000134014 001__ 134014
000134014 005__ 20190111222953.0
000134014 0247_ $$2doi$$a10.1063/1.3021053
000134014 037__ $$aARTICLE
000134014 245__ $$aN/I buffer layer for substrate microcrystalline thin film silicon solar cell
000134014 269__ $$a2008
000134014 260__ $$c2008
000134014 336__ $$aJournal Articles
000134014 500__ $$aIMT-NE Number: 492
000134014 520__ $$aThe influence of the substrate surface morphology on the     performance of microcrystalline silicon solar cells in the     substrate or n-i-p (nip) configuration is studied in this     paper. The experiments are carried out on glass substrates     coated with naturally textured films of ZnO deposited by low     pressure chemical vapor deposition which serves as     backcontact and as template for the light trapping texture.     The film surface morphology can be modified with a plasma     treatment which smoothens the V-shaped valleys to a more U-    shaped form. We investigate, first, the influence of     different substrates morphologies on the performance of     microcrystalline (μc-Si:H) thin film silicon solar cells     deposited by very high frequency plasma enhanced chemical     vapor deposition. The V-shaped morphologies are found to     have strong light trapping capabilities but to be     detrimental for the μc-Si:H material growth and lead to     degraded open circuit voltage (Voc) and fill factor (FF) of     the solar cells. Hence, in Sec., we introduce a buffer layer     with a higher amorphous fraction between the n doped and     intrinsic layer. Our study reveals that the buffer layer     limits the formation of voids and porous areas in the μc-    Si:H material on substrates with strong light trapping     capabilities. Indeed, this layer mitigates Voc and FF losses     which enhances the performance of the μc-Si:H solar cell.     Finally, by applying our findings, we report an efficiency     of 9% for a nip μc-Si:H thin film silicon cell with a     thickness of only 1.2 μm. © 2008 American Institute of     Physics.
000134014 6531_ $$aamorphous
000134014 6531_ $$abuffer layers
000134014 6531_ $$aelemental semiconductors
000134014 6531_ $$anoncrystalline structure
000134014 6531_ $$aplasma CVD
000134014 6531_ $$aplasma CVD coatings
000134014 6531_ $$asemiconductor growth
000134014 6531_ $$asemiconductor thin films
000134014 6531_ $$asilicon
000134014 6531_ $$asolar cells
000134014 6531_ $$asurface morphology
000134014 6531_ $$asurface treatment
000134014 700__ $$aSöderström, T.
000134014 700__ $$0243396$$aHaug, F.-J.$$g190209
000134014 700__ $$0243394$$aTerrazzoni-Daudrix, V.$$g190101
000134014 700__ $$aNiquille, X.
000134014 700__ $$aPython, M.
000134014 700__ $$0243401$$aBallif, C.$$g100192
000134014 773__ $$j104$$k10$$q104505$$tJournal of applied physics
000134014 8564_ $$uhttp://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JAPIAU000104000010104505000001&idtype=cvips&gifs=yes$$zURL
000134014 8564_ $$s867670$$uhttps://infoscience.epfl.ch/record/134014/files/paper_492.pdf$$zn/a
000134014 909C0 $$0252194$$pPV-LAB$$xU11963
000134014 909CO $$ooai:infoscience.tind.io:134014$$pSTI$$particle
000134014 937__ $$aPV-LAB-ARTICLE-2008-007
000134014 973__ $$aOTHER$$rREVIEWED$$sPUBLISHED
000134014 980__ $$aARTICLE