM hyper-parameters is done throughout the 

feature selection process using PGSL. It has also been observed that SVM can suffer from 

irrelevant features (Rakotomamonjy 2003; Weston et al. 2001). 

SVM are based on two concepts: the kernel trick and a separating hyperplane. The kernel is a 

function that transforms non-linear relationships from the initial space into linear relationships in 

order to discover relationships more easily in the feature space. A kernel K(x,y) is a function that 

evaluates the inner product between data points in some space: 

 ( , ) ( ) ( )K ϕ ϕ= ⋅x y x y  (2) 

where φ is an unknown mapping function. SVM is a margin classifier that can benefit from 

the kernel trick. A test instance z is classified using the decision function (separating hyperplane) 

of the non-linear SVM given below: 
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where n is the number of training samples, yi Є [1,2] is the class label of the training example 

(for binary classification) xi, λ Є λ1, … , λn are the Lagrange multipliers, K(xi,z) is the chosen 

kernel function and b is a parameter related to the decision boundary. Training a SVM is done by 

minimizing the following objective function: 
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where C is a SVM tuning parameter representing the penalty for misclassifying training 

examples. The SVM formulation described here is for binary classification problems. Methods 

are available for multi-class SVM, for example in Weston and Watkins (1998). The choice of the 

kernel K(xi,xj) is important and generally depends on the application domain. The most 

commonly used kernel function is the Gaussian: 
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−
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The main reason for using a Gaussian kernel is that it has only one parameter (standard 

deviation, σ) to tune. Furthermore, it has provided good results in several applications. Other 

types of kernel have been examined in the literature and new kernels can be created (Cristianini 

and Shawe-Taylor 2000). 

PGSL and SVM for Feature Selection 

A wrapper approach is characterized by four aspects (Kohavi and John 1998). In the proposed 

algorithm, they are as follows:  

• A state space of size: 2d, where d is the total number of features  

• An initial state: initial seed in PGSL 

• A termination condition: PGSL maximum number of iterations  

• A search algorithm: PGSL  

The PGSL-SVM methodology combines global search (PGSL) with support vector machine 

(SVM). The strategy is founded on the proposition that feature selection and classification stages 

should be optimized together and not separately. Figure 1 shows the flowchart for the overall 

wrapper feature selection procedure.  
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First, one third of the data set is randomly taken to be the testing set (Randomly divide data set 

step). To avoid any over-fitting bias within results (Reunanen 2003), this test set is only used 

once, at the end of the process (Evaluation of accuracy step). PGSL is started with a random 

initial vector of dimension d+2 (Feature selection step). The first d values are rounded to either 1 

or 0 (since PGSL uses continuous variables), respectively representing selected and non-selected 

features. The last two values are tuning parameters C and σ for Gaussian kernels in SVM. 

The objective function that is minimized by PGSL is the classification error rate of the SVM. 

In the Objective function (SVM) step, a SVM with 10-fold cross-validation is run. The mean value 

of the 10 obtained error rates is given back to PGSL as the value of the objective function to 

minimize. If the total number of PGSL iterations is less than the limit, the loop continues. 

Otherwise, the feature subset corresponding to the minimum error is returned by PGSL. These 

features are selected from both the training and test sets to respectively train and evaluate the final 

accuracy of the SVM (Evaluation of accuracy step). The result of this overall procedure (Figure 

1) is averaged over five separate runs. 

The generalization accuracy is not the only relevant criterion for evaluating a feature selection 

strategy. Other factors are also of importance. The number of calls to the objective function is 

crucial for comparison, since estimating the generalization error using 10-fold cross-validation is 

expensive in terms of computational time (for each PGSL iteration, 10 SVM are trained). This is 

a good estimator of the computational complexity of the feature selection process. Since it is not 

related to a specific computer, the values for different wrapper approaches are easily comparable. 

Therefore, while the accuracy and the number of selected features are observed, the number of 

calls to SVM is fixed to be nearly the same (see Table 1). The number of features selected is also 

important. The fewer the number of features, the smaller is the amount of memory/time needed 

for the classification algorithm. In addition, a small number of features helps in understanding the 

data.  
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Due to the non-deterministic nature of PGSL and the size of the feature subset space (2d), the 

approach is not guaranteed to find the best feature subset (the one that gives the best SVM 

results). However, the aim is to find a good subset of features that closely resembles the 

performance of the best solution. Therefore, the stability of the feature selection process is not 

studied. A feature selection algorithm that is stable is more deterministic than another one, 

however it does not mean that it performs better or it has found the best solution. The proposed 

approach is compared with random and GA-based feature selection to show its efficiency. 

Benchmark tests 

The PGSL-SVM approach is tested on several data sets from the University of California 

Irvine (UCI) database (Merz and Murphy 1996) and later, on real examples in system 

identification. The purpose of testing the approach on UCI data sets is to compare the 

performance of the proposed strategy with existing methods. As solutions to these data sets are 

available, they serve as benchmark tests for feature selection approaches. Obtaining good 

performance on these sample data sets is necessary before applying the approach to more 

complex civil engineering tasks such as structural system identification. Data sets have been 

chosen on the basis of their low number of missing values and their numeric features. Entries 

containing missing values have been discarded in the data preparation step to avoid issues related 

to missing data. Data sets are standardized with a zero mean and unit standard deviation. Feature 

selection has been performed using PGSL and SVM codes, both called with MATLAB. 

Results 

In this experiment, PGSL tuning parameters are set according to the instructions in the original 

paper by Raphael and Smith (2003a) and after experimental testing. Values are fixed as follows: 
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NS=2, NFC=2·d and NSDC=2, where d is the total number of features. SVM tuning parameters 

are fixed using PGSL (C Є [0,100], σ Є [0,10]).  

Cross-validation strategies are subject to over-fitting (Kohavi and Sommerfield 1995; 

Reunanen 2003). Due to the high number of possible feature subsets, a feature subset may be 

found that is better than others on only these particular cross-validation folds. Therefore, an 

additional subset that has never been used for the feature selection process is used as the test set 

(Evaluation of accuracy step). 

Often, tuning parameters of SVM are manually set to a particular value manually as in Mao 

(2004). However, in this study, tuning parameters are set using a strategy depending on the 

method used. Four different methods are compared:   

• SVM: Support vector machine without feature selection. SVM tuning parameters are chosen 

through a grid search (C Є (1,10,100), σ Є (0.1,1,10)). 

• RAND-SVM: Random selection of parameters. SVM with random feature selection. SVM tuning 

parameters are fixed to be the same as for SVM (see above).  

• GA-SVM: GA feature selection combined with SVM. GA tuning parameters are based on the 

work by Yang and Honavar (1998). Probabilities of crossover and mutation are 0.6 and 0.001 

respectively. Population size and number of generations are fixed, for each data set, so that the 

total number of GA evaluations is the closest to PGSL.  

• PGSL-SVM: PGSL feature selection combined with SVM. SVM tuning parameters are modeled 

as PGSL parameters (C Є [0,100], σ Є [0,10]). The total number of evaluations is dependent on 

the total number of features in the data set.  

For large data sets (more than 200 samples), one third of the data is used as the test set 

(Evaluation of accuracy step). For data sets with less than 200 samples, no separate test set is 
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used. In the latter case, the Evaluation of accuracy step is done with a 10-fold cross-validation. 

Results of the four methods are given in Tables 1 and 2. Numbers within brackets in the first 

column of Table 1 indicate the dimensionality of data sets. For each strategy, 5 independent runs 

are made. Mean and Std in Table 1 represent the statistical mean and standard deviation over the 

5 runs. Since RAND-SVM randomly chooses the number of selected features within each run, the 

table does not give this information. Table 2 provides the number of calls to the SVM 10-fold 

cross validation procedure. The second column in Table 2 is the number of samples for each data 

set. 

An improvement in results when using GA-based or PGSL-based feature selection over 

standard SVM is visible for most data sets. WDBC, Cancer wisconsin and Hungarian show 

similar results when using either feature selection or standard SVM. This is due to their small 

initial number of features and their importance for classification. Only with Cleveland is the 

feature selection clearly performing worse. This may be due to the fact that every feature is 

important in explaining the different classes. Therefore, deleting even one of them significantly 

reduces classification accuracy.  

Valuable improvements in classification accuracy are observed on several data sets. On the 

Ionosphere data set, GA-SVM and PGSL-SVM are better than SVM by 10.2% and 8.2% 

respectively. On Zoo, improvements are of 15.9% and 19.9%. Finally, the best improvements are 

shown for the Hepatitis data set, with accuracy increases of 36.8% and 38.9%. 

Regarding GA-SVM and PGSL-SVM, it is noted that their classification accuracy is nearly the 

same on average. PGSL-SVM performs marginally better on 6 data sets out of 11. This indicates 

that both strategies are equivalent in their generalization ability. A more interesting result is the 

mean number of features selected. For 8 data sets out of 11, PGSL-SVM finds sets with less 

number of features than GA-SVM, for the same order of accuracy. This is due to the fact that 
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SVM tuning parameters are better fixed through PGSL-SVM. On WDBC, GA-SVM and PGSL-

SVM find respectively 16 and 13 features for a difference of 1% in classification accuracy. 

PGSL-SVM has thus an improvement of 19.8% in the number of features. On Lung cancer and 

Sonar, improvements are 10.9% and 19.3% respectively.  

The PGSL-SVM feature selection has two advantages over GA-SVM. First, with GA, the 

SVM tuning parameters have to be coded to match the usual binary format. This is not needed in 

the case of PGSL which uses continuous values. Second, PGSL has less tuning parameters to fix 

than GA. While GA has at least four tuning parameters, PGSL has a simple guideline concerning 

three variables. The main limitation of the proposed methodology, as with every wrapper-based 

approach, is the time consuming process of the classification algorithm evaluation. This time is 

further increased with standard cross-validation strategies. 

The speed of convergence of GA and PGSL is dependent on the way their tuning parameters 

are fixed. Convergence studies on PGSL have been carried out in Raphael and Smith (2003b). In 

order to carry out a fair comparison between GA and PGSL search strategies, it is ensured that the 

number of calls to SVM is similar. Details of the number of calls to the 10-fold cross-validation 

procedure using SVM is given in Table 2. PGSL and GA are stopped when their respective 

numbers of iterations are achieved. 

To summarize, a new feature selection algorithm using global search and SVM in a wrapper 

approach has been proposed. Experiments on several data sets have led to the following 

conclusions.  

• PGSL-SVM is an efficient feature selection strategy. It performs as well as GA-SVM for feature 

selection on various data sets. Also, the PGSL-SVM finds subsets with a smaller number features 

than GA-SVM for the same order of accuracy and time.  
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• PGSL uses continuous values and this helps find the optimal tuning parameters of SVM during 

the feature selection process.  

• PGSL is easier to use since it has less tuning parameters than GA-based strategy. This is 

important since bad tuning can lead to poor results. Furthermore, correct tuning is often time 

consuming. 

Feature Selection in System Identification 

Schwandbach bridge 

To illustrate the feature selection algorithm for system identification, the Schwandbach Bridge 

(designed by Maillart in 1933) is taken as a case study (Figure 2). This structure is inspected 

periodically and has been the subject of many verifications as codes have improved, for example 

Salvo (2006). The Schwandbach Bridge is now a pedestrian bridge, although it could be reopened 

for traffic. Deflection measurements have not been carried out since the 1930s and while the 

bridge shows no visible evidence of deterioration, the question of taking measurements arises 

periodically. In Switzerland, bridges are traditionally measured for changes in deflection at mid-

span during load tests. A single model (usually the design model) is used with the deflection 

measurement and the loading to determine values for parameters that have some uncertainty, such 

as the elastic modulus multiplied by the moment of inertia, E·I. However, this bridge is too 

complex for such rudimentary model-calibration strategies.  

While many assumptions are acceptable at the design stage for achieving safety and 

serviceability, they are not appropriate for interpreting measurements. For example, there is no 

physical hinge at the extremities of the vertical spandrel elements. These connections cannot be 

assumed to be fixed either since even small amounts of cracking reduce connection stiffness. 

Furthermore, not all connections are expected to have the same stiffness due to factors such as 
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relative slenderness and varying locations on the structure. The Schwandbach Bridge has 20 such 

connections. They are shown in Figure 3 using open circles. The methodology is used to select 

relevant model parameters (values for connection stiffness) that can explain bridge behavior. 

The number of permutations and combinations of modeling assumptions – values for 

connection stiffness - results in several tens of thousands of possible models. Although the 

Schwandbach bridge has important technical and historical attributes, these conclusions are 

equally valid for most ordinary structures of moderate complexity.  

Bridges are often tested periodically using static loads to check for strength degradation. The 

response of the bridge for trucks positioned on the bridge is measured using sensors. Engineers 

estimate the stiffness of the bridge from measured responses and compare those with results from 

previous tests. Such a scenario is simulated for the Schwandbach Bridge. Measured responses are 

used to find the stiffnesses of the connections at the extremities of the vertical spandrel elements. 

Thus the stiffnesses of the connections are the model parameters. Loads equivalent to that of two 

trucks on the bridge are simulated. Sensors are assumed at 5 locations on the structure given by 

positions 1, 6, 10, 13 and 18 (see Figure 3).  

Stochastic search is used to find a set of 1000 models as described in Robert-Nicoud et al. 

(2005b).  Among these models, 500 are candidate models. Candidate models are those for which 

the difference between measurements and predictions is below a certain threshold value set as 8 

µrad  They correspond to the models that closely represent the structure behavior (in this case, the 

Schwandbach bridge).The other 500 models in the set are not candidate models.  More details on 

this case study can be found in Saitta et al. (2008).  
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Results 

The case study introduced in the previous section is used for illustrating feature selection. The 

starting point is thus a matrix of 1000 rows and 21 columns. The number of rows corresponds to 

the number of models. The first 20 columns contain, for each model, the value for a parameter, 

i.e., the stiffness value of a connection. The last column corresponds to the class label. A 

candidate model is labeled with 1 and a non-candidate model with 2. At this point, the PGSL-

SVM methodology is run 5 times. The size of the test set is fixed as one third of the data set 

(33%). Results obtained are given in Table 3. 

First, it is observed that the standard deviation of the test accuracy is low. This means that 

results of the 5 different runs are close. Regarding the number of features, it is observed that 

around 11 connection stiffnesses are selected, in mean, out of 20. Thus, about half of the 

connection stiffnesses are useless in separating candidate from non-candidate models. 

For this experiment, the number of PGSL iterations is set to 160 and 5 independent runs are 

averaged. The best test accuracy (97.9%) corresponds to the selection of the following 

parameters: p2, p4, p7, p9, p11, p12, p14, p15, p16, p17, p18, p19 and p20. Therefore, with these 13 

connection stiffnesses, one can argue that a model is candidate with more than 97.9% accuracy. 

These 13 parameters are shown with black dots in Figure 4. 

This set of 13 features is of importance for engineers. It can be used to support further 

decisions. For example, the other 7 connection stiffnesses are not important in identifying 

candidate models. Variations at these positions do not help engineers for the system identification 

task. Since these 13 features have been selected, it means that the other 7 either contain similar 

information (they are redundant) or no information at all. The 13 connection stiffnesses are 

independent from each other since they contain no or few redundant information. This may 

change assumptions of engineers about the structure. Therefore, feature selection can give useful 
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information to engineers who must decide on subsequent sensor placement and evaluate the 

validity of modeling assumptions.  

 

Conclusions 

A new feature selection algorithm based on the wrapper concept is proposed in this paper.  

Feature selection is found to be helpful for interpreting system identification results, especially 

when the number of candidate models is large. The most important parameters of candidate 

models are identified and redundant parameters are eliminated. When engineers are given model 

parameters that best separate candidate from  non-candidate models, they can better understand 

why some models become candidates. The advantage of such knowledge is that it is easily 

readable by engineers. Feature selection can reduce dimensionality of the problem. Therefore, it 

gives engineers a better understanding of the candidate model space. By knowing the important 

features of a measured structure, engineers can take better decisions with respect to structural 

management. The following more specific conclusions come out of this paper: 

• The newly developed algorithm, PGSL-SVM, is an efficient feature selection strategy. It 

performs better than existing algorithms such as the GA-SVM for feature selection on various 

benchmark data sets. These tests provide confidence in applying the algorithm to practical civil 

engineering tasks. 

• The PGSL-SVM strategy finds subsets with a smaller number of features than GA-SVM for the 

same order of accuracy and in the same amount of time. Fewer parameters are undoubtedly 

advantageous since unique system identification is faster than with the full parameter set. 

• The strategy involving PGSL has less tuning parameters than the GA-based strategy. The number 

of tuning parameters is important since bad tuning can lead to poor results and the possibility of 

bad tuning increases with the number of tuning parameters.  
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• Feature selection supports system identification since it identifies parameters that are relevant for 

explaining candidate models. In the case study, stiffness values of 7 joints were found to have an 

insignificant influence on measurement data values. 

Future work includes testing the methodology on measurements of dynamic excitation. 

Furthermore, the function to be minimized could be multi-objective. For example, in addition to 

minimizing the SVM error rate, one could also minimize the number of selected features.  
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Data set 

SVM RAND-SVM GA-SVM PGSL-SVM 
Accuracy Accuracy Accuracy # features Accuracy # features 

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std 
WDBC (30) 97.9 1.3 84.8 6.0 97.5 1.2 16.2 1.3 96.5 1.1 13.0 1.2 
Cleveland (13) 86.5 2.5 57.6 2.7 84.1 2.5 8.4 0.9 80.8 2.6 7.0 2.1 
Cancer wisconsin (9) 96.5 1.7 96.4 1.2 96.2 0.8 5.6 1.1 95.6 0.9 4.8 1.1 
Ionosphere (34) 84.0 1.0 66.6 17.0 92.6 1.0 17.6 2.4 90.9 1.3 16.4 3.6 
Wine (13) 93.5 0.5 92.3 3.3 98.2 0.5 8.2 1.3 98.7 0.4 7.8 1.5 
Hepatitis (19) 56.5 0.6 63.5 3.1 77.3 3.2 8.6 1.1 78.5 2.7 6.4 1.7 
Glass (9) 59.7 5.1 31.1 4.3 62.3 5.2 4.8 1.1 61.4 4.5 5.4 1.1 
Hungarian (13) 81.2 1.7 70.3 7.6 78.1 3.1 5.8 0.8 79.8 4.9 6.4 0.6 
Sonar (60) 77.1 7.2 43.5 22.6 81.5 4.3 30.0 2.5 83.2 7.9 24.2 2.5 
Zoo (16) 81.4 1.5 88.2 6.3 94.3 2.0 7.8 1.5 97.6 0.6 8.8 0.8 
Lung cancer (57) 73.2 5.9 77.3 5.5 88.3 3.4 25.6 3.1 89.2 5.2 22.8 4.8 

Table 1: Comparison of accuracy for SVM, random feature selection (RAND-SVM), GA-based feature selection (GA-SVM) and 
PGSL-based feature selection (PGSL-SVM) 
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Data set Size GA-SVM PGSL-SVM 
WDBC 569 240 240 
Cleveland 297 110 104 
Cancer wisconsin 683 72 72 
Ionosphere 351 272 272 
Wine 178 110 104 
Hepatitis 80 156 152 
Glass 214 72 72 
Hungarian 294 110 104 
Sonar 208 506 480 
Zoo 101 132 128 
Lung cancer 27 462 448 

Table 2: Number of GA and PGSL iterations during the runs in which each gave the best 
results  
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Information Value 
Mean test accuracy 97.2% 
Standard deviation of test accuracy 0.6 
Mean number of features 11.4 
Standard deviation of number of features 2.1 

Table 3: Results obtained for feature selection on 1000 models over 5 independent runs. 
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List of figures 
 

Figure 1: Flowchart of the feature selection process  

Figure 2: Schema of the Schwandbach Bridge used to illustrate the feature selection algorithm. 

Figure 3: Schematic view of the bridge showing the 20 connections. 

Figure 4: Representation of the 13 selected parameters (black dots) on the Schwandbach Bridge. 
Sensors are at positions 1, 6, 10, 13 and 18 (see Figure 3). 
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