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Abstract

This paper describes an algorithm for distributed acoustic navigation for Autonomous Underwater Vehicles

(AUVs). Whereas typical AUV navigation systems utilize pre-calibrated arrays of static transponders, our work

seeks to create a fully mobile network of AUVs that perform acoustic ranging and data exchange with one another to

achieve cooperative positioning for extended duration missions over large areas. The algorithm enumerates possible

solutions for the AUV trajectory based on dead-reckoning and range-only measurements provided by acoustic modems

that are mounted on each vehicle, and chooses the trajectory via minimization of a cost function based on these

constraints. The resulting algorithm is computationally efficient, meets the strict bandwidth requirements of available

AUV modems, and has potential to scale well to networks of large numbersof vehicles. The method has undergone

extensive experimentation, and results from three different scenarios are reported in this paper, each of which utilizes

MIT SCOUT Autonomous Surface Craft (ASC) as convenient platforms for testing. In the first experiment, we utilize

three ASCs, each equipped with a Woods Hole acoustic modem, as surrogates for AUVs. In this scenario, two ASCs

serve as Communication/Navigation Aids (CNAs) for a third ASC that computes its position based exclusively on

GPS positions of the CNAs and acoustic range measurements between platforms. In the second scenario, an undersea

glider is used in conjunction with two ASCs serving as CNAs. Finally, in the third experiment, a Bluefin12 AUV

serves as the target vehicle. All three experiments demonstrate the successful operation of the technique with real

ocean data.

Index Terms

autonomous underwater vehicles, cooperative navigation, mobile robotics, sensor networks

I. I NTRODUCTION

The absence of Global Positioning System (GPS) signals underwater makes navigation for Autonomous Under-

water Vehicles (AUVs) a difficult challenge. Without an external reference in the form of acoustic beacons at known

positions, the vehicle has to rely on proprioceptive information obtained through a compass, a Doppler Velocity

Logger (DVL) or an Inertial Navigation System (INS) [WYSH00]. Independent of the quality of the sensors used,

the error in the position estimate based on dead-reckoning information grows without bound. Typical navigation
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errors are 0.5 % to 2 % of distance traveled for vehicles operating within a few hundred meters of the sea floor

such that their DVL has a lock on the bottom. Errors as low as 0.1 % can be obtained with large and expensive

INS systems, but for vehicles relying only on a compass and a speed estimate, errors can be as high as 20 %. By

surfacing the AUV can obtain a position update through its GPS, but this is impossible (under ice) or undesirable

for many applications. The use of static beacons in the form of a Long Baseline (LBL) array limits the operation

area to a few km2 and requires a substantial deployment effort before operations, especially in deep water.

As underwater vehicles become more reliable and affordablethe simultaneous use of several AUVs recently

became a viable option and multi-vehicle deployments will become standard in the upcoming years. This will

not only make possible entirely new types of missions which rely on cooperation, but will also allow each

individual member of the group to benefit from navigation information obtained from other members. For optimal

cooperative localization a few dedicated Communication and Navigation Aid-AUVs (CNAs), which maintain an

accurate estimate of their position through sophisticatedDVL and INS sensors, can enable a much larger group of

vehicles with less sophisticated navigation suites to maintain an accurate position, as described in [VLCW04a].

The idea of an underwater equivalent to the terrestrial GPS has long held appeal to AUV researchers. For example,

A.C.S.A. has developed a portable undersea tracking range that provides a form of “underwater GPS” in a local

area [Tho01]. In the A.C.S.A. system, a network of four surface buoys equipped with GPS and RF communications

utilize passive acoustic range measurements to track the position of a time-synchronized mobile undersea device.

While the base system usually employs moored or drifted surface buoys, experiments using self-powered surface

craft have also been performed. Further extensions of this concept could employ acoustic communications to relay

the vehicle pose estimate obtained by the surface buoys backto the undersea vehicle itself.

The motivation behind our research is to enable multiple AUVs to cooperatively navigate. The ideal solution

would enable heterogeneous teams of AUVs to operate with high navigational precision, without frequent surfacing

for GPS measurements, even for the case when only a small number of the AUVs in the team are equipped with

expensive inertial sensors. One application of this capability would be to perform rapid, large-area search with

a mixed AUV network consisting of Comm/Nav-Aid AUVs, Search-Classify-Map AUVs, and Reacquire-Identify

AUVs [VLCW04b].

The problem of cooperative navigation of AUVs is highly interconnected to the problem of undersea acoustic

communications [Cat90], [KB00], [FJG+01]. Our work capitalizes on recent progress by the AcousticModem

Group at Woods Hole Oceanographic Institution (WHOI) in developing integrated communication and navigation

(ranging) capabilities for small AUVs. This application raises several interesting challenges for acoustic telemetry

research, such as the need to handle a fully mobile network and the goal of achieving accurate one-way ranging

through stable clock synchronization.

There has been a great deal of work in terrestrial settings onthe problem of cooperative navigation of multiple

mobile robots. Often the problem is cast in terms of a mix of mobile and static nodes in a large-scale sensor

network, with either angle-only or range-only measurements. A variety of state estimation approaches have been

followed, including Markov chain Monte Carlo and set-theoretic state estimators. For example, Liao et al. [LHDS06]
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employed a particle filter state estimator for cooperative localization of multiple ground robots using range-only

measurements. Djugash et al. [DKSZ06] developed an approach that integrated Simultaneous Localization and

Mapping (SLAM) with mobile sensor networks, achieving self-calibration of a network consisting of mobile and

stationary nodes with range measurements. Grocholsky et al. [GSSK06] used nonlinear set-based state estimation

techniques for localization of multiple mobile robots withrange measurements between platforms.

The underwater setting presents some unique challenges forcooperative mobile robotics. The assumption of

a fast and reliable communication channel between all participants of the cooperative navigation effort, as made

in [RB00], [RDM02], and [MLRT04], does not hold underwater.Due to the strong attenuation of electro-magnetic

waves underwater, radio or optical communication is not practically feasible except for distances of a few meters.

As a result acoustic modems, typically operating between 15and 30 kHz, provide the only possible means of

communicating at long ranges underwater. Data rates are typically several orders of magnitude below those achieved

with radio-based communication channels [KB00]. With sound propagation being dependent on temperature and

salinity, which can both vary strongly within the water column, the acoustic communication channel is unreliable

and its performance hard to predict. This is especially truein shallow water, where severe multi-path is often

encountered. The concept of portable landmarks as outlinedin [KNH94] is not feasible as it is often difficult for

an AUV to hold its position, especially in strong currents.

The objective for our work is to develop and test an algorithmfor cooperative positioning of multiple mobile

undersea vehicles that can use acoustic modems concurrently for both ranging and for communication [FJG+01].

The solution must be robust to the errors and time delays thatare inherent to acoustic range measurements and must

take into account the severe bandwidth constraints of state-of-the-art undersea acoustic modems. This restriction

prevents the transfer of full state information between vehicles.

The cooperative navigation problem is complementary to theproblems of cooperative motion planning and control

for underwater platforms. For example, Leonard et al. have addressed a class of cooperative adaptive sampling

problems for networks of AUVs and underwater gliders [LPL+07]. In this work the motion of a fleet of vehicles

is directed to acquire optimal data sets based on the predictions of numerical ocean models. This work typically

assumes that accurate navigation information is available, for example through GPS measurements obtained at the

surface. This scenario provides a compelling application scenario in which our cooperative navigation techniques

could be applied, obviating the need for all vehicles in the fleet to surface for positioning.

Using a one-way messaging system with the WHOI modem, Eusticeet al. [EWSG07] recently implemented a

least squares version of a maximum likelihood algorithm to carry out moving baseline navigation. The approach

utilized a particularly accurate heading and dead-reckoning system and as well as a specially designed low drift

timing clock.

II. T ECHNICAL APPROACH

In order to cooperate during their mission the AUVs will be outfitted with acoustic modems. Data rates on

the order of 100 bytes/s over distances of up to 5 km have been achieved, but given varying channel quality,
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multi-path propagation and possible interference with other acoustic sources, these can drop to as low as 32 byte

data packets sent every ten seconds. Furthermore, the smallbandwidth of the frequency spectrum which is usable

for acoustic communication restricts the use of Frequency-Division-Multiple-Access (FDMA) schemes for multiple

channels. The modem which is used throughout these experiments has been developed by the Acoustics Group at

WHOI [FJG+01]. A special feature of this modem is its ability to embed a time stamp into the data packet and

transmit messages which are synced to a pulse-per-second (PPS) signal if such a signal is provided. This signal

can be obtained from a GPS receiver and thereby allows all modems to be synced to the same global reference

clock. When the AUV is submerged and no GPS is available, the PPS signal is obtained from a precise timer

which is synchronized to the GPS clock at the surface [EWSG07]. If the transmitting and receiving modem have

a PPS signal the receiving modem knows when the message has been sent. This feature is particularly useful for

cooperative navigation as each listener overhearing a transmitted data package can now estimate its distance to the

transmitting vehicle based on the time of flight (TOF).

In general, any asset in the water outfitted with an acoustic modem (AUV, ship, ASC, fixed mooring) can

participate actively (by transmitting navigation information) or passively (by receiving). We assume, however, for

the remaining discussion that an AUV navigates by receivingmultiple messages from a CNA. It is important to

note that it does not matter if the transmissions are all sentby the same CNA or each time by a different one. The

localization algorithm is decentralized and each node incorporates every overheard data packet which contains an

estimate of the transmitting vehicle’s position (latitude, longitude and depth) as well as uncertainty information.

Assuming that most data packets transmitted contain this information, it is not necessary to transmit data packets

dedicated to cooperative navigation, which is crucial given the small available bandwidth.

A. The Cooperative Navigation Algorithm

With each successful transmission at timek the AUV receives an estimate of the CNA’s positionxC(k) =

[xC(k), yC(k)]T , the covariance matrix,P C(k), which accounts for the confidence the CNA has in each component

of xC(k), a depthzC(k) and the ranger(k) between the AUV and the CNA.

P C(k) =





σC
xx

2
(k) σC

xy

2
(k)

σC
yx

2
(k) σC

yy

2
(k)





xC(k) andP C(k) can be a snapshot from the navigation filter running on the CNAor from the GPS in case the

CNA is at the surface. The ranger(k) is directly obtained by the AUV through the PPS-synced transmission feature.

Many experiments have shown that the error in the range measurementr(k) is only weakly range-dependent and

can be modeled as a Gaussian with meanr(k) and a fixed varianceσ2
r . As depth can be accurately measured with

a pressure sensor, the AUV can use its depthzA(k) and the depth received from the CNAzC(k) to project the

CNA’s position into a 2D plane atzA(k) and thereby reducing the cooperative localization from a 3Dto a 2D

problem.
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Fig. 1: Computing two possible positions of the AUV att(m) (xA
1 (m), yA

1 (m) andxA
2 (m), yA

2 (m)) using the dead-

reckoning informationdxnm, dynm and the informationxC(n), yC(n) and r(n) received att(n) from CNA1 and

xC(m), yC(m) andr(m) received att(m) from CNA2

Furthermore, the AUV builds a matrixD where each entryD(n,m) contains the distance traveleddn,m =

[dxn,m, dyn,m]T between receiving a transmission att(n) and att(m) as obtained from proprioceptive measurements

as well as the covariance matrixQn,m associated with that measurement.

Qn,m =





σdxn,m

2 0

0 σdyn,m

2





Figure 1 shows how the AUV uses information received att(n) and t(m) to compute two possible solutions

for its position att(m): The circle with radiusr(n) defines all possible positions att(n). Shifting the center of

this circle by [dxn,m, dyn,m]T and solving the resulting quadratic equation, we obtain a set XA(m) of 0, 1 or 2

intersections with the circle aroundxC(m) with radiusr(m).

XA(m) = F(x(n)C ,x(m)C , r(n), r(m),dn,m) (1)

with

XA(m) = ∅ or XA(m) = xA
1 (m) or XA(m) =





xA
1 (m)

xA
2 (m)





Using other values forn (n = [1, . . . ,m − 1]), we can compute up to2(m − 1) solutions forxA(m). For

the upcoming computations we assume that we useq solutions. The Jacobian of the intersection functionF with

respect to the measured and transmitted parametersxC(n), xC(m), r(n), r(m), dn,m is Jn,m and can be used to

computeP A(m) the covariance ofxA(m). P A(m) is given by
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All possible solutions forxA
v (m) and their respective covariancesP A

v (m) are combined into a matrixS(m),

wherev is the index for all solutions at timet(m).
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, v = [1 . . . q]

We also define a position matrixT (m − q) which stores all possible past positions of the AUV, going back to

t(m− q), i.e. xA
u (m− o) ; ∀u = [1 . . . q], o = [1 . . . q], their respective covariancesP A

u (m− o) and an associated

accumulated transition costcu(m − o) at t(m − o), whereu indexes all possible positions, covariances and costs

at t(m− o).

October 30, 2008 DRAFT



7

T (m− q) =





































































































xA
1 (m− 1) yA

1 (m− 1) σA
1xx

2
(m− 1) . . . σA

1yy

2
(m− 1) c1(m− 1)

...
...

...
...

...
...

xA
u (m− 1) yA

u (m− 1) σA
uxx

2
(m− 1) . . . σA

uyy

2
(m− 1) cu(m− 1)

...
...

...
...

...
...

xA
q (m− 1) yA

q (m− 1) σA
qxx

2
(m− 1) . . . σA

qyy

2
(m− 1) cq(m− 1)

...
...

...
...

...
...

xA
1 (m− o) yA

1 (m− o) σA
1xx

2
(m− o) . . . σA

1yy

2
(m− o) c1(m− o)

...
...

...
...

...
...

xA
u (m− o) yA

u (m− o) σA
uxx

2
(m− o) . . . σA

uyy

2
(m− o) cu(m− o)

...
...

...
...

...
...

xA
q (m− o) yA

q (m− o) σA
qxx

2
(m− o) . . . σA

qyy

2
(m− o) cq(m− o)

...
...

...
...

...
...

xA
1 (m− q) yA

1 (m− q) σA
1xx

2
(m− q) . . . σA

1yy

2
(m− q) c1(m− q)

...
...

...
...

...
...

xA
u (m− q) yA

u (m− q) σA
uxx

2
(m− q) . . . σA

uyy

2
(m− q) cu(m− q)

...
...

...
...

...
...

xA
q (m− q) yA

q (m− q) σA
qxx

2
(m− q) . . . σA

qyy

2
(m− q) cq(m− q)





































































































,
u = [1 . . . q]

o = [1 . . . q]

If a known positionxA(0) (obtained on the surface through GPS) is available in the beginning it can be used

to initialize T (0) = [xA(0) c(0) = 0]. If no initial position is available, the first set of solutions S(0) initializes

T (0) and position estimates become available when subsequent information packages are received.

Our cost functionCu,v(m − o,m) computes the cost (inverse of likelihood) of the AUV having traveled from

xA
u (m− o) to xA

v (m) given xA
u (m− o), P A

u (m− o), xA
v (m), P A

v (m), dm−o,m, Qm−o,m.

This cost is expressed by the “distance” between(xA
u (m − o) + dm−o,m), a solution att(m − o) forward

propagated by the dead-reckoning informationdm−o,m), with the associated covariance(P A
u (m− o) + Qm−o,m)

and xA
v a solution att(m) with the associated covarianceP A

v . The distance metric used is the Kullback-Leibler

divergence given by

Cu,v(m− o,m) =
1

2

(

ln

(

det(P A
v )

det(P A
u (m− o) + Qm−o,m)

)

+ trace
(

(P A
v )−1(P A

u (m− o) + Qm−o,m)
)

+
(

xA
v − (xA

u (m− o) + dm−o,m)
)T

(P A
v )−1

(

xA
v − (xA

u (m− o) + dm−o,m)
)

− 2

)

(3)

Using 3 we now compute the total costcu,v(m− o,m) by computing the costCu,v(m− o,m) for all q3 possible

transitions fromT (m − q) to S(m) and adding the new transition costCu,v(m − o,m) to the accumulated cost

cu(m− o).
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cu,v(m− o,m) = Cu,v(m− o,m) + cu(m− o) ∀ u = [1 . . . q], v = [1 . . . q], o = [1 . . . q] (4)

We then form a new position matrixT (m)
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

, v = [1 . . . q]

wherecv(m) is the smallest accumulated cost associated with the transition to solutionxA
v (m) from of all q2

possible positionsxA
u (m− o).

cv(m) = min
∀u

(cu,v(m− o,m)) ∀ v = [1 . . . q], o = [1 . . . q]. (5)

All solutionsxA
v (m) are now hypotheses for possible positions of the AUV att(m) and weighted by the associated

accumulated transition costcv(m). The likeliest positionxA
w(m), i.e. our computed solution fort(m) is the one

with the smallest accumulated transition cost

xA
w(m) with w s. t. cw(m) = min

∀v
(cv(m)) (6)

B. Example

A single iteration of algorithm 1 is shown in the following example. Figure 2 shows a snapshot att(33) during a

cooperative navigation experiment. The AUV (here simulated by an ASC which also provides GPS for ground-truth)

has just received a position/range-pair from the CNA (full circle). This circle intersects with the position/range-pair

received att(32) (dashed circle) and forward propagated by the dead-reckoned distanced32,33 to xC(32′). It also

intersects with other position/range-pairs received att(k), (1 ≤ k < 32) (positions of CNA not shown) forward

propagated toxC(k′) by the corresponding dead-reckoned distancedk,33. All intersections and therefore possible

solutions att(33) are shown with their corresponding accumulated transitioncost. The inset in figure 2 shows the

detailed view near the ground-truth (GPS) position. The computed position att(33) (marked with a large ”X”) is

the one with the smallest accumulated transition cost selected out of all possible positionsxA
v (33). In this case it

is not the one closest to the GPS-derived position.

The complexity to compute a single position isO(q3) whereq is the number of past measurements taken into

account. The maximum frequency at which this computation step is invoked is limited by the duration of a data

packet transmission. As the transmission of a data packet takes 10 s the highest frequency at which algorithm 1 is

called is fmax = 0.1 Hz. Forq ≈ 10 the time to compute a new position is t=0.1 s on a 1 GHz PC. This makes this

algorithm well suited to run on the Main Vehicle Computer of today’s AUVs.
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1: Initialize position matrixT (0) = [xA(0) c(0) = 0]

2: loop {compute position}

3: m + +

4: Wait for new range/position pairxC(m),zC(m),P C(m),r(m) from CNA

5: UsezC(m) to projectxC(m) to a plane at the AUV’s depthzA(m)

6: for j = 1 to q do {Calculate intersection solution between now(m) and j steps in the past}

7: n = m− j

8: xA
j (m)← (1)|x(n)C ,x(m)C ,r(n),r(m),dn,m

{Position}

9: P A
j (m) = Jn,mGn,mJT

n,m {Covariance}

10: S(m)← xA
j (m),P A

j (m) {Add solutionxA
j (m) and its covarianceP A

j (m) to solution matrix:}

11: end for

12: for o = 1 to q do {Iterate through all past time steps}

13: for u = 1 to q do {Iterate through all positions}

14: for v = 1 to q do {Iterate through all solutions}

15: cu,v(m− o,m)← cu(m− o) + (3)|xA
u (m−o),P A

u (m−o),xA
v (m),P A

v (m),dm−o,m,Qm−o,m

16: end for

17: T (m)
cv(m)=min∀u(cu,v(m−o,m))

← [xA
v (m) P A

v (m) cv(m)]

18: end for

19: end for

20: The computed position att(m) is : xA
w(m) = xA

v (m) with w s. t. cw(m) = min∀v(cv(m))

21: end loop

Algorithm 1: Summary of cooperative navigation algorithm.

C. Other Possible Approaches

There exist a number of alternative approaches which permittracking of target positions in the face of uncertain

position measurements. In particular, recursive Bayesianestimation is a probabilistic approach for estimating a

probability density function (or more specifically an AUV position) using measurements received over time. The

Kalman Filter [Kal60] is the optimal Bayesian filter for a linear system receiving measurements which are observed

in Gaussian noise. A Taylor expansion of the dynamics of a non-linear system about its current mean and covariance

give rise to the nonlinear Extended Kalman Filter (EKF) [Jaz70].

Recent attempts to fully recognize the difficulties of non-linear non-Gaussian filtering led to Sequential Monte

Carlo, commonly known as particle filtering [DdFG00]. Particle filtering is an advanced simulation technique which

avoids the assumptions mentioned above by instead directlysampling the underlying distribution. Both of these

approaches are considered to be less suitable for the movingbaseline navigation problem for the following reasons:
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Fig. 2: All possible solutions for solution #33 with accumulated transition cost; Inset: Detailed view of selected

solution and GPS ground-truth

Firstly the Kalman filter assumes measurements are distributed normally around the true mean. For the acoustic

channel in water this is most certainly not the case. Signal reflections from the surface of the water as well as from

temperature or salinity discontinuities within the water column itself lead to a distribution which is not only heavy-

tailed but rather a complex multi-modal distribution whichis difficult to model and constantly changing [VBL96].

Figure 3 shows an example of range data obtained from LBL beacons described in section I which clearly show

outliers. Olson et. al [OLT04] show how the errors in time-of-flight (range) measurements do not have a Gaussian

distribution.

While the WHOI acoustic modem does employ some techniques to suppress the multi-modality of the distribution,

it is expected that even a single occasional outlier measurement will introduce a significant bias to the Kalman filter

estimate, leading to an unacceptably long period of time forre-convergence to the correct AUV position estimate.

In section IV-D and figures 11and 12 an EKF is implemented which illustrates this effect.

Secondly the multi-modal nature of the distribution could perhaps be reconciled using a particle filter. To do so

with such low frequency measurements would require a large enough particle cluster to adequately sample the large
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Fig. 3: Time-of-flight obtained from four LBL beacons. The plot shows significant outliers for all beacons,

particularly between 400 s and 600 s

area of uncertainty that develops between corrections - an area of perhaps hundreds of meters square. It would also

require the storage of the paths of each particle path — so that the correction step could be applied to the delayed

state particle filter. It is considered that such an approachwould be disproportionate to the problem at hand.

Again an example of particle filter-based MLBL tracking is shown in section IV-D and figures 11 and 12 with

further discussion.

For these reasons, our approach proposed earlier in this section is considered to be more suitable for solving this

problem.

III. E XPERIMENTS

To test the algorithm we performed three separate experiments which involved different surface and underwater

vehicles with very different characteristics. The first experiment using surface craft as CNAs enabled us to collect

GPS position so that the algorithm’s results could be compared against ground truth. The second and third experiment

involved two types of underwater vehicles using a surface craft as CNA. One was a buoyancy driven glider, the

other a propelled AUV. All three vehicles and their capabilities are described in the following sections.

October 30, 2008 DRAFT



12

(a) Three kayaks navigating cooperatively (b) Towfish with modem transducer

A. Surface crafts only

The first experiment used several low-cost ASCs. The ASC is shown in Figure 4a and described in [CLV+05].

It is a kayak hull outfitted with a thruster, a mini-ATX PC, GPSand the same acoustic modem which is also used

on the AUVs and glider. The vehicle dynamics of the ASC are comparable to those of a mid-sized AUV. By using

only the acoustic modem to exchange information and estimate ranges between the two vehicles, we have applied

the same restrictions which are encountered in an AUV-only scenario while at the same time being able to compare

the algorithm’s navigation performance against the ”true”GPS position. Figure 4b shows the modem transducer

mounted into a towfish which was hanging about 2 m below the keel.

Three ASCs were set up to run in formation along a trackline while broadcasting their position information

over the acoustic modem. Each ASC in the formation was able toparticipate actively, by sending information, and

passively by computing its position estimate based on the information obtained from the other two, but the results

are only shown for one ASC of the formation. In this case two kayaks act as the ”CNAs” while the other kayak

acts as the ”AUV” . In the setup shown in Figure 4a the center kayak ran a preprogrammed mission using its GPS

for navigation. The other two kayaks followed in a predetermined formation in order to stay within range of the

acoustic modems. The position/range-pairs obtained from the two CNAs over the acoustic modem were logged by

the AUV-kayak and the positions were computed in post-processing.

B. Kayaks and an underwater glider

The second experiment which took place during the MB06 experiment in Monterey Bay, CA in August 2006

involved two ASCs as described in the previous section and anunderwater glider operated by the Applied Physics

Lab of the University of Washington (APL-UW). A glider shown in Figure 4 is a buoyancy driven vehicle. By

pumping oil from an internal reservoir to an outside bladder, the glider can change its displaced volume and become
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positively or negatively buoyant. A set of ”wings” adds a forward component to the otherwise purely vertical motion.

The glider performs a sawtooth pattern which can take it to depths of more than 2000 m. The internal battery pack

can be shifted along the longitudinal axis to provide pitch control as well as rolled around the longitudinal axis

to provide yaw control in conjunction with a set of vertical fins. A detailed description ofSeaglider can be found

in [EOL+01]. The low power consumption (≈ 1 W) makes for very long duration missions which can last up to

half a year. While on the surface, the glider can reset its navigation using a GPS, but during the dive the very small

power budget only allows for very simple navigation sensorssuch as a depth sensor and a compass. The information

from these sensors together with a vehicle model is used to compute dead-reckoning navigation information. The

position estimate derived from these sensors can drift at rate of up to 30 % of distance traveled, especially when

underwater currents are present. As a result the drift rate can lead to a large cumulative navigation error during a

dive which can typically last up to several hours. This makesa glider particularly suited for cooperative navigation

as in a scenario with several gliders, a surfaced glider withaccess to GPS could provide navigation information for

every submerged glider within communication range. While the power consumption of an acoustic modem is very

high during transmission (≈ 20 W), only a small number of these transmissions would occur while the glider is

on the surface which takes place about every 2 h. In receive mode the power consumption drops to 0.1 W. As a

result an acoustic modem would only add about 10-15 % to a glider’s power budget. During the MB06 experiment

a modem was added to a glider for the first time. As the modem wasonly capable of logging information and did

not have access to the gliders main vehicle computer (which provides the dead-reckoning information), on-board

processing was not possible. The ASCs measured the range to the glider and by combining the logs from the

kayaks, the glider’s Main Vehicle Computer and the glider’slog of the modem traffic it was possible to compute

post-processed solutions of the glider’s positions. The shallow water of Monterey Bay prohibited dives deeper than

30 m. As the distance traveled in horizontal direction during a single dive is directly proportional to the maximum

achievable depth, the depth limit only allowed for transsects which were about 100 m long. The main goal of the

experiment was to demonstrate the feasibility of glider communication for navigation purposes. Future experiments

will involve longer and deeper dives leading to longer transsects.

C. Kayaks and an AUV

During a demonstration at theNaval Surface Warfare Center (NSWC) in Panama City, FL, USA two ASCs and

a Bluefin 12” AUV (figure 5) ran several missions where the ASCsacted as CNAs and followed the AUV while

sending their GPS-derived position over the acoustic modem. The AUV also obtained distances to the transmitting

ASC and stored both information for post processing. Groundtruth was not directly available, but by post-processing

(provided by Bluefin) data from the sophisticated and well calibrated sensor package and including the position

obtained through the GPS after surfacing, accurate navigation information was available which was used to compare

the results of the CN algorithm.
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Fig. 4: University of Washington - Applied Physics Lab’sSeaglider

Fig. 5: Two MIT ASCs and one Bluefin 12” AUV
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IV. RESULTS

A. Surface crafts only

Post-processing the data logged on the ASC acting as a surrogate for an AUV we computed the position estimate

whenever a broadcast from any of the two CNAs was successfully received. Figure 6 shows the GPS track of the

ASC and the computed positions with their associated error ellipse. The tracks of the CNAs are not shown. Figure 7

shows the error of the computed position, the distance between the computed and the GPS position. One factor

that contributes to the error are the differences in the GPS derived positions for CNA and AUV. The larger errors

(solution #6, #15 and #16) are associated with large errors in the range measurements.

B. Kayaks and an underwater glider

As described earlier, the shallow depth of Monterey Bay onlyallowed for shallow diving depths and, as a result,

very short transects of the glider. Figure 8 shows the positions of the two ASCs (acting as CNAs) as well as the

dead-reckoned and computed positions of the glider. The inset shows a detailed view of the glider track (dead-
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Fig. 7: Difference between GPS and computed position

reckoned and computed). The GPS fixes mark the last GPS derived position before the glider submerged as well

as the first one after it surfaced. Due to the short transect the cumulative error of the dead-reckoned position is not

significantly above the uncertainty of the computed position, however the computed position just before surfacing is

much closer to the GPS surfacing position than the dead-reckoned one. Future experiments involving longer dives

with transects of several kilometers in length should lead to significant differences between the dead-reckoned and

the computed position.

C. Kayaks and an AUV

A total of 16 cooperative navigation missions were run during which the AUV received the CNA’s position and

measured the CNA-AUV range. During these runs the AUV acted as a master and requested a new position every

30 seconds switching between the two CNAs. Of all positions requested the AUV would receive about 60 %. For

the remaining 40 % of the queries the CNA did either not receive the request or the AUV did not receive the CNA’s

answer. Sometimes the AUV would also suspend requesting positions because it needed to transfer other mission
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Glider positions only

specific information over the acoustic modem. As a result theupdate rate for position/range pairs was about one

per minute.

After requesting a position/range from both CNAs, the AUV would send its own position estimate over the

acoustic modem. Furthermore, the CNAs would continuously broadcast their GPS-derived position over the radio

such that both CNAs were aware of where the other one is. Knowing where the AUV and the other CNA is, enabled

the CNAs to follow the AUV in a way that was optimal for cooperative navigation:

• In order to maintain optimal acoustic communication, the AUV would try to stay 150 m behind the AUV.

• To minimize the covariance of the computed solution the CNAswould try to form a right-angled triangle with

the AUV in the corner with the right angle and the CNAs in the other two.

As the AUV’s position updates were received at a rate of onlyO(1/min), it was very difficult for the CNAs

to maintain the triangular formation when the straight transects were short (Figure 9). During the second mission

(Figure 10) CNA1 was able to maintain an aft-starboard position with respect to the AUV while, CNA2 maintained
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an aft-port position. Even when the formation was not maintained the AUV’s broadcast enabled the CNAs to stay

close enough to maintain the acoustic communication channel. The navigation error was modeled using sensor

noise as provided in [Eus05]. While the results for only two runs are shown in figure 9 and figure 10 the quality

of the results computed by the algorithm was the same for all 16 runs.

Figure 9 and Figure 10 show two of the missions carried out. The first mission consisted of a U-shaped trackline

of about 1 km length. After initializing its position with GPS the AUV submerged to a depth of about 12 m and ran

the mission at a constant speed of 1.5 m/s. The detail in Figure 9 shows the computed position #8 and its covariance

ellipse. Also shown is the ”ground-truth” track as well as the ”ground-truth” position estimate at the time of the

computed solution. As the ”ground-truth” position is basedon post-processed dead-reckoning data the distance

between it and the computed position can only provide a qualitative assessment of the algorithm’s performance.

As a result we did not compute the Euclidean distance betweenthe two positions. Also, the post-processed track

is the result of a non-linear optimization so no covariance estimate can be provided.

The second mission consisted of a 4 km east-to-west trackline. During this mission the kayaks were able to

maintain the triangular formation for most of the time. On five occasions during this mission the AUV would spend

four minutes transmitting mission specific data. During this time no positions were queried from the CNA which

lead to the wide gaps between the computed solutions (e.g. between #19 and #20 as well as #27 and #28). The two

insets in figure 10 show two magnified views of the track at the same scale. The bottom one near the beginning

(eastern end) of the mission and the top one of the end (west).These illustrate how beneficial the information from

the CNAs is for navigation accuracy. In the beginning the dead-reckoned position is very close to the ”ground-truth”

and the computed solution while at the end of trackline the ”ground-truth” as well as the computed position have

consistently moved away from the dead-reckoned position. The dead-reckoning error, represented by the growing

error ellipse, depends on the distance traveled and will grow without bound if the AUV is submerged, while the

error of the computed solution only depends on the position error of the CNAs and the geometry. It is bounded if

the position error of the CNAs is bounded and if positions which were computed from collinear or near collinear

geometries are filtered out. Toward the end of the second mission, the CNAs were not able to keep up with the AUV

which lead to a less favorable geometries resulting in slightly larger error covariances of the computed solution

than in the beginning. As in the first mission, the algorithm’s performance is hard to quantify. Qualitatively, the

computed solutions are consistently very close to the ”ground-truth” throughout the entire track.

D. Comparison with Bayesian Estimators

In order to compare the performance of our CN algorithm with common classical approaches, an EKF and a

particle filter with 300 particles, we computed the positionusing all three methods at each time instantk when a

new range/position pair was available. Because of the high quality dead-reckoning measurements and absence of

range measurements outliers in the available kayak/AUV data sets, each of the three methods performed similarly

and the results were within the accuracy of the ground truth.

Large underwater range measurement outliers can occur in more challenging experimental scenarios. In such
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Fig. 9: AUV/ASC mission 1: Dead-reckoned track and computedpositions of AUV, GPS positions of CNAs; Inset:

Detailed view of position #8

a scenario the Gaussian noise assumption does not hold [OLT04]. For this reason we simulated a typical outlier

measurement by setting the range measurement obtained by the AUV atk = 5 from r(5) =116.86 m tor(5) =60 m.

All subsequent range measurements were unchanged. The computed tracks are shown in figure 11. Upon receipt

of the fifth measurement the error of the position estimate “jumps” for all three methods, most significantly for the

CN algorithm. However atk = 6 the CN algorithm instantly recovers to the correct position, while the EKF and

particle filter slowly converge towards the correct path. This is due to the very low measurement update frequency.

The erroneous position produced by our CN algorithm atk = 5 is particularly large because our approach may only

select from the solution set provided inS(5). This range measurement is however inconsistent with the previous

range measurements and the dead-reckoned track and as a result has a much higher accumulated costC(5), shown as

a single peak in figure 12. Therefore it would be possible to use C to detect and filter out false range measurements.

In summary an EKF in unsuitable for this application. However a more advanced particle filter with a sufficiently

large number of particles could possibly provide similar performance to our proposed algorithm.
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V. CONCLUSION

This paper has described a new algorithm for cooperative navigation of AUVs and described its experimental

validation in a sequence of experiments using a variety of autonomous marine platforms.

The algorithm is particularly well suited for underwater applications where the communication bandwidth is

severely limited and only range information is available. By taking a large set of past range measurements into

account during each computation, the algorithm can recoverafter a range-measurement outlier. As the bandwidth

of the acoustic modems limits the rate at which new exteroceptive measurements are available and thereby the

computation of a new position estimate is invoked, this algorithm is computationally very inexpensive and well

suited to run concurrently on the Main Vehicle Computer of all underwater platforms. The information which needs

to be obtained from other vehicles is often transmitted as part of a telemetry or mission-specific message, so no

extra bandwidth needs to be allocated to transmit information specifically for cooperative navigation.

A novel feature of these experiments is that they utilize theMIT SCOUT autonomous surface craft (ASC) as
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a localization error for all 3 algorithms atk = 5, but while the CN algorithm has fully recovered at the next step,

EKF and particle filter only converge slowly towards the correct solution.

mobile platforms. While several other researchers have performed experiments with an individual ASC [VROSM96],

[Man97], [MMCW00], we believe that ASCs offer extremely powerful capabilities when operated together in mobile

vehicle networks. The use of an ASC network for cooperative AUV research is akin to using training wheels to

ride a bike; GPS and WiFi communications greatly ease software development for tasks such as formation-keeping.

The cost, complexity, and risk of these experiments are at least an order of magnitude less than similar experiments

would be with AUVs. GPS measurements also provide a convenient ground truth for the trajectory estimation

process.

In the evolution of our work, initial experiments using onlysurface craft were essential for the early development

of the approach. Subsequently, we were able to add two different types of platforms to operate with two ASCs, a

buoyancy-driven undersea glider and a conventional AUV. Ineach scenario, we were able to show the effectiveness

of our algorithmic approach. In all runs for all scenarios the algorithm computed vehicle positions which were close

to the ground-truth where available or consistent with available navigation information such as dead-reckoning and
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CN, EKF and Particle filter. Bottom: cost function for CN showing a very large peak atk = 5 which would enable

one to filter out this inconsistent range measurement

GPS surfacings.

A number of issues remain for future research in this area. One important topic is to address adaptive motion

control for the group of AUVs. Clearly, the mobile network can achieve better positioning accuracy if the platforms

are able to execute favorable trajectories, however, one must also take into account mission objectives. An interesting

objective would be to develop methods that concurrently optimize the coverage achieved by a group of vehicles

doing a task such as surveying an unknown environment, whilesimultaneously maintaining connectivity of the

network and minimizing position errors.

Future experimental work is necessary to implement the algorithm in a larger network, with more than three

vehicles, to study fully the scaling properties and bandwidth utilization of the algorithm. Finally further work will

consider a comparison between the proposed algorithm and Bayesian estimators discussed in section IV-D. None-

the-less we believe that the experiments reported here provide good evidence that the proposed algorithm provides

an effective approach to cooperative navigation of AUVs fora large class of missions, especially search and survey
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of large areas without reliance on pre-deployed acoustic transponders.
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