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Abstract

This paper describes an algorithm for distributed acoustic navigation f@ordmous Underwater Vehicles
(AUVs). Whereas typical AUV navigation systems utilize pre-calibrateghyar of static transponders, our work
seeks to create a fully mobile network of AUVs that perform acousticinrgngnd data exchange with one another to
achieve cooperative positioning for extended duration missions ovgg kreas. The algorithm enumerates possible
solutions for the AUV trajectory based on dead-reckoning and ranfyereeasurements provided by acoustic modems
that are mounted on each vehicle, and chooses the trajectory via minimizdti@ cost function based on these
constraints. The resulting algorithm is computationally efficient, meets th¢ lstnclwidth requirements of available
AUV modems, and has potential to scale well to networks of large nundfershicles. The method has undergone
extensive experimentation, and results from three different scesnaréoreported in this paper, each of which utilizes
MIT SCOUT Autonomous Surface Craft (ASC) as convenient platfofon testing. In the first experiment, we utilize
three ASCs, each equipped with a Woods Hole acoustic modem, asatesdgr AUVSs. In this scenario, two ASCs
serve as Communication/Navigation Aids (CNAs) for a third ASC that cdegiis position based exclusively on
GPS positions of the CNAs and acoustic range measurements betweemmati the second scenario, an undersea
glider is used in conjunction with two ASCs serving as CNAs. Finally, in the thipkegment, a Bluefin1l2 AUV
serves as the target vehicle. All three experiments demonstrate thessfidooperation of the technique with real
ocean data.

Index Terms

autonomous underwater vehicles, cooperative navigation, mobilgéicepsensor networks

I. INTRODUCTION

The absence of Global Positioning System (GPS) signalsrwader makes navigation for Autonomous Under-
water Vehicles (AUVSs) a difficult challenge. Without an extal reference in the form of acoustic beacons at known
positions, the vehicle has to rely on proprioceptive infation obtained through a compass, a Doppler Velocity
Logger (DVL) or an Inertial Navigation System (INS) [WYSHOQOhdependent of the quality of the sensors used,

the error in the position estimate based on dead-reckomifaymhation grows without bound. Typical navigation
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errors are 0.5 % to 2 % of distance traveled for vehicles dipgravithin a few hundred meters of the sea floor
such that their DVL has a lock on the bottom. Errors as low 4s%.can be obtained with large and expensive
INS systems, but for vehicles relying only on a compass angead estimate, errors can be as high as 20 %. By
surfacing the AUV can obtain a position update through itsSGIBut this is impossible (under ice) or undesirable
for many applications. The use of static beacons in the form lboong Baseline (LBL) array limits the operation
area to a few krh and requires a substantial deployment effort before ojp@asitespecially in deep water.

As underwater vehicles become more reliable and affordétd@esimultaneous use of several AUVs recently
became a viable option and multi-vehicle deployments wéltdme standard in the upcoming years. This will
not only make possible entirely new types of missions whiely ron cooperation, but will also allow each
individual member of the group to benefit from navigationomfation obtained from other members. For optimal
cooperative localization a few dedicated Communicatiod Blavigation Aid-AUVs (CNAs), which maintain an
accurate estimate of their position through sophistic&tetl and INS sensors, can enable a much larger group of
vehicles with less sophisticated navigation suites to ta@nan accurate position, as described in [VLCWO04a].

The idea of an underwater equivalent to the terrestrial Gi83dng held appeal to AUV researchers. For example,
A.C.S.A. has developed a portable undersea tracking rdrgeptovides a form of “underwater GPS” in a local
area [ThoO1]. In the A.C.S.A. system, a network of four stefauoys equipped with GPS and RF communications
utilize passive acoustic range measurements to track tbiéigroof a time-synchronized mobile undersea device.
While the base system usually employs moored or drifted serfaioys, experiments using self-powered surface
craft have also been performed. Further extensions of thisept could employ acoustic communications to relay
the vehicle pose estimate obtained by the surface buoystbatie undersea vehicle itself.

The motivation behind our research is to enable multiple AU¥ cooperatively navigate. The ideal solution
would enable heterogeneous teams of AUVs to operate with tégigational precision, without frequent surfacing
for GPS measurements, even for the case when only a smallerumhibhe AUVs in the team are equipped with
expensive inertial sensors. One application of this cdipabiould be to perform rapid, large-area search with
a mixed AUV network consisting of Comm/Nav-Aid AUVs, SealClassify-Map AUVs, and Reacquire-ldentify
AUVs [VLCWO04b].

The problem of cooperative navigation of AUVs is highly iennected to the problem of undersea acoustic
communications [Cat90], [KBOO], [FJ@1]. Our work capitalizes on recent progress by the Acoustizlem
Group at Woods Hole Oceanographic Institution (WHOI) in deping integrated communication and navigation
(ranging) capabilities for small AUVs. This applicationis@s several interesting challenges for acoustic telgmetr
research, such as the need to handle a fully mobile netwaitkitzen goal of achieving accurate one-way ranging
through stable clock synchronization.

There has been a great deal of work in terrestrial settinghemproblem of cooperative navigation of multiple
mobile robots. Often the problem is cast in terms of a mix ofbileoand static nodes in a large-scale sensor
network, with either angle-only or range-only measuremmeAt variety of state estimation approaches have been

followed, including Markov chain Monte Carlo and set-thetar state estimators. For example, Liao et al. [LHDS06]
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employed a particle filter state estimator for cooperataealization of multiple ground robots using range-only
measurements. Djugash et al. [DKSZ06] developed an apiprtieat integrated Simultaneous Localization and
Mapping (SLAM) with mobile sensor networks, achieving sefibration of a network consisting of mobile and
stationary nodes with range measurements. Grocholsky. §68ISK06] used nonlinear set-based state estimation
techniques for localization of multiple mobile robots witnge measurements between platforms.

The underwater setting presents some unique challengesofgrerative mobile robotics. The assumption of
a fast and reliable communication channel between all @patits of the cooperative navigation effort, as made
in [RBOO], [RDM02], and [MLRTO04], does not hold underwat®ue to the strong attenuation of electro-magnetic
waves underwater, radio or optical communication is nottgrally feasible except for distances of a few meters.
As a result acoustic modems, typically operating betweerard® 30 kHz, provide the only possible means of
communicating at long ranges underwater. Data rates aieatiypseveral orders of magnitude below those achieved
with radio-based communication channels [KBOO]. With sbymopagation being dependent on temperature and
salinity, which can both vary strongly within the water awmin, the acoustic communication channel is unreliable
and its performance hard to predict. This is especially frushallow water, where severe multi-path is often
encountered. The concept of portable landmarks as outim@idNH94] is not feasible as it is often difficult for
an AUV to hold its position, especially in strong currents.

The objective for our work is to develop and test an algorittemcooperative positioning of multiple mobile
undersea vehicles that can use acoustic modems concurfenthoth ranging and for communication [FJG1].

The solution must be robust to the errors and time delaysatieasinherent to acoustic range measurements and must
take into account the severe bandwidth constraints of -sfatiee-art undersea acoustic modems. This restriction
prevents the transfer of full state information betweeniclek.

The cooperative navigation problem is complementary tgtbblems of cooperative motion planning and control
for underwater platforms. For example, Leonard et al. haldressed a class of cooperative adaptive sampling
problems for networks of AUVs and underwater gliders [PIZ]. In this work the motion of a fleet of vehicles
is directed to acquire optimal data sets based on the pi@uicof numerical ocean models. This work typically
assumes that accurate navigation information is availdbteexample through GPS measurements obtained at the
surface. This scenario provides a compelling applicaticenario in which our cooperative navigation techniques
could be applied, obviating the need for all vehicles in tieetfito surface for positioning.

Using a one-way messaging system with the WHOI modem, Eustied. [EWSGO07] recently implemented a
least squares version of a maximum likelihood algorithm daryc out moving baseline navigation. The approach
utilized a particularly accurate heading and dead-recigsiystem and as well as a specially designed low drift

timing clock.

II. TECHNICAL APPROACH

In order to cooperate during their mission the AUVs will betfiited with acoustic modems. Data rates on

the order of 100 bytes/s over distances of up to 5 km have bekieved, but given varying channel quality,
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multi-path propagation and possible interference witheptcoustic sources, these can drop to as low as 32 byte
data packets sent every ten seconds. Furthermore, the Isamallvidth of the frequency spectrum which is usable
for acoustic communication restricts the use of Frequddigision-Multiple-Access (FDMA) schemes for multiple
channels. The modem which is used throughout these expasrhas been developed by the Acoustics Group at
WHOI [FJG01]. A special feature of this modem is its ability to embednaet stamp into the data packet and
transmit messages which are synced to a pulse-per-sec®®) @gnal if such a signal is provided. This signal
can be obtained from a GPS receiver and thereby allows alemedo be synced to the same global reference
clock. When the AUV is submerged and no GPS is available, th® §l§nal is obtained from a precise timer
which is synchronized to the GPS clock at the surface [EWSG0The transmitting and receiving modem have

a PPS signal the receiving modem knows when the message dassést. This feature is particularly useful for
cooperative navigation as each listener overhearing srrdted data package can now estimate its distance to the
transmitting vehicle based on the time of flight (TOF).

In general, any asset in the water outfitted with an acoustidem (AUV, ship, ASC, fixed mooring) can
participate actively (by transmitting navigation infortiea) or passively (by receiving). We assume, however, for
the remaining discussion that an AUV navigates by receivingdtiple messages from a CNA. It is important to
note that it does not matter if the transmissions are all bgrihe same CNA or each time by a different one. The
localization algorithm is decentralized and each noderpm@tes every overheard data packet which contains an
estimate of the transmitting vehicle’s position (latitudengitude and depth) as well as uncertainty information.
Assuming that most data packets transmitted contain tfigsnration, it is not necessary to transmit data packets

dedicated to cooperative navigation, which is crucial gitlee small available bandwidth.

A. The Cooperative Navigation Algorithm

With each successful transmission at tilethe AUV receives an estimate of the CNAs positiaf¥ (k) =
[2€ (k),yC (k)]T, the covariance matrixP“ (k), which accounts for the confidence the CNA has in each compone
of x%(k), a depthz“ (k) and the range (k) between the AUV and the CNA.

x¢ (k) and P° (k) can be a snapshot from the navigation filter running on the @K#rom the GPS in case the
CNA is at the surface. The rangék) is directly obtained by the AUV through the PPS-synced trassion feature.
Many experiments have shown that the error in the range memsmtr (k) is only weakly range-dependent and
can be modeled as a Gaussian with me@r) and a fixed variance?. As depth can be accurately measured with
a pressure sensor, the AUV can use its deptiik) and the depth received from the CNA'(k) to project the
CNA's position into a 2D plane at“ (k) and thereby reducing the cooperative localization from at8 2D

problem.
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Fig. 1: Computing two possible positions of the AUV#étn) (21 (m), yi*(m) andzs' (m), y5(m)) using the dead-
reckoning informatiordz,,,,, dy.., and the information:“ (n),y“ (n) andr(n) received att(n) from CNA1 and

2% (m),y“(m) andr(m) received att(m) from CNA2

Furthermore, the AUV builds a matrid where each entryD(n,m) contains the distance travelelf-= =
[d2mm, dymr) T between receiving a transmissiont@t) and att(m) as obtained from proprioceptive measurements

as well as the covariance mat;—; associated with that measurement.

O’deQ 0
0 O'dym2
Figure 1 shows how the AUV uses information received (at) and ¢(m) to compute two possible solutions
for its position att(m): The circle with radius-(n) defines all possible positions &fn). Shifting the center of
this circle by [dz,, ., dyn )T and solving the resulting quadratic equation, we obtaintaXsé(m) of 0, 1 or 2

intersections with the circle around” (m) with radiusr(m).

XA (m) = Fle(m)®, a(m), r(n),r(m), dmm) 1)
with
i (m)
XAm)=0 or  XAm)=xd(m) or  X%(m)=
' (m)
Using other values fon (n = [1,...,m — 1]), we can compute up t@(m — 1) solutions forz“(m). For

the upcoming computations we assume that wequselutions. The Jacobian of the intersection functiBrwith
respect to the measured and transmitted parametefs), z¢ (m), r(n), r(m), dum is J,.m and can be used to

computeP*(m) the covariance of:*(m). P“(m) is given by
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A _ T Ty _ T
PAm) = | 7, v, = Ty Gd” @)
Oy (M) 0y~ (m)
with
e o2 -
0w (1) 05, (n) 0 0 0 0 0 0
oC2(n) 0% (n) 0 0 0 0 0 0
0 0 o%%m) oS%m) 0 0 0 0
2 2
G — 0 0 0. (m) oS, (m) 0 0 0 0
’ 0 0 0 0 o.2(n) 0 0 0
0 0 0 0 0 0.2(m) 0 0
0 0 0 0 0 0 0422 (n,m) 0
0 0 0 0 0 0 0 oay?(n,m)
and
dz(m) 8z (m) Bz (m) Bx?(m) Oz (m) Oz(m) dz*(m) Oz (m)
J _ 0z (n) 9y (n) 0z€(m) 90y (m) or(n) or(m) Adxpn,m Odyn,m
o oy’ (m)  Oyi(m)  Oyt(m) Oy(m) Oyt(m) Oyl(m) Oyt(m) Iy’ (m)
0z (n) 9y (n) 9z (m) 90y (m) or(n) or(m) Adxpn,m Odyn,m

All possible solutions forz () and their respective covariancé¥’(m) are combined into a matri$(m),

wherew is the index for all solutions at timgm).

v Ve Vay Vya Vyy
w(m) yp(m) of *(m) o *(m) of F(m) of *(m)
L q q qax qzy qyzx Qyy -

We also define a position matrik(m — ¢) which stores all possible past positions of the AUV, goingkbto

t(m—q), i.e.x(m—o); Yu=[1...q],0=1...q|, their respective covarianceB’ (m — o) and an associated

accumulated transition cost,(m — o) at t(m — o), wherew indexes all possible positions, covariances and costs

att(m — o).

October 30, 2008 DRAFT



i m—1) y(m—1) Uﬁmz(m—l) alAny(m—l) c1(m—1)
zd(m—1) y2m—1) JA_Q(m—l) ool 2(mfl) cu(m —1)
i (m—1) y(m—1) UA_,vz(m -1) ... o 2(m —1) ¢4(m—1)

2(mfo) c1(m — o)

A A A 2 A 2 U:[l q]
Tm—q)=| i (m—0) yi(m—o0) off “(m—o) ... on,, (m—o) c(m—o) |,
o=11...q|
2
214 A {;:m {;}m (m—o0) cq(m—o)

2 2
wtm—q) yifm—q) off “(m—q) ... of “(m—q) c(m—q)
2 2
zim—q) ym—q) o “(m—q) ... ot “(m—q) culm—q)
2 2
L a(m—q) yrm—q) ol “(m—q) ... of (m—q) com—q) |

If a known positionz“(0) (obtained on the surface through GPS) is available in thénbggy it can be used
to initialize T'(0) = [z(0) ¢(0) = 0]. If no initial position is available, the first set of soluti®.S(0) initializes
T(0) and position estimates become available when subsequentation packages are received.

Our cost functionC,, ,(m — o, m) computes the cost (inverse of likelihood) of the AUV havimgveled from
@ (m — o) to @ (m) given z} (m — o), P2 (m — o), &} (m), P(m), de—smr, Qo

This cost is expressed by the “distance” betwéerf (m — o) + d—), a solution att(m — o) forward
propagated by the dead-reckoning informatibf— ), with the associated covarian¢®: (m — o) + Qr=om)

andz# a solution att(m) with the associated covariand®’'. The distance metric used is the Kullback-Leibler

divergence given by
( det(P%)
n
det PA — 0) + Qm)
T _
T (@ — @A - 0) + dis)) T(PA) M (@ — (@ — 0) + o)) — 2)

Using 3 we now compute the total cast,(m — o, m) by computing the cost,, ,(m — o, m) for all ¢*> possible

1

) + trace((Pf)fl(P;j(m —o)+ Qm))

1
Cu,u( 5

®)

transitions fromT'(m — ¢) to S(m) and adding the new transition cast ,(m — o, m) to the accumulated cost

cu(m — o).
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Cup(m—o0,m) = Cy(m —o,m) + c,(m — o) Vu=[1...q,v=[1...ql,o=11...q] 4

We then form a new position matriX(m)

2 2 2 2
L @i (m) ygi(m) of “(m) of “(m) op “(m) og “(m) cg(m) ]

wherec,(m) is the smallest accumulated cost associated with the ti@mgd solutionz (m) from of all ¢

possible positions?! (m — o).

cv(m):rrvlliun(cuyv(m—o,m)) Vo=[l...q},o=[1...q]. (5)

All solutionsz:} (m) are now hypotheses for possible positions of the AUY{at) and weighted by the associated
accumulated transition cost (m). The likeliest positione (m), i.e. our computed solution far(m) is the one

with the smallest accumulated transition cost

x (m) with w s. t. ¢,y (m) = min(c, (m)) (6)

Yu

B. Example

A single iteration of algorithm 1 is shown in the followingaxple. Figure 2 shows a snapshot@3) during a
cooperative navigation experiment. The AUV (here simuldtg an ASC which also provides GPS for ground-truth)
has just received a position/range-pair from the CNA (furltle). This circle intersects with the position/rangerpa
received at(32) (dashed circle) and forward propagated by the dead-reckdistancedsz; 33 to x%(32"). It also
intersects with other position/range-pairs received(a}, (1 < k < 32) (positions of CNA not shown) forward
propagated ta:“ (k') by the corresponding dead-reckoned distardges. All intersections and therefore possible
solutions att(33) are shown with their corresponding accumulated transitimst. The inset in figure 2 shows the
detailed view near the ground-truth (GPS) position. The ated position at(33) (marked with a large "X”) is
the one with the smallest accumulated transition cost teaut of all possible positions:(33). In this case it
is not the one closest to the GPS-derived position.

The complexity to compute a single position(¥q®) wheregq is the number of past measurements taken into
account. The maximum frequency at which this computatiep $ invoked is limited by the duration of a data
packet transmission. As the transmission of a data packes th0 s the highest frequency at which algorithm 1 is
called is fhax = 0.1 Hz. Forg =~ 10 the time to compute a new position is t=0.1 s on a 1 GHz PC. Thikes this

algorithm well suited to run on the Main Vehicle Computer oflay’'s AUVSs.
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1: Initialize position matrixT'(0) = [*(0) ¢(0) = 0]

2: loop {compute positioh

3 m++

4:  Wait for new range/position paitC (m),zC (m),P (m),(m) from CNA
5. Usez%(m) to projectz®(m) to a plane at the AUV's depth” (m)

6: for j =1 to ¢ do {Calculate intersection solution between now) andj steps in the past

7: n=m — ]
8 @ (m) — (Dla(m)C 2(m)C r(n),r(m),de {POSItIOR
_ Ay T ,
9 P; (m) = JnmGrnmdym {Covariancé
10: S(m) « x(m), P} (m) {Add solutionz(m) and its covarianceP/'(m) to solution matrix}
11:  end for

12:  for o =1 to ¢q do {lterate through all past time steps

13: for u =1 to ¢ do {lterate through all positior}s
14: for v = 1 to ¢ do {Iterate through all solutior}s
15: Cup(m —0,m) — cu(m = 0) + Bea(m—o0),PA(m—o0)@d (m).P2 (m). s Qs
16: end for
. Cv(m):minVu(cu‘v(m_ovm’)) A A
17: T(m) - [z (m) Py(m) cy(m)]
18: end for
19: end for

20.  The computed position @{m) is : 2 (m) = x2(m) with w s. t. ¢,,(m) = miny, (c,(m))

v

21: end loop

Algorithm 1: Summary of cooperative navigation algorithm.

C. Other Possible Approaches

There exist a number of alternative approaches which peratking of target positions in the face of uncertain
position measurements. In particular, recursive Bayesstimation is a probabilistic approach for estimating a
probability density function (or more specifically an AUV gition) using measurements received over time. The
Kalman Filter [Kal60] is the optimal Bayesian filter for adiar system receiving measurements which are observed
in Gaussian noise. A Taylor expansion of the dynamics of alim@ar system about its current mean and covariance
give rise to the nonlinear Extended Kalman Filter (EKF) [z

Recent attempts to fully recognize the difficulties of nore&ar non-Gaussian filtering led to Sequential Monte
Carlo, commonly known as particle filtering [DdFGO00]. Palgifiltering is an advanced simulation technique which
avoids the assumptions mentioned above by instead dirsatiypling the underlying distribution. Both of these

approaches are considered to be less suitable for the mbesgjine navigation problem for the following reasons:
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Fig. 2: All possible solutions for solution #33 with accumtgld transition cost; Inset: Detailed view of selected

solution and GPS ground-truth

Firstly the Kalman filter assumes measurements are digtdboormally around the true mean. For the acoustic
channel in water this is most certainly not the case. Sigefidctions from the surface of the water as well as from
temperature or salinity discontinuities within the watetuenn itself lead to a distribution which is not only heavy-
tailed but rather a complex multi-modal distribution whishdifficult to model and constantly changing [VBL96].
Figure 3 shows an example of range data obtained from LBLdreadescribed in section | which clearly show
outliers. Olson et. al [OLT04] show how the errors in timeflight (range) measurements do not have a Gaussian
distribution.

While the WHOI acoustic modem does employ some techniquepirass the multi-modality of the distribution,
it is expected that even a single occasional outlier measemewill introduce a significant bias to the Kalman filter
estimate, leading to an unacceptably long period of timerdeconvergence to the correct AUV position estimate.
In section IV-D and figures 11and 12 an EKF is implemented Wwiillastrates this effect.

Secondly the multi-modal nature of the distribution couthaps be reconciled using a particle filter. To do so

with such low frequency measurements would require a langeigh particle cluster to adequately sample the large
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Fig. 3: Time-of-flight obtained from four LBL beacons. Theoplshows significant outliers for all beacons,
particularly between 400 s and 600 s

area of uncertainty that develops between corrections +em@f perhaps hundreds of meters square. It would also
require the storage of the paths of each particle path — gahkacorrection step could be applied to the delayed
state patrticle filter. It is considered that such an appragahld be disproportionate to the problem at hand.

Again an example of particle filter-based MLBL tracking isogim in section IV-D and figures 11 and 12 with

further discussion.

For these reasons, our approach proposed earlier in thisrséx considered to be more suitable for solving this
problem.

IIl. EXPERIMENTS

To test the algorithm we performed three separate expetimeich involved different surface and underwater
vehicles with very different characteristics. The first esment using surface craft as CNAs enabled us to collect
GPS position so that the algorithm’s results could be cosgpagainst ground truth. The second and third experiment
involved two types of underwater vehicles using a surfaedt @s CNA. One was a buoyancy driven glider, the

other a propelled AUV. All three vehicles and their capaiei are described in the following sections.
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(a) Three kayaks navigating cooperatively (b) Towfish with modem transducer

A. Surface crafts only

The first experiment used several low-cost ASCs. The ASC asvshin Figure 4a and described in [CIN05].
It is a kayak hull outfitted with a thruster, a mini-ATX PC, GRS8d the same acoustic modem which is also used
on the AUVs and glider. The vehicle dynamics of the ASC are mamable to those of a mid-sized AUV. By using
only the acoustic modem to exchange information and estimatges between the two vehicles, we have applied
the same restrictions which are encountered in an AUV-ooénario while at the same time being able to compare
the algorithm’s navigation performance against the "tr@&S position. Figure 4b shows the modem transducer
mounted into a towfish which was hanging about 2 m below thé kee

Three ASCs were set up to run in formation along a tracklinédlenbroadcasting their position information
over the acoustic modem. Each ASC in the formation was abjmtticipate actively, by sending information, and
passively by computing its position estimate based on tfarimation obtained from the other two, but the results
are only shown for one ASC of the formation. In this case twgaka act as the "CNAs” while the other kayak
acts as the "AUV” . In the setup shown in Figure 4a the centgakaan a preprogrammed mission using its GPS
for navigation. The other two kayaks followed in a predeieed formation in order to stay within range of the
acoustic modems. The position/range-pairs obtained fl@rtwo CNAs over the acoustic modem were logged by

the AUV-kayak and the positions were computed in post-Bsicg.

B. Kayaks and an underwater glider

The second experiment which took place during the MB06 éwpmet in Monterey Bay, CA in August 2006
involved two ASCs as described in the previous section andnaerwater glider operated by the Applied Physics
Lab of the University of Washington (APL-UW). A glider shown Figure 4 is a buoyancy driven vehicle. By

pumping oil from an internal reservoir to an outside bladtie glider can change its displaced volume and become
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positively or negatively buoyant. A set of "wings” adds avilard component to the otherwise purely vertical motion.
The glider performs a sawtooth pattern which can take it fatldeof more than 2000 m. The internal battery pack
can be shifted along the longitudinal axis to provide pitcimtool as well as rolled around the longitudinal axis
to provide yaw control in conjunction with a set of verticaldi A detailed description ddeaglider can be found

in [EOLT01]. The low power consumptior 1 W) makes for very long duration missions which can last up to
half a year. While on the surface, the glider can reset itsgadin using a GPS, but during the dive the very small
power budget only allows for very simple navigation sensmich as a depth sensor and a compass. The information
from these sensors together with a vehicle model is usedrpute dead-reckoning navigation information. The
position estimate derived from these sensors can drifttataaup to 30 % of distance traveled, especially when
underwater currents are present. As a result the drift ratelead to a large cumulative navigation error during a
dive which can typically last up to several hours. This makegider particularly suited for cooperative navigation
as in a scenario with several gliders, a surfaced glider adttess to GPS could provide navigation information for
every submerged glider within communication range. Whike plower consumption of an acoustic modem is very
high during transmission~ 20 W), only a small number of these transmissions would ocditevthe glider is

on the surface which takes place about every 2 h. In receivdentite power consumption drops to 0.1 W. As a
result an acoustic modem would only add about 10-15 % to &iggighower budget. During the MB06 experiment
a modem was added to a glider for the first time. As the modemonbscapable of logging information and did
not have access to the gliders main vehicle computer (whiokiiges the dead-reckoning information), on-board
processing was not possible. The ASCs measured the randee tgliler and by combining the logs from the
kayaks, the glider's Main Vehicle Computer and the glidéog of the modem traffic it was possible to compute
post-processed solutions of the glider’s positions. Tralel water of Monterey Bay prohibited dives deeper than
30 m. As the distance traveled in horizontal direction dyignsingle dive is directly proportional to the maximum
achievable depth, the depth limit only allowed for transsechich were about 100 m long. The main goal of the
experiment was to demonstrate the feasibility of glider ocamication for navigation purposes. Future experiments

will involve longer and deeper dives leading to longer tesmtss.

C. Kayaks and an AUV

During a demonstration at thiéaval Surface Warfare Center (NSWC) in Panama City, FL, USA two ASCs and
a Bluefin 12" AUV (figure 5) ran several missions where the AS€td as CNAs and followed the AUV while
sending their GPS-derived position over the acoustic moddma AUV also obtained distances to the transmitting
ASC and stored both information for post processing. Grauth was not directly available, but by post-processing
(provided by Bluefin) data from the sophisticated and welibcated sensor package and including the position
obtained through the GPS after surfacing, accurate naeigatformation was available which was used to compare

the results of the CN algorithm.
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Fig. 4: University of Washington - Applied Physics Lal8saglider

Fig. 5: Two MIT ASCs and one Bluefin 12" AUV

October 30, 2008 DRAFT



15

600

X GPS (Kayak)
x Computed position (Kayak)

550

500 / X 1

Northings [m]

450 / .

400}/

L i i i i i i
600 650 700 750 800 850 900
Eastings [m]

Fig. 6: GPS tracks of CNA (ASC) and computed positions

V. RESULTS
A. Surface crafts only

Post-processing the data logged on the ASC acting as a sterfay an AUV we computed the position estimate
whenever a broadcast from any of the two CNAs was succegstidkived. Figure 6 shows the GPS track of the
ASC and the computed positions with their associated etlipse. The tracks of the CNAs are not shown. Figure 7
shows the error of the computed position, the distance letviee computed and the GPS position. One factor
that contributes to the error are the differences in the G&&eatl positions for CNA and AUV. The larger errors

(solution #6, #15 and #16) are associated with large erroteé range measurements.

B. Kayaks and an underwater glider

As described earlier, the shallow depth of Monterey Bay atlgwed for shallow diving depths and, as a result,
very short transects of the glider. Figure 8 shows the mostiof the two ASCs (acting as CNAs) as well as the

dead-reckoned and computed positions of the glider. Thet islsows a detailed view of the glider track (dead-
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reckoned and computed). The GPS fixes mark the last GPS dgragtion before the glider submerged as well
as the first one after it surfaced. Due to the short transecttimulative error of the dead-reckoned position is not
significantly above the uncertainty of the computed posjttmwever the computed position just before surfacing is
much closer to the GPS surfacing position than the deadretkone. Future experiments involving longer dives
with transects of several kilometers in length should leadignificant differences between the dead-reckoned and

the computed position.

C. Kayaks and an AUV

A total of 16 cooperative navigation missions were run dynvhich the AUV received the CNA's position and
measured the CNA-AUV range. During these runs the AUV acted master and requested a new position every
30 seconds switching between the two CNAs. Of all positi@tpiested the AUV would receive about 60 %. For
the remaining 40 % of the queries the CNA did either not rexée request or the AUV did not receive the CNA's

answer. Sometimes the AUV would also suspend requestinggresbecause it needed to transfer other mission
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Glider positions only

specific information over the acoustic modem. As a resultup@ate rate for position/range pairs was about one
per minute.

After requesting a position/range from both CNAs, the AUVulgbsend its own position estimate over the
acoustic modem. Furthermore, the CNAs would continuousbadicast their GPS-derived position over the radio
such that both CNAs were aware of where the other one is. Kngpwhere the AUV and the other CNA is, enabled
the CNAs to follow the AUV in a way that was optimal for cooptéra navigation:

o In order to maintain optimal acoustic communication, theVAWould try to stay 150 m behind the AUV.

« To minimize the covariance of the computed solution the CMisild try to form a right-angled triangle with

the AUV in the corner with the right angle and the CNAs in thhesttwo.

As the AUV’s position updates were received at a rate of an(yt/min), it was very difficult for the CNAs
to maintain the triangular formation when the straight $ets were short (Figure 9). During the second mission

(Figure 10) CNA1 was able to maintain an aft-starboard osivith respect to the AUV while, CNA2 maintained
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an aft-port position. Even when the formation was not méameié the AUV’s broadcast enabled the CNAs to stay
close enough to maintain the acoustic communication chafiine navigation error was modeled using sensor
noise as provided in [Eus05]. While the results for only twagware shown in figure 9 and figure 10 the quality
of the results computed by the algorithm was the same forGHubs.

Figure 9 and Figure 10 show two of the missions carried oug. fiflst mission consisted of a U-shaped trackline
of about 1 km length. After initializing its position with &he AUV submerged to a depth of about 12 m and ran
the mission at a constant speed of 1.5 m/s. The detail in Eigwhows the computed position #8 and its covariance
ellipse. Also shown is the "ground-truth” track as well ag tlyground-truth” position estimate at the time of the
computed solution. As the "ground-truth” position is based post-processed dead-reckoning data the distance
between it and the computed position can only provide a tizle assessment of the algorithm’s performance.
As a result we did not compute the Euclidean distance betileeitwo positions. Also, the post-processed track
is the result of a non-linear optimization so no covarianséneate can be provided.

The second mission consisted of a 4 km east-to-west trackburing this mission the kayaks were able to
maintain the triangular formation for most of the time. Orefaxccasions during this mission the AUV would spend
four minutes transmitting mission specific data. Durings ttime no positions were queried from the CNA which
lead to the wide gaps between the computed solutions (engebe #19 and #20 as well as #27 and #28). The two
insets in figure 10 show two magnified views of the track at #h@es scale. The bottom one near the beginning
(eastern end) of the mission and the top one of the end (Wistse illustrate how beneficial the information from
the CNAs is for navigation accuracy. In the beginning theddesckoned position is very close to the "ground-truth”
and the computed solution while at the end of trackline th@tigd-truth” as well as the computed position have
consistently moved away from the dead-reckoned posititre dead-reckoning error, represented by the growing
error ellipse, depends on the distance traveled and wilvgsithout bound if the AUV is submerged, while the
error of the computed solution only depends on the positioor ®f the CNAs and the geometry. It is bounded if
the position error of the CNAs is bounded and if positionsalihivere computed from collinear or near collinear
geometries are filtered out. Toward the end of the secondanighie CNAs were not able to keep up with the AUV
which lead to a less favorable geometries resulting in #liglarger error covariances of the computed solution
than in the beginning. As in the first mission, the algorittmperformance is hard to quantify. Qualitatively, the

computed solutions are consistently very close to the "gdetnuth” throughout the entire track.

D. Comparison with Bayesian Estimators

In order to compare the performance of our CN algorithm witmmon classical approaches, an EKF and a
particle filter with 300 particles, we computed the positisging all three methods at each time instanvhen a
new range/position pair was available. Because of the highlity dead-reckoning measurements and absence of
range measurements outliers in the available kayak/AU¥ dats, each of the three methods performed similarly
and the results were within the accuracy of the ground truth.

Large underwater range measurement outliers can occur e oiwllenging experimental scenarios. In such
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Fig. 9: AUV/ASC mission 1: Dead-reckoned track and compuygesitions of AUV, GPS positions of CNAs; Inset:

Detailed view of position #8

a scenario the Gaussian noise assumption does not hold EDLFOr this reason we simulated a typical outlier
measurement by setting the range measurement obtained By atk = 5 from »(5) =116.86 m tor(5) =60 m.
All subsequent range measurements were unchanged. Theutapacks are shown in figure 11. Upon receipt
of the fifth measurement the error of the position estimatenf)s” for all three methods, most significantly for the
CN algorithm. However akt = 6 the CN algorithm instantly recovers to the correct positishile the EKF and
particle filter slowly converge towards the correct pathisTib due to the very low measurement update frequency.
The erroneous position produced by our CN algorithrh at 5 is particularly large because our approach may only
select from the solution set provided BY5). This range measurement is however inconsistent with theigus
range measurements and the dead-reckoned track and a$t @aassumuch higher accumulated c665), shown as
a single peak in figure 12. Therefore it would be possible ®u® detect and filter out false range measurements.
In summary an EKF in unsuitable for this application. Howesxenore advanced particle filter with a sufficiently

large number of particles could possibly provide similarfpenance to our proposed algorithm.
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V. CONCLUSION

This paper has described a new algorithm for cooperativigatwn of AUVs and described its experimental
validation in a sequence of experiments using a variety tdremmous marine platforms.

The algorithm is particularly well suited for underwaterpbipations where the communication bandwidth is
severely limited and only range information is availablg. t8king a large set of past range measurements into
account during each computation, the algorithm can recafter a range-measurement outlier. As the bandwidth
of the acoustic modems limits the rate at which new exterbeepneasurements are available and thereby the
computation of a new position estimate is invoked, this algm is computationally very inexpensive and well
suited to run concurrently on the Main Vehicle Computer buiaderwater platforms. The information which needs
to be obtained from other vehicles is often transmitted at @faa telemetry or mission-specific message, so no
extra bandwidth needs to be allocated to transmit informnasipecifically for cooperative navigation.

A novel feature of these experiments is that they utilize Mi&@ SCOUT autonomous surface craft (ASC) as
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Fig. 11: AUV/ASC mission 2 with falsified range measuremert & 5: The erroneous range measurement causes
a localization error for all 3 algorithms &t = 5, but while the CN algorithm has fully recovered at the negpst

EKF and particle filter only converge slowly towards the egtrsolution.

mobile platforms. While several other researchers havepadgd experiments with an individual ASC [VROSM96],
[Man97], [MMCWO00], we believe that ASCs offer extremely pafue capabilities when operated together in mobile
vehicle networks. The use of an ASC network for cooperatild/Aesearch is akin to using training wheels to
ride a bike; GPS and WiFi communications greatly ease softwavelopment for tasks such as formation-keeping.
The cost, complexity, and risk of these experiments areast len order of magnitude less than similar experiments
would be with AUVs. GPS measurements also provide a conmemjemund truth for the trajectory estimation
process.

In the evolution of our work, initial experiments using orslyrface craft were essential for the early development
of the approach. Subsequently, we were able to add two diffaypes of platforms to operate with two ASCs, a
buoyancy-driven undersea glider and a conventional AU\édoh scenario, we were able to show the effectiveness
of our algorithmic approach. In all runs for all scenarios #igorithm computed vehicle positions which were close

to the ground-truth where available or consistent with latéeé navigation information such as dead-reckoning and
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CN, EKF and Particle filter. Bottom: cost function for CN shing a very large peak & = 5 which would enable

one to filter out this inconsistent range measurement

GPS surfacings.

A number of issues remain for future research in this area @portant topic is to address adaptive motion
control for the group of AUVs. Clearly, the mobile networkncachieve better positioning accuracy if the platforms
are able to execute favorable trajectories, however, orgt aiso take into account mission objectives. An intergstin
objective would be to develop methods that concurrentlynaipe the coverage achieved by a group of vehicles
doing a task such as surveying an unknown environment, vditeiltaneously maintaining connectivity of the
network and minimizing position errors.

Future experimental work is necessary to implement therittgo in a larger network, with more than three
vehicles, to study fully the scaling properties and bandhvidilization of the algorithm. Finally further work will
consider a comparison between the proposed algorithm apesia estimators discussed in section IV-D. None-
the-less we believe that the experiments reported herader@ood evidence that the proposed algorithm provides

an effective approach to cooperative navigation of AUVsddarge class of missions, especially search and survey
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of large areas without reliance on pre-deployed acousitsfronders.
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