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Abstract—This article treats the problem of learning a dictio- assumptions. Georgiev, Theis and Cichock] as well as
nary providing sparse representations for a given signal @ss, Aharon, Elad and Bruckstein?] describe more geometric
via £, minimisation. The problem is to identify a dictionary ®  jqaniifiapility conditions on the (sparse) coefficientsraiiting

from a set of training samplesY knowing that ¥ = ®X for data i ideal lete) dicti Both h
some coefficient matrixX. Using a characterisation of coefficient data in an ideal (overcomplete) dictionary. Both approache

matrices X that allow to recover any basis as a local minimum t0 the identifiability problem rely on rather strong spassit
of an ¢, minimisation problem, it is shown that certain types of assumptions, and require a huge amount of training samples.

sparse random coefficient matrices will ensure local idenfiability  |n addition to a theoretical study of dictionary identifiktyj

of the basis with high probability. The necessary number of o cited papers provide theoretical algorithms to penfor

training samples grows up to a logarithmic factor linearly with . . e L

the signal dimension. thg desired identification. Unfor'gur?ately the naive |mpdae_m

tation of these provably good dictionary recovery algorith

Keywords: basis identification/; minimisation, sparse sam-seems combinatorial, which limits their applicability tow

ples dimensional data analysis problems and renders them dragil

to outliers, i.e. training signals without a sparse enough

representation. In this article we will study the questidmew
Sparse signals are useful. They are easy to store andatbasis can be learned via-minimisation [?], [?], and thus

compute with and as has become apparent through the thesyya non-combinatorial algorithm. More precisely assuming

of compressed sensing they are also easy to capture. Howeliat our training signals are generated from an 'ideal’ $asi

finding sparse representations is far from easy and by neyith random sparse components we will analyse how many

there exists a quite comprehensive literature on algostand of these training signals are typically necessary to recove

solutions strategies, for a starting point see €. [[?], [?], the basis with high probability. The special case when the

[?]. In any of these publications one will more likely tharbasis is orthogonal has already been treated?|nb[it the

not find a statement starting with 'given a dictionabyand a probabilistic methods used there were not strong enough to

signal having anS-sparse approximation/representation ... provide analogue results for general bases. In this artigle

which points exactly to the remaining problem. If one hastake an new approach to the problem leading to stronger

class of signals and would like to find sparse approximatiopsobabilistic estimates.

someone still has to provide the right dictionary. For mariy the next sections we will shortly describe dictionary

signal classes good dictionaries like time-frequency oreti learning via/;-minimisation and state an algebraic recovery

scale dictionaries are known and from theoretical studyhef tcondition. In Sectior?? we introduce the random coefficient

signal class it might be possible to identify one that will fimodel and state our main theorem about the necessary number

well. However, if one runs into a new class of signals, chancef training signals. We then sketch the main ideas of thefproo

that the best fit will already be known are quite slim and going into detail as space allows. The last section is déslica

can be a time consuming overkill to develop a deep theory like the discussion of future work.

that of wavelets every time. An attractive alternative ageh

is dictionary learning, where one tries to infer the diction [I. DICTIONARY LEARNING VIA ¢1-MINIMISATION

that will provide good sparse representations for the whole

signal class from a small portion of training signals.

I. INTRODUCTION

The first idea when trying to find a dictionary providing

Considering the extensive literature available for therspa sparse representations of all signals from a class is tolfied t

decomposition problem surprisinaly litle work has beeluldedictionary allowing representations with the most zerofcoe
P P P gy ficients, i.e. givenN training signalsy,, € R% 1 < n < N,

icated to theoretical dictionary learning so far. Theresexi . - -
several dictionary learning algorithn@&[[2], [2], [7], but only and a candidate d|ct|onar§ consisting of K atoms, one can
Rl measure the global sparsity as

recently people have started to consider also the theatetic

aspects of the problem. Dictionary learning finds its roots N .
in the field of Independent Component Analysis (ICA}, [ ZH&HH%HO, such that®z,, = y,, Vn.
where many identifiability results are available, which leger n=1

rely on asymptotic statistical properties under independe Collecting all signalsy,, (considered as column vectors) in the
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where|| X||o := >, [|zn]lo counts the total number of nonzerasignalsy™ by ¢; minimisation. However since the minimisers
entries in thei x N matrix X. Thus to get the dictionary pro- of (??) are only unique up to matching column (resp. row)
viding the most zero coefficients out of a prescribed calbect permutation and sign change &f(resp.X), and also because
D of admissible dictionaries, we should consider the coteri it is generally hard to find global minima, we will reduce our
ambition to finding conditions such th&®, X') constitutes
a local minimum, which we will call local identifiability
The problem is that already finding the representation Wi%Onditions They guarantee that alg(_)ri'Fhms which decrease the
. o . : : . 71 norm must converge to the true dictionary when started from
minimal non-zero coefficients for one signal in a given dICé sufficiently close initial condition
tionary is np-hard, which makes trying to solve?) indeed '
a daunting task. Fortunately the problem above is not only
daunting but also rather uninteresting, since it is notlstab m
with respect to noise or suited to handle signals that arg onl
compressible. Thus the idea of learning a dictionary Afia

minimisation is motivated on the one hand by the goal o To formulate the local identifiability condition, which is
have a criterion that is taking into account that the signaiie starting point for our analysis, we introduce the foltogv

might be noisy or only compressible and on the other Ipjock decomposition of the matriX (see Figure??):
the success of the Basis Pursuit principle for finding sparse

ki ~ .
representation,?], [?]. There the/y-pseudo norm is replaced ° j; |iss ttr;]iksgl irr?(\;\:eQiLX'the nonzero entriesadt and &
with the ¢, norm, which also promotes sparsity but is convex * thke cet indexing its zgero entries: k
and continuous. The same strategy can be applied to the 9 '

ki kY
. ! . o s" is the row vectosign(z")ax;
(rié(;tllggg(;ywlﬁgrtr;]l;g Ecr)(;tt:)lfi r:]]czg(rj] thig cost function can be o X} (resp.X;) is the matrix obtained by removing the
1

k-th row of X and keeping only the columns indexed by
Ci(®,Y) := N ‘%12 ; | X1, ) Ay (resp.Ay) .
B We also defin@ := &*® — I. The kth-column ofM will be
where|[X ||y := 3., [lzn 1. Several authors?, [?], [?] have denoted bym, and the same column without the zero entry
proposed to consider the corresponding minimisation jerabl corresponding to the diagonal by;, := ((¢y, Pr))1<o<K o2k

min €,(2,Y). (3)

min Co(2,Y). 1)

. LOCAL IDENTIFIABILITY CONDITIONS FORBASIS
LEARNING

Unlike for the sparse representation problem, where this
change meant a convex relaxation, the dictionary learning K Sk \
problem @?) is still not convexand cannot be immediately Y
addressed with generic convex programming algorithms.-How X €
ever, it seems better behaved than the original probleh (
because of the continuity of the criterion with respect to \ 1
increasing amounts of noise which makes it more amenable A« A«

to numerical implementation. . . . , .
. . Fig. 1. Block decomposition of the matriX, with respect to a given row
Looking at the problem above we see that in order to solve,j

'x. Without loss of generality, the columns d&fy have been permuted so
we still need to definéD, the set of admissible dictionaries.hat the first{Ax| columns hold the nonzero entries :of while the last|Ay|
Several families of dictionaries can be considered such R its zero entries.

discrete libraries of orthonormal bases, like wavelet péck
or cosine packets. Here we focus on the 'non parametric’
learning problem where the full x K matrix ® has to be
learned. Since the value of the criterio??( can always be
decreased by jointly replacing and X with a® and X/a,
0 < a < 1, a scaling constraint is necessary and a common
approach is to only search for the optimum 8f) within a
bounded domairD. Here we choose

Theorem 3.1:Consider aK x N matrix X. If for every k
there exists a vectaf;, with maxy, ||di||.c < 1 such that

Xkdk = Xk(sk)* — kaHlmk (5)

then (®, X) constitutes a strict local minimum of thé-
criterion.

D = {®,Vk, ||kl = 1}. 4) The proof can be found in the forthcoming pap®rdgr [?].

For a discussion of alternative constraint manifolds see fo

instance P]. IV. PROBABILISTIC ANALYSIS

The special aspect of dictionary learning treated here v ho

a coefficient matrixX has to be structured such that for any In this section we will derive how many training signals
basis ® the pair (®, X) will constitute a global minimum are typically needed to ensure that a basis constitutesah loc
of (??) with input Y = ®X. In other words when can minimum of the /;-criterion, given that the coefficients of
a dictionary be uniquely identified fronV sparse training these signals are generated by a random process.



A. The Model the third term are dominated by the first and so we can get
We assume that the entrieg,, of the K x N coefficient the cruder but more readable bound.

matrix X are ii.d. withxy, = exngrn, Where thesy, are =, (1—2p)pN

o . . . . < JBEy -

indicator variables taking the value one with probability P(®) <2K exp { Klog(61 P) 13

and zero with probabilityl — p, i.e. e ~ pd; + (1 — p)do. (1—2p)pN

The variablesy,,;. follow a standard Gaussian distribution, i.e. + 6K exp ~T 800 /)

centered with unit variance. ) .

The important role of the indicator variables is to guarardge We can see that the general behaviour as predicted by _the

strictly positive probability that the entry;.,, is exactly zero, Pound above is, that to have a good chance of recovering

The assumption that the,,, are centered Gaussians with unif€ dictionary we need the number of training signalsio
variance is mainly for simplicity reasons as it allows to dio adr0W faster thank'log K or dlogd (for a basis the number

proofs using only elementary probability theory. However wPf aloms equals the signal dimension). This is only a log-

believe that the same results hold for many other distiimsti 'aCtOr larger than the absolute minimum of the+ 1 training

as long as they show a certain amount of concentration,ség,naIS hecessary for learning a d|c_t|onary16f elemgnté.
for instance Bernoullit1 with equal probability or any other S0+ @S @ practical example, for learning a basis for images of

subgaussian distribution size 256 x 256 pixels, we would need arouric27000 images.

Let us start with a geometric interpretation of the necgssaf/Nile this is a huge number for the more common approach

recovery conditions of learning a basis of patches of siz80 x 100 we would
only need aroun®3000 patches, which is still reasonable.

To state the theorem in a concrete form we had to crudely

B. Geometric Inspiration bounding some intermediate probabilities. The next sulmsec

We want to show that with high probability for each indexives a skeleton of the proof, indicating where these bounds
k there exists a vectat;, with ||di||~ < 1 such thatX,d, = are, so in case all parameters are precisely known, it is easy
X (sF)*—||*||17my. From a geometric point of view, we needo retrace the steps and get the optimal bounds. In the course
to verify that the image of the unit culi@** = [—-1, 1]* by of that we will also prove the following simple but totally
the linear operatoiX;, contains the vecton; := X (s*)* — abstract theorem.

||z*||1 7. One way to ensure this to be true is to ask that: Theorem 4.2:If for a basis® we havemax;, ||my|l2 < (1—

« the vectoru, belongs to the Euclidean balt~' () of p) then there exist constants> 0 anda, c < oo, depending
radiusa, i.e., |ug2 < «; only onp, such that forN > c-d we have

« the image of the unit cub@*+ := [—1,1]* by X, P(®) < expla - dlogd —b- N). )
containsB3 ~*(a). -
We can see that the probability of satisfying both condkiorb Skeleton of the Proof - Probability Split

will largely depend on the number of non zero coefficients in ] N o o
each row. The more zeros the shorter the vecibrand z* To estimate the overall probability that the original basis
not a local minimum of the,-criterion we have a look at all

thus the more likely thatlux||s = || Xk (s%)* — [|2*||17x]2 n " :
is small, and the higher the dimension of the unit cube, th@SPects of the sufficient conditid?? that could possibly go

more chances its image covers a big ball. So we get a higH&P"9 and t_Jound their probabilities inglividually. First wan
probability to recover a basis, the sparser the signals rade 42k€ the union bound over every row index

the more incoherent the basis is, i.e. the smalen.|. =  p(e) < P(3k, s.t.Pdy, St [|dy] < 1 and Xydy = uy)
lm]l2- The following theorem gives a precise quantification >
of these geometrically inspired ideas. < Zp(ﬁdk St ||dy|lse < 1 and Xpdy = uk) .
k=1
=P(Oy)

C. Main Theorem

Theorem 4.1:Denote the event 'the original basis is not é/Ve further split by conditioning on the number of zero

local minimum of the/;-criterion’ shortly by @'. If for a Coefficients in each row.
basis® we havemaxy, |mylls < 522 and the number of

N
T _ P(®) = P(®|Ay = M) -P(Ay =M
randomly generated training signals excedds- % (©r) Mz::() (®k | A ) Pl )

wherep < 1/2, the probability of ®’ decays as < max P(®k A = M) i ]P’(]Xk ¢ [Mz,Mu])

PO®) <2(K -1 T M<M<M,
= To bound the probability of the first term in the expression

[GXP (W) + exp (W) +exp (—2p2N) above we use the geometric inspiration from Subsec?i®n
Fexp ((K ~ 1)log(61,/51) - w)} 6)  P(dx, st |ldilloo < 1 and Xudy, = up, | Ay = M)

13
: L , <P(X,(QY) 2 By P 1)
The crucial probabilities in the bound above are the first - ( Q) 2 By (QM)) + (HUkHQ - OZM)
exponential because of the big constant and the last becausg;ep, only K training signals the dictionary giving the sparsest regmes
of the termO(K log K'). The second and fgr > 1/1602 also tation is the set of training signals itself.



Retracing our steps we can thus bound the overall probabilifo finally get a quantitative estimate, we need the following
of failure as two concentration of measure inequalities.
K Theorem 4.7:Let A = (A;...Apy) be ad x M matrix,
P(®) < Z max [p(Xk(QM) ? BQK—l(aM)) with entries as described in Subsect®? A;; = €;;9i;, i =
oy MMM, 1...d,j=1...M, andz € R? be a unit vector. Then

FEelle > andl ) pavall < Mp(y/Z — e0) < 200 (5502)

K 24+2¢e4
+ 3 P(Ay ¢ (M, M,]). (8) M N
) B(Y" 14 > My/p(1 +25)) < 2exp (5227 )

From (??) it becomes clear how important it is to carefully =1
choose the parameterd;, M, anday to keep the sum of 1y fq equation tells us that we nead< /2 Mp. Indeed

all probab|||_t|es small. How_ever, to make this c_h(_)lce_ Wetf'rssince also the converse bound exists the probability ofdigndi
need to estimate the magnitude of the probabilities mwblvea unit vector violating the condition in Lemma? rapidly
approaches 1, meaning that the radius of the maximal ball
E. Estimating the Individual Probabilities cannot exceed/2 Mp.
™

All estimates are based on concentration of measure res@ﬁ'oosings — J2m—1/3. s = 1/3 ander = 10~1/p/d
. . . o ) - N - p
to bound the probability that a random variable deviatest a Ignq taking into acc/:ount{h@ti 1 vv/e get using Corollar)é?
from its expected value. For conciseness we will skip moghd some simplifications that 2

proofs which can be found ir].
The easiest estimate, the probability of the number of zer , Mp d Mp
coefficients in each row being beloi; or abovell,, is a %(A(QM) 2 BS(T)) < Zexp <d10g(61\/;) - H) :
consequence of Hoeffding's inequality.

Theorem 4.3:Let Y; ... Yy be independent almost surelyTo estimate the probability that the vectof = Xy (sx)* —
bounded random variables, iB(Y,, € [an,bn]) = 1. Then, ||z*{|17m4 is not contained in the Euklidean ball of radius=
for the sumS = Y; + ...+ Yy andt > 0 we have Mp/5, we will split it into its two components, i.e. for some

o N 242 | q € [0,1] we have
) B Xe(51)" = o 1malz > o)
< P(I1 Xk (k)" ]2 > ga) +P(||2" [[1]lmill2 > (1~ g)av).

The optimal choice for the parameter depends on the
magnitude of|my||2 measuring the coherence of the basis. So

P(S — E(S) > Nt) < exp(—

Applying this forY;, = e, with ¢t = (1 — p)ex we get
P(Ar, < N(1=p)(1 —ea)) < exp(=2N(1 —p)*e}).

The converse inequality we get in the same way ¥gr= in case the basis is orthogonal we hgwey||. = 0 and can set
1 — €n. ChoosingM; = N(1—p)(1 —¢e5) andM, = N(1— ¢ = 1. For further bounds we need another two concentration
p)(1+¢ep) leads to of measure results.
- 5 o Theorem 4.8:a) Let B be a matrix of sizel x L, whose
P(Ax ¢ [M, M,]) < 2exp(—2N(1 - p)*e}). entries follow the distribution described in Subsecti®®

Next we will estimate the typical size of the largest ball wéij = €ijgij, ¢ = 1...d, j = 1...L, and s be a vector of
can inscribe into the image of the unit cugé* by X, when ength L with entriess; = +1, j =1... L. Then fore, >0
Aj, = M. We start with some geometrical observations. ) —dpe>

Lemma 4.4:Let A be a matrix of sizel x M. The image P(||Bs|l3 > dLp(1 + &5)) < 2exp (6 T 2;) 9)

of the unit cube™ by A contains a Euklidean ball of size ) - )
if and only if for all z with ||z||» = 1 there exists @ € QM b) Let x be a Gaussian vector of lengih, i.e. its entries
i.e. v]|e < 1 such thai(Av,z)| > a. x; = g, i = 1...L, follow a centered Gaussian distribution

with unit variance. Then fog,, > 0

Lemma 4.5:If there exists ar-net N for the unit sphere
in R¢ such that for allz; € A" we have av; € QM such that 5 —Le?,
gAv}xm > o and[|A]j2,0c < 0 then A(QM) 2 Bf(a — P(|lll > L(ﬁ+5m>) S Zexp <2+am/\/§) (10)
EN)-
This leads to the following probabilistic estimate. We apply the_theorem to the matr;, the VeCtorSé“qggd the
Corollary 4.6: Choose are-net A for the unit sphere in Vectorzy. Write shortlyd = K — 1 and sete; = S~ — 1
R? with [NV] < (%)d. For a random’'d x M matrix A = ande,, = ﬁ _ \/g to get
(A1 ... Ap) we can bound the probability that(Q*) covers

a ball of radiuse — e as P(||uc]l2 > a) < 2exp (_(53)2%) +2exp (Wcm)
P(AQY) 2 By(a — fe) 1 Ay (1— /2Ll

>1- 3 P(|&x]h <a) ~B(Y 42> 6) W o= en = -
A P <) =P e =) L+ 202 1+ Elmle 25 -\ /2)



Let us investigate the conditions that ¢,,, > 0 in more detail.
Inserting the expected values fat M,L = N — M shows
thatc, > 0 will always be satisfied as soon as the number of
signalsN is large enough.

The condition orc,, is more interesting as in the worst case
for M it is equivalent to||my|l2 < \/g(lgp). Looking back

at the estimate of the radius of the maximal ball we see
that o necessarily has to be smaller th@@Mp, leading to
[lmgll2 < 1—p. This means that as soon @six||2 > (1 —p)

the size of the vecton, grows faster than the size of the
maximal ball, and recovery can no longer be guaranteed.
However, let's assume thdm|l, < 22 and choose; =

20L
1/v/3. If M? > 300pdL a long calculation shows that we

have
M?p? Mp
- 2 —=2).
Xp( 400L) + eXp( 70 )

To get the statement of the main theorem we need to combirﬁﬁ
all the estimates and insert the worst case valuesMoir.

with ep = p/(1 — p).

<2e

M
B(jluxllz > =5)

(2]

V. DISCUSSION Gl

We have shown that for coefficient matrices generated from
a random sparse model the resulting basis coefficient pa}L{]
suffices these conditions with high probability as long as
the number of training signals grows likelog d. These are
exciting new results but since dictionary learning is atreddy
young field they lead to more open questions. For the special
case when the dictionary is assumed to be a basis it would tf8
desirable to show the converse direction, i.e. if the calze [7
of the basis is too high and the training signals are gengrate
by the same random sparse model, the basis coefficient pair
will not be a local minimum. Ideally this breakdown coherenc [
maxy, ||m/||x would be the same or close @ — p). Another [9]
helpful result would be to prove that under the random model
there exists only one local minimum, which then has
be the global one, and could be found with simple desceni]
algorithms. Numerical experiments in two dimensions suppo
this hypothesis. Figur@? is a plot of the/;-cost|®~1Y|; (12]
for all possible two-dimensional bases, where both atoras ar
parametrised by their anglg to the x-axis,f; € [0,7]. The
N = 500 training signalsY = ®X were generated using
the random sparse model with= 0.5. As can be seen the
only two local minima are at the original dictionady and
at the dictionary corresponding ® with permuted columns
(the sign ambiguity is avoided by restricting the angleshi® t
interval [0, ).

Finally much harder research will have to be invested &
extend the current results to the overcomplete and the noisy

[13]

[14]

L1criterionfor oblique bazes

Fig. 2. ¢;1-cost as a function of all two-dimensional bases
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