000134014 001__ 134014
000134014 005__ 20190316234505.0
000134014 0247_ $$2doi$$a10.1063/1.3021053
000134014 037__ $$aARTICLE
000134014 245__ $$aN/I buffer layer for substrate microcrystalline thin film silicon solar cell
000134014 269__ $$a2008
000134014 260__ $$c2008
000134014 336__ $$aJournal Articles
000134014 500__ $$aIMT-NE Number: 492
000134014 520__ $$aThe influence of the substrate surface morphology on the performance of microcrystalline silicon solar cells in the substrate or n-i-p (nip) configuration is studied in this paper. The experiments are carried out on glass substrates coated with naturally textured films of ZnO deposited by low pressure chemical vapor deposition which serves as backcontact and as template for the light trapping texture. The film surface morphology can be modified with a plasma treatment which smoothens the V-shaped valleys to a more U- shaped form. We investigate, first, the influence of different substrates morphologies on the performance of microcrystalline (μc-Si:H) thin film silicon solar cells deposited by very high frequency plasma enhanced chemical vapor deposition. The V-shaped morphologies are found to have strong light trapping capabilities but to be detrimental for the μc-Si:H material growth and lead to degraded open circuit voltage (Voc) and fill factor (FF) of the solar cells. Hence, in Sec., we introduce a buffer layer with a higher amorphous fraction between the n doped and intrinsic layer. Our study reveals that the buffer layer limits the formation of voids and porous areas in the μc- Si:H material on substrates with strong light trapping capabilities. Indeed, this layer mitigates Voc and FF losses which enhances the performance of the μc-Si:H solar cell. Finally, by applying our findings, we report an efficiency of 9% for a nip μc-Si:H thin film silicon cell with a thickness of only 1.2 μm. © 2008 American Institute of Physics.
000134014 6531_ $$aamorphous
000134014 6531_ $$abuffer layers
000134014 6531_ $$aelemental semiconductors
000134014 6531_ $$anoncrystalline structure
000134014 6531_ $$aplasma CVD
000134014 6531_ $$aplasma CVD coatings
000134014 6531_ $$asemiconductor growth
000134014 6531_ $$asemiconductor thin films
000134014 6531_ $$asilicon
000134014 6531_ $$asolar cells
000134014 6531_ $$asurface morphology
000134014 6531_ $$asurface treatment
000134014 700__ $$aSöderström, T.
000134014 700__ $$0243396$$g190209$$aHaug, F.-J.
000134014 700__ $$0243394$$g190101$$aTerrazzoni-Daudrix, V.
000134014 700__ $$aNiquille, X.
000134014 700__ $$aPython, M.
000134014 700__ $$aBallif, C.$$g100192$$0243401
000134014 773__ $$j104$$tJournal of applied physics$$k10$$q104505
000134014 8564_ $$uhttp://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JAPIAU000104000010104505000001&idtype=cvips&gifs=yes$$zURL
000134014 8564_ $$uhttps://infoscience.epfl.ch/record/134014/files/paper_492.pdf$$zn/a$$s867670
000134014 909C0 $$xU11963$$0252194$$pPV-LAB
000134014 909CO $$qGLOBAL_SET$$pSTI$$ooai:infoscience.tind.io:134014$$particle
000134014 937__ $$aPV-LAB-ARTICLE-2008-007
000134014 973__ $$rREVIEWED$$sPUBLISHED$$aOTHER
000134014 980__ $$aARTICLE