DNA fragments containing the silencers that flank the mating type genes at HML alpha are shown to bind specifically to the nuclear scaffold of yeast. The scaffold proteins are solubilized with urea and then renatured to form a soluble extract which allows reconstitution of sequence-specific DNA loops. At the silent mating type locus HML alpha, loops are formed by either silencer-silencer (E-I) interaction or silencer-promoter interactions (E-P and I-P). The nuclear protein RAP-1 fractionates efficiently with the nuclear scaffold, and binds to the E, I, and promoter regions. Affinity purification of RAP-1 and oligonucleotide competition show that RAP-1 is necessary for reconstitution of loops in vitro. These results are consistent with a model in which silencers define a chromatin loop within which occur modifications that maintain the promoter in an inactive state.