Homotopic Hopf-Galois extensions: foundations and examples

Hopf-Galois extensions of rings generalize Galois extensions, with the coaction of a Hopf algebra replacing the action of a group. Galois extensions with respect to a group $G$ are the Hopf-Galois extensions with respect to the dual of the group algebra of $G$. Rognes recently defined an analogous notion of Hopf-Galois extensions in the category of structured ring spectra, motivated by the fundamental example of the unit map from the sphere spectrum to $MU$. This article introduces a theory of homotopic Hopf-Galois extensions in a monoidal category with compatible model category structure that generalizes the case of structured ring spectra. In particular, we provide explicit examples of homotopic Hopf-Galois extensions in various categories of interest to topologists, showing that, for example, a principal fibration of simplicial monoids is a homotopic Hopf-Galois extension in the category of simplicial sets. We also investigate the relation of homotopic Hopf-Galois extensions to descent.

Publié dans:
Geometry and Topology Monographs, 16, 79-132
Autres identifiants:

Note: Le statut de ce fichier est:

 Notice créée le 2009-02-20, modifiée le 2019-12-05

Télécharger le document

Évaluer ce document:

Rate this document:
(Pas encore évalué)