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Abstract. Nondeterministic weighted automata are finite automaté witmerical weights
on transitions. They define quantitative languadiethat assign to each word a real num-
ber L(w). The value of an infinite wordb is computed as the maximal value of all runs owver
and the value of a run as the maximum, limsup, liminf, limi¢gage, or discounted sum of the
transition weights. We introduce probabilistic weightedamata, in which the transitions are
chosen in a randomized (rather than nondeterministic)dastunder almost-sure semantics
(resp. positive semantics), the value of a wards the largest reab such that the runs oves
have value at leastwith probability 1 (resp. positive probability).

We study the classical questions of automata theory forghidibtic weighted automata: empti-
ness and universality, expressiveness, and closure uadeus operations on languages. For
quantitative languages, emptiness and universality afieetbas whether the value of some
(resp. every) word exceeds a given threshold. We prove sérifese questions to be decid-
able, and others undecidable. Regarding expressive paxeeshow that probabilities allow us
to define a wide variety of new classes of quantitative laggeaexcept for discounted-sum
automata, where probabilistic choice is no more expreshige nondeterminism. Finally, we
give an almost complete picture of the closure of varioussea of probabilistic weighted au-
tomata for the following pointwise operations on quanitfatanguages: max, min, sum, and
numerical complement.

1 Introduction

In formal design, specifications describe the set of cotvebtviours of a system. An implementa-
tion satisfies a specification if all its behaviours are ottré we view a behaviour as a word, then
a specification is a language, i.e., a set of words. Languzgyebe specified using finite automata,
for which a large number of results and techniques are kneem;18, 22]. We call therbhoolean
languagedecause a given behaviour is either good or bad accordirigetegecification. Boolean
languages are useful to specify functional requirements.

In a generalization of this approach, we consigeantitative languagesvhere each word is
assigned a real number. The value of a word can be interpastéde amount of some resource
(e.g., memory or power) needed to produce it, or as a quakgsurement for the corresponding
behaviour [5, 6]. Therefore, quantitative languages aeéuli$o specify non-functional requirements
such as resource constraints, reliability propertiesgeels of quality (such as quality of service).

Quantitative languages can be defined using (nondetetio)nigeighted automata, i.e., finite
automata with numerical weights on transitions [11, 15][1)h we studied quantitative languages
of infinite words and defined the value of an infinite wards the maximal value of all runs of an
automaton ovew (if the automaton is nondeterministic, then there may beymnans overw). The



(a) Low reliability but cheap. (b) High reliability but expensive.

Fig. 1. Two specifications of a channel.

value of a runr is a function of the infinite sequence of weights that appkenta. There are several
natural functions to consider, such &sp, LimSup, LimInf, limit average, and discounted sum of
weights. For example, peak power consumption can be modsléie maximum of a sequence of
weights representing power usage; energy use, as a digthaur; average response time, as a limit
average [4, 5].

In this paper, we considesrobabilistic weighted automata as generators of quantitative lan-
guages. In such automata, nondeterministic choice isaeglay probability distributions on suc-
cessor states. The value of an infinite wards defined to be the maximal valuesuch that the set of
runs overnw with value at least has either positive probabilityfsitive semantigsor probability 1
(almost-sure semantigsThis simple definition combines in a general model the r@tyuantitative
extensions of logics and automata [12, 13, 7], and the piiiedmodels of automata for which
boolean properties have been well studied [20, 3, 2]. Natettie probabilistic Buichi and coBiichi
automata of [2] are a special case of probabilistic weiglatehmata with weights 0 and 1 only
(and the value of an infinite run computedlasmSup or LimInf, respectively). While quantitative
objectives are standard in the branching-time contextafhsistic games [21, 14,16,5,9, 17], we
are not aware of any model combining probabilities and wisighthe linear-time context of words
and languages, though such a model is very natural for thefgagion of quantitative properties.
Consider the specification of two types of communicatiomeigds given in Fig. 1. One has low cost
(sending cost$ unit) and low reliability (a failure occurs in 10% of the cas®d entails an increased
cost for the operation), while the second is expensive (sgntbstss units), but the reliability is
high (though the cost of a failure is prohibitive). In the figuwe omit the self-loops with cosétin
stateqy andgq(, overack and ingi, 2, ¢}, ¢4 oversend Natural questions can be formulated in this
framework, such as whether the average-cost of every woed{send, ack}* is really smaller in
the low-cost channel, or to construct a probabilistic weghrautomaton that assigns the minimum
of the average-cost of the two types of channels. In this pameattempt a comprehensive study of
such fundamental questions, about the expressive povwsyre properties, and decision problems
for probabilistic weighted automata.

First, we compare the expressiveness of the various clagpesbabilistic and nondeterministic
weighted automata over infinite words. HomSup, LimInf, and limit average, we show that a wide
variety of new classes of quantitative languages can beetkfising probabilities, which are not



expressible using nondeterminism. Our results rely onhaaitity properties of closed recurrent
sets in Markov chains. For discounted sum, we show that iliétic weighted automata under the
positive semantics have the same expressive power as eomigstic weighted automata, while
under the almost-sure semantics, they have the same exprpssrer as weighted automata with
universal branching, where the value of a word is the mini(medtead of maximal) value of all
runs. The question of whether the positive semantics of litedylimit-average automata is more
expressive than nondeterminism, remains open.

Second, we give an almost complete picture of the closureaiigbilistic weighted automata
under the pointwise operations of maximum, minimum, and farquantitative languages. We also
define thecomplement.© of a quantitative language by L¢(w) = 1 — L(w) for all wordsw.*
Note that maximum and minimum are in fact the operation dftle@per bound and greatest lower
bound for the pointwise natural order on quantitative laagps (wherd.; < L, if and only if
L (w) < Lo(w) for all wordsw). Therefore, they also provide natural generalizatiomefdassical
union and intersection operations of boolean languages.

Note that closure under max trivially holds for the posits@mantics, and closure under min
for the almost-sure semantics. We also definecihimplement.© of a quantitative language by
L¢(w) = 1 — L(w) for all wordsw. Only LimSup-automata under positive semantics &g Inf-
automata under almost-sure semantics are closed undeuabperations; these results extend cor-
responding results for the boolean (i.e., non-quant&atiase [1]. To establish the closure properties
of limit-average automata, we characterize the expeateitttiverage reward of Markov chains. Our
characterization answers all closure questions excepgh&tanguage sum in the case of positive
semantics, which we leave open. Note that expressivengsissand closure properties are tightly
connected. For instance, because they are closed undethedxninf-automata with positive se-
mantics can be reduced tomInf-automata with almost-sure semantics and.ii@Sup-automata
with positive semantics; and because they are not closeerwadnplement, theimSup-automata
with almost-sure semantics ahtinInf-automata with positive semantics have incomparable sxpre
sive powers.

Third, we investigate the emptiness and universality potd for probabilistic weighted au-
tomata, which ask to decide if some (resp. all) words haveuwevabove a given threshold. Using
our expressiveness results, as well as [1, 8], we estalaiak slecidability and undecidability results
for Sup, LimSup, andLimInf automata; in particular, emptiness and universality ameaitable
for LimSup-automata with positive semantics and kamInf-automata with almost-sure semantics,
while the question is open for the emptinessLofilnf-automata with positive semantics and for
the universality oLimSup-automata with almost-sure semantics. We also prove thidalgtity of
emptiness for probabilistic discounted-sum automata paiitive semantics, while the universality
problem is as hard as for the nondeterministic discountmd-automata, for which no decidability
result is known. We leave open the case of limit average.

2 Definitions

A quantitative language over a finite alphabgis a functionZ : X — R. A boolean language (or a
set of infinite words) is a special case whéiev) € {0, 1} for all wordsw € Y. Nondeterministic
weighted automata define the value of a word as the maximaéwafl a run [7]. In this paper, we
study probabilistic weighted automata as generator of tifaséime languages.

% One can defind.(w) = k — L(w) for any constank without changing the results of this paper.



Value functions. We consider the following value function&l : Q¥ — R to define quantitative
languages. Given an infinite sequence vyv; ... of rational numbers, define
— Sup(v) = sup{v, | n > 0};

LimSup(v) = limsup v, = lim sup{v; | i > n};

n—0o0

LimInf(v) = liminf v, = lm inf{v; | i > n};

n—1
1
— LimA :1"f—§ i
imAvg(v) im in P U4

For0 < A < 1,Discx(v) = > A vy
=0

Given a finite setS, a probabilistic distributionover S is a functionf : S — [0, 1] such that
> scg f(s) = 1. We denote byD(S) the set of all probabilistic distributions ovst

Probabilistic weighted automata. A probabilistic weighted automatons a tuple A =
(Q,pr,X,68,~) where:

— Q is afinite set of states;

— pr € D(Q) is the initial distribution;

— Y is afinite alphabet;

- §:Q x X — D(Q) is a probabilistic transition function;
- 7:Q x X xQ — Qisaweight function.

We can define aon-probabilisticautomaton fromA by ignoring the probability values, and
saying thay is initial if p;(¢) > 0,and(q, o, ¢’) isan edge of if 6(¢,0)(¢’) > 0. The automatorl
is deterministicif p;(¢;) = 1 for someq; € Q, and for allg € Q ando € X, there existgy’ € Q
such that(q,0)(¢') = 1.

A run of A over a finite (resp. infinite) word = o105 ... is a finite (resp. infinite) sequence
r = qoo1q10 . .. Of states and letters such thal) ;(qo) > 0, and ¢i) 6(q;, 0iv1,qi+1) > 0 for
all 0 < i < |w|. We denote byy(r) = vov; ... the sequence of weights that occurrinvhere
Vi = ’y(qi, Oit1, qi+1) forall0 <7< |’LU|

The probability of a finite runs = qpo1q102 . ..0kq, over a finite wordw = o1 ...04 IS
PA(r) = pI(qo).Hle5(qi_1,oi)(qi). For eachw € X“, the functionP4(.) defines a unique
probability measure over Borel sets of (infinite) runsdobverw.

Given a value functioval : Q¥ — R, we say that the probabilisti¢al-automatonAd gener-
ates the quantitative languages defined for all wards X< by L3 (w) = sup{n | PA({r €
Run®(w) | Val(y(r)) > n}) = 1} under the almost-sure semantics, ang’(w) = sup{y |
PA({r € Run(w) | Val(y(r)) > n}) > 0} under the positive semantics. For non-probabilistic au-
tomata, the value of a word is either the maximal value of tims i.e.,.L’}**(w) = sup{Val(y(r)) |
r € Run(w)} for all w € £*) and the automaton is then calledndeterministicor the minimal
value of the runs, and the automaton is then calleidersal

Note that Buchi and coBuchi automata ([2]) are speciabsasf respectivel\LimSup- and
LimInf-automata, where all weights are eitlieor 1.

Notations. The first letter in acronyms for classes of automata can bendéi@rministic),
D(eterministic), U(niversal), @s for the language in the positive semantics, @far the language
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Fig. 2. Reducibility relationC is reducible toC’ if C — C’. Classes that are not connected by an arrow are in-
comparable. Reducibility for the dashed arrow is open. Dise-automata are incomparable with the automata
in the figure. Their reducibility relations are given in Them 5.

in the almost-sure semantics. We use the notatidoslenote the classes of automata whose deter-
ministic version has the same expressiveness as their tesndnistic version. When the type of an
automatonrd is clear from the context, we often denote its language siroplZ 4 () or evenA(-),
instead ofL3!, L1, etc.

Reducibility. A classC of weighted automata ieducibleto a clasg’ of weighted automata if for
every A € C there existsd’ € ¢’ such thatL.y = Ly, i.e. La(w) = La/(w) for all wordsw.
Reducibility relationships for (non)deterministic weig automata are given in [7].

Composition. Given two quantitative languagds L' : X¥* — R, we denote bymax(L, L')
(resp.min(L, L') and L + L’) the quantitative language that assignsx{L(w), L'(w)} (resp.
min{L(w), L'(w)} and L(w) + L’'(w)) to each wordw € X*. The languagé — L is called the
complemenbf L. Themax, min and complement operators for quantitative languages gener
respectively the union, intersection and complement dpefar boolean languages. The closure
properties of (non)deterministic weighted automata arergin [8].

Remark. We sometimes use automata with weight functions ¢ — Q that assign a weight
to states instead of transitions. This is a convenient imotdibr weighted automata in which from
each state, all outgoing transitions have the same weiglgictorial descriptions of probabilistic
weighted automata, the transitions are labeled with pritibab, and states with weights.

3 Expressive Power of Probabilistic Weighted Automata

We complete the picture given in [7] about reducibility famndeterministic weighted automata, by
adding the relations with probabilistic automata. The ltsdior LimInf, LimSup, andLimAvg are
summarized in Fig. 2s, and f6up- andDisc-automata in Theorems 1 and 5.



3.1 Probabilistic Sup-automata

Like for probabilistic automata over finite words, the quiatitve languages definable by probabilis-
tic and (non)deterministiSup-automata coincide.

Theorem 1. PosSupr and AsSuPp are reducible tdD Sup.

Proof. Itis easy to see thatdsSup-automata define the same language when interpreted as-NS
automata, and the same holds fosupP and USup. The result then follows from [7, Theorem 9].
[ |

3.2 Probabilistic LimAvg-automata

Many of our results would considétarkov chainsandclosed recurrent statea Markov chains. A
Markov chain)M = (S, E, ¢) consists of a finite sef of states, a se’ of edges, and a probabilistic
transition functiory : S — D(S). For alls,t € S, there is an edgés, t) € E iff §(s)(t) > 0. A
closed recurrent sef' of states in\/ is a bottom strongly connected set of states in the g(apF).
We will use the following two key properties of closed re@nt states.

1. Property 1.Given a Markov chainV/, and a start state, with probability 1, the set of closed
recurrent states is reached franm finite time. Hence for any > 0, there existg, such that for
all k > ko, for all starting state, the set of closed recurrent states are reached with pildipabi
atleastl — e in k steps.

2. Property 2.If a closed recurrent sét is reached, and the limit of the expectation of the average
weights ofC' is a, then for alle > 0, there exists &, such that for alk > &, the expectation of
the average weights fdrsteps is at least — e.

The above properties are the basic properties of finite sti@idov chains and closed recurrent
states [19].

Lemma 1. Let A be a probabilistic weighted automata with alphaldet= {a,b}. Consider the
Markov chain arising ofd on inputb (we refer to this as thé-Markov chain) and we use similar
notation for thea-Markov chain. The following assertions hold:

1. If for all closed recurrent set€’ in the b-Markov chain, the (expected) limit-average value (in
probabilistic sense) is at least 1, then there exjstsich that for all closed recurrent sets arising
of A oninput(t’ - a)* the expected limit-average reward is positive.

2. If for all closed recurrent set€’ in the b-Markov chain, the (expected) limit-average value (in
probabilistic sense) is at most 0, then there exjsgach that for all closed recurrent sets arising
of A oninput(b’ - a)* the expected limit-average reward is strictly less than 1.

3. If for all closed recurrent set€’ in the b-Markov chain, the (expected) limit-average value (in
probabilistic sense) is at most 0, and if for all closed reeent seta” in thea-Markov chain, the
(expected) limit-average value (in probabilistic sensegtimost 0, then there existsuch that
for all closed recurrent sets arising of on input(b’ - /)~ the expected limit-average reward
is strictly less than 1/2.

Proof. We present the proof in three parts.



Fig. 3. A PosLIMAVG for Lemma 2.

1. Letg be the maximum absolute value of the weightslof-rom any state € A, there is a path
of length at most: to a closed recurrent sétin the b-Markov chain, where: is the number of
states ofd. Hence if we choosg > n, then any closed recurrent set in the Markov chain arising
on the inpu{(®’ -a)“ contains closed recurrent sets of tAlarkov chain. Foe > 0, there exists
k. such that from any statec A, for all & > k., on inputb® from s, the closed recurrent sets of
theb-Markov chain is reached with probability at ledst ¢ (by property 1 for Markov chains).
If all closed recurrent sets in tieMarkov chain have expected limit-average value at least 1,
then (by property 2 for Markov chains) for alt> 0, there existg, such that for all > ., from
all statess of a closed recurrent set on the inplithe expected average of the weights is at least
1—¢, (i.e., expected sum of the weightdis [ - €). Conside) < ¢ < min{1/4,1/(20-3)}, we
choosej = k+1, wherek = k. > 0 andl > max{l., k}. Observe that by our choiget-1 < 2.
Consider a closed recurrent set in the Markov chairiién a)~ and we obtain a lower bound
on the expected average reward as follows: with probalilitye the closed recurrent set of the
b-Markov chain is reached withik steps, and then in the nebdteps at the expected sum of the
weights is at least— [ - ¢, and since the worst case weightig we obtain the following bound
on the expected sum of the rewards

l l 21

(1—6)'(1—1'6)—6'5'(j+1)25__ =

10 5
Hence the expected average reward is at ledstind hence positive.

2. The proofis similar to the previous result.

3. The proof is also similar to the first result. The only diffece is that we use a long enough
sequence of’ such that with high probability a closed recurrent set initdarkov chain is
reached and then stay long enough in the closed recurretat approach the expected sum of
rewards to 0, and then present a long enough sequendesuich that with high probability a
closed recurrent set in theMarkov chain is reached and then stay long enough in theedlos
recurrent set to approach the expected sum of rewards toeCcdlbulation is similar to the first
part of the proof.

Thus we obtain the desired result. [ |

We consider the alphab&tconsisting of letters andb, i.e., X = {a, b}. We define the language
L offinitely manya'’s, i.e., for an infinite wordo if w consists of infinitely many’s, thenL p(w) =
0, otherwiseL p(w) = 1. We also consider the language of words with infinitely manyu’s (it is
the complement of. r).



Lemma 2. Consider the languaggé r of finitely many’s. The following assertions hold.

1. The language can be expressed a¢lam AvVG.
2. The language can be expressed &%0sL IMAVG.
3. The language cannot be expressed\at IMAVG.

Proof. We present the three parts of the proof.

1. The result follows from the results of [7, Theorem 12] whéne explicit construction of a
NLIMAVG to expresd.r is presented.

2. A PosLIMAVG automator to expresd.r is as follows (see Fig. 3):

(a) States and weight functiofithe set of states of the automaton{ig, q1, sink}, with qo as
the starting state. The weight functigns as follows:y(go) = v(sink) = 0 andy(¢1) = 1.
(b) Transition functionThe probabilistic transition function is as follows:
(i) from ¢, givena or b, the next states aig, ¢1, each with probability 1/2;
(ii) from ¢; givenbd the next state ig; with probability 1, and fromy; givena the
next state isink with probability 1; and
(i) from sink state the next state ignk with probability 1 on bothw andb. (it is
an absorbing state).
Given the automatod consider any woray with infinitely manya’s then, the automata reaches
sink state in finite time with probability 1, and hendéw) = 0. For a wordw with finitely many
a’s, let k be the last position that anappears. Then with probability/2*, afterk steps, the
automaton only visits the state and henced(w) = 1. Hence there is a®sLIMAVG for L.

3. We show thaf.» cannot be expressed as aslAMAvVG. Consider an ALIMAVG automaton
A. Consider the Markov chain that arises frahif the input is onlyb (i.e., onb®), we refer to it
as theb-Markov chain. If there is a closed recurrent 6ethat can be reached from the starting
state (reached by any sequencexcdind b’s), then the limit-average reward (in probabilistic
sense) irC' must be at least 1 (otherwise, if there is a closed recuredidt svith limit-average
reward less than 1, we can construct a finite worthat with positive probability will reacky’,
and then followw by * and we will haved(w - b¥) < 1). Hence any closed recurrent set on
theb-Markov chain has limit-average reward at least 1 and by Larfirthere existg such that
the A((V/ - a)*) > 0. Hence it follows thatd cannot express f.

Hence the result follows. [ ]

Lemma 3. Consider the languagg; of infinitely many’s. The following assertions hold.

1. The language cannot be expressed adlamv AvG.
2. The language cannot be expressed &oaL IMAVG.
3. The language can be expressedat. IMAVG.

Proof. We present the three parts of the proof.

1. It was shown in the proof of [7, Theorem 13] that WLAVG cannot express;.



Fig. 5. A probabilistic weighted automaton ¢BL 1M AvG, PosLiM SuP, or PosLIMINF) for Lemma 4.

2. We show thaL; is not expressible by adsLiMmAvG. Consider a BSLIMAVG A and consider
the b-Markov chain arising fromd under the inpub“. All closed recurrent set§' reachable
from the starting state must have the limit-average valueast(0 (otherwise we can construct
an wordw with finitely manya’s such thatd(w) > 0). Since all closed recurrent set in the
b-Markov chain has limit-average reward that is 0, using Lerinwe can construct a word
w = (b/ - a)¥, for alarge enoug}j, such thatd(w) < 1. Hence the result follows.

3. We now show thaf.; is expressible as an A IMAVG. The automatori is as follows (see
Fig. 4):

(a) States and weight functiofhe set of states afey, sink} with gy as the starting state. The
weight function is as followsy(qp) = 0 and~(sink) = 1.

(b) Transition functionThe probabilistic transition function is as follows:

(i) from g givenb the next state igy with probability 1;

(ii) at go givena the next states arg andsink each with probability 1/2; (iii) the

sink state is an absorbing state.

Consider a wordy with infinitely manya’s, then the probability of reaching the sink state is 1,
and henced(w) = 1. Consider a wordv with finitely manya’s, and letk be the number of’s,
and then with probabilityt /2* the automaton always stay 49, and hencel (w) = 0.

Hence the result follows. [ |

Lemma 4. There exists a language that can be expressed?bglL IMAVG, PosLimSupr and
PosLiMINF, but not byNLIMAVG, NLIMSuP or NLIMINF.

Proof. Consider an automato# as follows (see Fig. 5):



1. States and weight functiofhe set of states a#gyo, ¢1, sink } with ¢y as the starting state. The
weight function is as followsy(qo) = v(¢1) = 1 andv(sink) = 0.
2. Transition functionThe probabilistic transition is as follows:
(i) from ¢ if the input letter isa, then the next states agg andg; with probability 1/2;
(i) from ¢ if the input letter ish, then the next state ignk with probability 1;
(i) from ¢, if the input letter ish, then the next state ig with probability 1;
(iv) from ¢, if the input letter isa, then the next state ig with probability 1; and
(v) the statesink is an absorbing state.

If we consider the automatad, and interpret it as a®sLIMAVG, PosLimM Sup, or POSLIMINF,
then it accepts the following language:

oo

1
L. = {a*ba*ba™b. .. | ky ko, - € Ny - [ (1 - i) > 0} U (aUd)" - a;
i=1

e, A(w) =1ifw e L, andA(w) = 0if w ¢ L,: the above claim follows easily from the argument
following Lemma 5 of [2]. We now show thdt, cannot be expressed as MAvG, NLIMSuP or
NLiIMINF. Consider a non-deterministic automatdn Suppose there is a cycté in A such that
average of the rewards i@ is positive, and”' is formed by a word that containsba If no such
cycle exists, then clearlyl cannot express . as there exists word for which, (w) = 1 such that

w contains infinitely many’s. Consider a cycl€' such that average of the rewards is positive, and
let the cycle be formed by a finite word- = aga; . . . a, and there must exist at least one index
0 < i < n such that;; = b. Hence the word can be expressedias= a’*ba’?b . . . a’*b, and hence
there exists a finite word r (that reaches the cycle) such théfwr - wg) > 0. This contradicts
that A is an automaton to expreds asL.(wg - wg) = 0. Simply exchanging the average reward
of the cycle by the maximum reward (resp. minimum rewardwshthat/ , is not expressible by a
NLIMSuUP (resp. NUMINF). |

The next theorem summarizes the results for limit-averag@naata obtained in this section.

Theorem 2. AsLIMAVG is incomparable in expressive power wRosLIMAVG and NLIMAVG,
andNLIMAvVG cannot express all languages expressibléPbglL IM AVG.

Open question.Whether NUMAVG is reducible to BsLIMAVG or NLIMAVG is incomparable to
PosLIMAVG (i.e., there is a language expressible byINAVG but not by a BsSLIMAVG) remains
open.

3.3 Probabilistic LimInf-automata

Lemma5. NLIMINF is reducible to bothAsSLIMINF and POSL IM INF.

Proof. It was shown in [7] that NIMINF is reducible to DUMINF. Since DLUMINF are special
cases of ALIMINF and RosLiIMINF the result follows. |

Lemma 6. The languagéd.; is expressible by aAsL IMINF, but cannot be expressed abla M INF
or a POSLIMINF.

10



Proof. It was shown in [7] that the languade is not expressible by NivINF. If we consider

the automatomd of Lemma 3 and interpret it as ansBIMINF, then the automatoA expresses the
languagel ;. The proof of the fact that ®sLimINF cannot express ; is similar to the the proof
of Lemma 3 (part(2)) and instead of the average reward of libeed recurrent set’, we need to

consider the minimum reward of the closed recurrentset |

Lemma 7. PosLIMINF is reducible toASLIMINF.

Proof. Let A be a PsLIMINFand we construct a gL IMINF B such thatB is equivalent toA. Let
V be the set of weights that appeardnand letv; be the least value i#. For each weight € V,
consider the BSCW A" that is obtained fromd by considering all states with weight at leasas
accepting states. It follows from the results of [1] thatd2W is reducible to ACW (it was shown
in [1] that ASBW is reducible to BsSBW and it follows easily that dually ®sCW is reducible to
ASCW). Let D” be an ASCW that is equivalent tod¥. We construct a 8sLIMINF BY from DV
by assigning weights to the accepting states éf* and the minimum weight; to all other states.
Consider a wordv, and we consider the following cases.

1. If A(w) = v, then for allv’ € V such that’ < v we haveD" (w) = 1, (i.e., the RSCW A?'
and the ACW D¥’ acceptsu).
2. Forv e V,if D¥(w) =1, thenA(w) > v

It follows from above thatd = max,cy BY. We will show later that ALiImMINF is closed under
max (Lemma 18) and hence we can construct a8LMINF B such thatB = max,cy B. Thus
the result follows. [

Theorem 3. We have the following strict inclusion

NLIMINF C PosLIMINF C ASLIMINF

Proof. The fact that NltmINF is reducible to BsLimINF follows from Lemma 5, and the fact
the PosLIMINF is not reducible to NiMINF follows from Lemma 4. The fact thatdsLIMINF
is reducible to ALIMINF follows from Lemma 7 and the fact thatsA IMINF is not reducible to
PosL imINF follows from Lemma 6. |

3.4 Probabilistic LimSup-automata

Lemma 8. NLiM Sup andPosL M Sup are not reducible teASL 1M Sup.

Proof. The languagd.r of finitely manya’s can be expressed as a non-deterministic Biichi au-
tomata, and hence as a NLSup. We will show that NLm Sup is reducible to BsLimMSuP. It
follows that r is expressible as NiM Sup and RosL M Sup. The proof of the fact that 8L 1M Sup
cannot express g is similar to the the proof of Lemma 2 (part(3)) and insteathefaverage reward

of the closed recurrent sét, we need to consider the maximum reward of the closed retset

C. [

11



Deterministic in limit NLimSup. Consider an automatos that is a NUMSuP. Letv; < v9 <
... < v be the weights that appear ih We call the automatod deterministic in the limiif for
all statess with weight greater than,, all states reachable frons are deterministic.

Lemma 9. For everyNLIM SUP A, there exists & LM SuP B that is deterministic in the limit and
equivalent toB.

Proof. From the results of [10] it follows that a NBW can be reduced to an equivalent NBBV
such thatB is deterministic in the limit. Letd be a Num Sup, and letl” be the set of weights that
appear inA. and letV = {vy,..., v} with v; < vy < -+ < vg. For eachv € V, consider the
NBW A, whose (boolean) language is the set of waxdsuch thatl 4 (w) > v, by declaring to
be accepting the states with weight at leastet B, be the deterministic in the limit NBW that is
equivalenttad, . The automato® that is deterministic in the limit and is equivalent4ds obtained
as the automaton that by initial non-determinism choosesdsn theB,'s, forv € V. [ |

Lemma 10. NLiM SuP is reducible toPosL im Sup.

Proof. Givena NLm SuP A, consider the NLv Sup B that is deterministic in the limit and equiv-
alent to B. By assigning equal probabilities to all out-going traiosis from a state we obtain a
PosLimSuPp C that is equivalent t&3 (and henced). The result follows. |

Lemma 11. AsLIMSuPr is reducible toPosL M Sup.

Proof. Consider a ALIiMSuP A and let the weights oA bev; < vo... < v;. Forl < i <[
consider the ABW obtained fromA with the set of state with reward at leastas the Biichi states.
It follows from the results of [1] that 8BW is reducible to BSBW. Let B; be the ®sSBW that
is equivalent to4;. Let C; be the automaton such that all Biichi state€3pis assigned weight;
and all other states are assignedConsider the automata that goes with equal probability to the
starting states of’;, for 1 < i < [, and we interpref’ as a PsLim Sup. Consider a wordv, and
let A(w) = v; for somel < j <[, i.e., givenw, the set of states with reward at leagtis visited
infinitely often with probability 1 inA. Hence the BSBW B; acceptaw with positive probability,
and sinceC' chooses’; with positive probability, it follows that givemw, in C' the weightv; is
visited infinitely often with positive probability, i.e(/(w) > v;. Moreover, givenw, for all v, > vy,
the set of states with weight at leagtis visited infinitely often with probability 0 iMd. Hence for
all £ > j, the automatds;, acceptsw with probability 0. ThusC'(w) < vy, for all v, > v;. Hence
C(w) = A(w) and thus AL1MSuP is reducible to BsLim Sup. [ |

Lemma 12. AsLIMSuP is not reducible td\NL im Sup.

Proof. It follows from [1] that for0 < A < 1 the following languagéd., can be expressed by a
AsBW and hence by AL 1M Sup:

Ly = {a"ba*?ba**b. .. | k1, ks, -+ € Noy. [J(1 = M) > 0}.

i=1
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It follows from argument similar to Lemma 4 that there exits A < 1 such thatl, cannot be
expressed by a NIM Sup. Hence the result follows. |

Theorem 4. AsLiMmSup andNLIM Sup are incomparable in expressive power, dPolsL M SuP is
more expressive thafisL iM Sup and NL 1M SuPp.

Lemma 13. PosCW is reducible toPosBW.

Proof. Let A = (Q, q1, X, §,C) be a BSCW with the setC' C @ of accepting states. We construct
a PosBW 4 as follows:

1. The set of states i§ U Q whereQ = {7 | ¢ € Q} is a copy of the states iQ;
2. gy is the initial state;
3. The transition function is as follows, for alle X:
(a) for all states;, ¢’ € Q, we haved(q,0,q') = 0(q,0,q¢') = 3 - 6(q,0,¢), i.e., the state/
and its copyy’ are reached with half of the original transition probaipjlit
(b) the stateg € @ such thay ¢ C are absorbing states (i.6(g, 0, 7) = 1);
(c) for all states; € C andq’ € Q, we havei(q, o,¢') = d(q,0,q'), i.e., the transition function
in the copy automaton follows that ¢&f for states that are copy of the accepting states.
4. The set of accepting statesis={g € Q | ¢ € C}.

We now show that the language of thes€ W A and the language ofdsBW A coincides. Consider
awordw such thatd(w) = 1. Leta be the probability that given the wotdeventually always states
in C are visited in4, and sinced(w) = 1 we havea > 0. In other words, as limik tends toco,
the probability that aftek steps only states it are visited iso. Hence there existg, such that
the probability that aftek, steps only states in' are visited is at least. In the automatom,
the probability to reach states &f after ko steps has probability = 1 — 2%0 > 0. Hence with
positive probability (at least - 5) the automaton visits infinitely often the states(@fand hence
A(w) = 1. Observe that since every statedn, C' is absorbing and non-accepting), it follows that if
we consider an accepting ruh then the run must eventually always visits stateS ifi.e., the copy
of the accepting stat&s). Hence it follows that for a given word, if A(w) = 1, then with positive
probability eventually always states @i are visited inA. ThusA(w) = 1, and the result follows.
|

Lemma 14. PosLIMINF is reducible toPosL M Supr, andAsL M SuUP is reducible toASL IMINF.

Proof. We present the proof thatdBLIMINF is reducible to BsLIMSup, the other proof being
similar. Let A be a PsLIMINF, and letl be the set of weights that appeardn For eachv € V,
it is easy to construct adsCW A, whose (boolean) language is the set of wordsuch that
La(w) > v, by declaring to be accepting the states with weight at leagfe then construct for
eachv € V a PosBW A, that accepts the language 4f, (such a ®SBW can be constructed by
Lemma 13). Finally, assuming thit = {v1,...,v,} with v; < v < -+ < v,, we construct the
PosLIMSuUP B; fori = 1,2,...,n whereB; is obtained from4,,, by assigning weight; to each
accepting states, and to all the other states. TheoRL im SuP that expresses the language/fs
max;—1,2...» B; and since BsLIMSUP is closed undemax (see Lemma 16), the result follows.
[
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Lemma 15. AsLIMINFandPosLimSup are reducible to each otheAsL M Sup andPosLIMINF
have incomparable expressive power.

Proof. This result is an easy consequence of the fact that an autonrderpreted as 8LIMINF
defines the complement of the language of the same automaenprieted as ®sLim SupP (and
similarly for AsLiM SupP and RosLiIMINF), and from the fact that ALIMINF and RosLIM Sup are
closed under complement, whilesAim Sup and ROSLIMINF are not (see Lemma 21 and 22).

[ |

3.5 Probabilistic Disc-automata

For probabilistic discounted-sum automata, the followiegult establishes equivalence of the non-
deterministic and the positive semantics, and the equical®f the universal and the almost-sure
semantics.

Theorem 5. The following assertions hold: (&yDisc and PosDisc are reducible to each other;
(b) UDisc andAsDisc are reducible to each other.

Proof. (a) We first prove that NBscC is reducible to BsDisc. Let A = (Q, pr, X, 04,7) be a
NDisc, and letv,in, vmax b€ its minimal and maximal weights respectively. ConsitlerRosDisc
B ={(Q,p1,X,05,7) whereds(q, o) is the uniform distribution over the set of staig¢such that
(¢,0,{¢'}) € 04. Letr = qyo1q102... be a run ofA (overw = oy09...) with valuen. For
all e > 0, we show tha? ({r € Run®(w) | Val(y(r)) > n —€}) > 0}. Letn € N such that
1{—A - (Umax — Ymin) < €, and letr,, = goo1¢102 . .. 0,q,. The discounted sum of the weightsrip
is at leasty — 1*% - (vmax). The probability of the set of runs over that are continuations of,

is positive, and the value of all these runs is at Ie;ast% - (Vmax — Ymin ), and therefore at least
1 — e. This shows thal z(w) > 7, and thusLz(w) > L4(w). Note thatL z(w) < La(w) since
there is no run i (nor in B) overw with value greater thah 4 (w). HenceLp = L 4.

Now, we prove that BsDisc is reducible to NDsc. Given a BsDIsc B = (Q, p1, X, 05,7),
we constructa NsC A = (Q, pr, X, 54,7) where(q,0,{¢'}) € 64 ifand only if 65(q,0)(¢") >
0,forallq, ¢’ € Q, 0 € ¥. By analogous arguments as in the first part of the proof,.éasy to see
thatLg = L 4.

(b) It is easy to see that the complement of the quantitatimguage defined by a UBC (resp.
AsDisc) can be defined by a NIBC (resp. ®sDisc). Then, the result follows from Padb (essen-
tially, given a UDsc, we obtain easily an N3¢ for the complement, then an equivalem@$Pisc,
and finally a AsDisc for the complement of the complement, i.e., the originalrgitative lan-
guage). |

Note that a by-product of this proof is that the language oba®sc does not depend on the
precise values of the probabilities, but only on whethey tre positive or not.

4 Closure Properties of Probabilistic Weighted Automata

We consider the closure properties of the probabilistigivesd automata under the operatiansx,
min, complement, and sum. The results are presented in Table 1.
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max |min|comp]sum | emptinessuniversality
PosSup NERV X Vv vV vV
JPOSLIMSUP | v [V | V |V X X
APOSLIMINF | / | /| x |V N N
POSLIMAVG| / | x | x | ? ? ?
PosDisc Vx| x|V Vv ? (1)
o[ ASSUP VIV] x|V v v
alAsLivsur | V[ V| x |V v v
glAsLIMINF | Vv | V| V |V X X
EAsLiMAVG | x [ | x | x ? ?
AsDisc X |V | x |V ? (1) Vv

The universality problem for NI c can be reduced to (1). It is
not known whether this problem is decidable.

Table 1. Closure properties and decidability of the emptiness atkeselity problems.

4.1 Closure undermax and min

Lemma 16 (Closure by initial non-determinism).PosLim Sup, PosLiMINF andPOsSLIMAVG is
closed undemax; and AsLIMSuUP, ASLIMINF andAsSLIMAVG is closed undemin.

Proof. Given two automatal,; andA; consider the automataobtained by initial non-deterministic
choice ofA; and A,. Formally, letq; andg, be the initial states ofi; and A, respectively, then
in A we add an initial statg, and the transition frong, is as follows: forc € X, consider the
setQ, = {qg € Q1 UQ2 | d1(q1,0)(q) > 00rdz(qa,0)(q) > 0}. Fromgo, for input lettero,
the successors are fro@), each with probabilityl/|Q,|. If A; and A, are PosLiM Sup (resp.
PosLIMINF, POSLIMAVG), then A is a RosLIMSUP (resp. PsSLIMINF, POSLIMAVG) such that
A = max{A4;, A2}. Similarly, if A; and A, are ASLIMSuUP (resp. ASLIMINF, ASLIMAVG), then
Ais a AsLiMSuPp (resp. ASLIMINF, ASLIMAVG) such thatd = min{A4;, As}. |

Lemma 17 (Closure by synchronized product)AsLIMSuP is closed undemax and POsL M-
INF is closed undemin.

Proof. We present the proof thatgh IM Sup is closed undemax. Let A; andAs be two probabilis-
tic weighted automata with weight function and-~-, respectively. Lefd be the usual synchronized
product ofA; and A, with weight functiony such thaty((s1, s2)) = max{~v1(s1),72(s2)}. Given

a pathr = ((s},s2),(s1,s%),...) in A we denote byr | 1 the path inA; that is the projec-
tion of the first component of and we use similar notation for | 2. Consider a wordo, let
max{A4;(w), A2(w)} = v. We consider the following two cases to show tHgtv) = v.

1. W.l.o.g. let the maximum be achieved By, i.e., A;(w) = v. Let B} be the set of states
in A; such that weight of; is at least. SinceA; (w) = v, given the wordw, in 4, the event
Buichi( BY) holds with probability 1. Consider the following set of paith A

II° = {r | (= | 1) € Biichi(BY)}.
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Since givenw, the event Buch{iBY) holds with probability 1 inA;, it follows that givenw, the
event//" holds with probability 1 inA. The~ function ensures that every pathe 11V visits
weights of value at leastinfinitely often. Henced(w) > v.

2. Consider a weight value > v. Let C? be the set of states in A; such that the weight of
s; is less than/. Given the wordw, sinceA;(w) < ¢/, it follows that probability of the event
coBuch(C?) in A;, given the wordw, is positive. Hence given the word, the probability of
the event coBUcliCY x C%)) is positive inA. It follows thatA(w) < v'.

The result follows. IfA; and A; are FosLIMINF, and inA we assign weights such that every state
in A has the minimum weight of its component states, and we censicas a ®SLIMINF, then
A =min{A4;, As}. The proofis similar to the result for & 1m Sup. [ |

Lemma 18. PosLiM SuP is closed undemin andAsLIMINF is closed undemax.

Proof. Let A; and A, be two RosLIMSupr. We construct a &sLiMmSurP A such thatdA =
min{ A, A2}. LetV; be the set of weights that appeardn (for i = 1,2), and letV = V; U V5 and
let v, be the least value ifY. For each weight € V; UV, = {vy,..., v}, consider the BsBW
AY that is obtained from; by considering all states with weight at leasis accepting states. Since
PosBW is closed under intersection(by the results of [2]), we canstruct a BSBW A7, that is
the intersection ofd} and A3, i.e. A7, = A} N AY. We construct a 8sLimSup BY, from A}, by
assigning weights to the accepting states ¢fj, and the minimum weight; to all other states.
Consider a wordv, and we consider the following cases.

1. If min{A;(w), A2(w)} = v, then for allv’ € V such that' < v we haveA?f/Q(w) =1, (i.e.,
the POSBW AV, acceptsu).
2. If AV (w) = 1, thenA; (w) > vandAz(w) > v, i.e.,min{A4; (w), Az (w)} > v.

It follows from above thainin{A;, A} = max,cy B},. Since RsLIMSUP is closed undemax
(by initial non-determinism), it follows that®sL im SuPp is closed undemin. The proof of closure
of ASLIMINF undermax is similar. |

The closure properties @imAvg-automata in the positive semantics rely on the followingriea.

Lemma 19. Consider the alphabe¥ = {a, b}, and consider the languagés, and L, that assigns
the long-run average number o% andb’s, respectively. Then the following assertions hold.

1. There is ndPosLIMAVG for the languag€.,,, = min{L,, L;}.
2. There is ndPosLIMAVG for the languagd.* = 1 — max{L,, Ly }.

Proof. To obtain a contradiction, assume that there existogLiMAvG A (for eitherL,, or L*).
We first claim that if we consider theMarkov or theb-Markov chain of4, then there must be either
ana-closed recurrent set ortaclosed recurrent st that is reachable ial such that the expected
sum of the weights 6’ is positive. Otherwise, if for ali-closed recurrent sets ahdtlosed recurrent
sets we have that the expected sum of the weights is zero atinegthen we fool the automaton
as follows. By Lemma 1, it follows that there existg auch thatA((a’ - b7)*) < 1/2, however,
Lm(w) = L*(w) = 3, i.e., we have a contradiction. W.l.0.g., we assume thaettseana-closed
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recurrent se such that expected sum of weights@®@fis positive. Then we present the following
word w: a finite wordw¢ to reach the cycle”, followed by a*; the answer of the automaton is
positive,i.e,, L s(w) > 0, while L,,,(w) = L*(w) = 0. Hence the result follows. [ |

Lemma 20. PosLIMAVG is not closed undemnin and ASLIMAVG is not closed undemax.

Proof. The result for ®sLIMAVG follows from Lemma 19. We now show thatsBRIMAVG is not
closed undemax. Consider the alphabét = {a, b} and the quantitative languagés and L, that
assign the value of long-run average numbereandb’s, respectively. There exists Dt AvéG (and
hence AsLIMAvG) for L, and L. We show that’.,,, = max(L,, L;) cannot be expressed by an
AsLIMAVG. By contradiction, assume thdtis an AsLim AvG with set of stateg) that defined.,,,.
Consider any:-closed recurrent’ in A. The expected limit-average of the weights of the recurrent
set must be 1, as if we consider the warl = we - a* wherewc is a finite word to reaclt’,
the value ofw* in L,, is 1. Hence, the limit-average of the weights of all the reachabtlosed
recurrentse’ in Ais 1.

Givene > 0, there existg, such that the following properties hold:

1. from any state ofl, given the word:’< with probability1 — e ana-closed recurrent set is reached
(by property 1 for Markov chains);

2. once am-closed recurrent set is reached, given the wgkd (as a consequence of property 2
for Markov chains) we can show that the following propertietd: (a) the expected average of
the weights is atleagt - (1 — ¢), and (b) the probability distribution of the states is withf the
probability distribution of the states for the wod’« (this holds as the probability distribution
of states on words’ converges to the probability distribution of states on tloedw*).

Let 3 > 1 be a number that is greater than the absolute maximum valweights inA. We chose

e > 0 such thate < ﬁ. Letj = 2 - j. (such thatj. satisfies the properties above). Consider
the word(a? - *7)~ and the answer byt must be3, asL,,((a’ - b%)~) = 2. Consider the word
@ = (a¥ - b*)* and consider a closed recurrent set in the Markov chainmlitain A on @. We
obtain the following lower bound on the expected limit-age of the weights: (a) with probability
at leastl — ¢, afterj/2 steps,a-closed recurrent sets are reached; (b) the expected avefdlge
weights for the segment betweehanda?’ is at leastj - (1 — €); and (c) the difference in probability
distribution of the states afte anda?’ is at moste. Since the limit-average of the weights of
(a7 - b%7)+ is 3, the lower bound on the limit-average of the weights is alted

(1-30 (BH0=9) 3. c.f= (-t~ ) -3¢
Z%—G—?)-G'ﬁ
>g—4d-ep
e
7 3
21075
It follows that A((a* - b%7)~) > 2. This contradicts thatl expresses.,,,. [ |
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4.2 Closure under complement

Lemma 21. PosLIMSup andAsLIMINF are closed under complement.

Proof. We first present the proof fordsLIMSUP. Let A be a R sLiIMSupP, and letV be the
set of weights that appear iA. For eachv € V, it is easy to construct adsBW A, whose
(boolean) language is the set of wordssuch thatlL 4(w) > v, by declaring to be accepting the
states with weight at least We then construct for eagche VV a POSBW A, (with accepting states)
that accepts the (boolean) complement of the language t&ecteyg A, (such a BSBW can be
constructed since®sBW is closed under complementation by the results of [1)aRy, assuming
thatV = {vy,...,v,} withv; < vy < --- < v,, we constructthe ®sLIMSuP B; fori =2,...,n
where B; is obtained fromA,. by assigning weight-v;_; to each accepting states, ana,, to
all the other states. The complementiof is thenmax{Lp,,...,Lp,} which is accepted by a
PosL im Sup (since PsSLIMSUP is closed undemax). The result for ALIMINF is similar and it
uses the closure of $CW under complementation which can be easily proved fromctbsure
under complementation ofdsBW. |

Lemma 22. AsLiMSup andPosLIMINF are not closed under complement.

Proof. It follows from Lemma 8 that the languade- of finitely manya’s is not expressible by an
AsLIM Sup, whereas the complement of infinitely manya’s is expressible as a DBW and hence
as a AsLim Sup. It follows from Lemma 6 that languagk; is not expressible as aroBL IMINF,
whereas its complemeiits is expressible by a DCW and hence@dR IMINF. |

Lemma 23. PosLIMAVG andAsLIMAVG are not closed under complement.

Proof. The fact that BsLimAVG is not closed under complement follows from Lemma 19. We now
show that ASLIMAVG is not closed under complement. Consider theilDAvVG A over alphabet
¥ = {a,b} that consists of a single self-loop state with weigHor « and0 for 5. Notice that
A(w.a¥) = 1andA(w.b¥) = 0 for allw € X*. To obtain a contradiction, assume that there exists a
AsLIMAVG B suchthatB = 1 — A. For all finite wordsw € X*, let B(w) be the expected average
weight of the finite run ofB overw. Fix 0 < € < % For all finite wordsw, there exists a number
n,, Such that the average numberdadd in w.b™ is at moste, and there exists a number,, such
that B(w.a™») < e (sinceB(w.a*) = 0). Hence, we can construct a ward= b"1a™b"2a™> . ..
such thatd(w) < e andB(w) < e. SinceB = 1 — A, this implies thatl < 2¢, a contradiction.

|

4.3 Closure under sum

Lemma 24. PosLiMm Sup andAsL 1M Sup are closed under sum.

Proof. Given two RosLIMSup (resp. ASLIMSUP) A; and Ao, we construct a 8sLim Sup (resp.
AsLimSuP) A for the sum of their languages as follows. For a fair, v2) of weights @; in 4;, for
i = 1, 2), consider a copy of the synchronized productiefand A,. We attach a bib whose range
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is {1, 2} to each state to remember that we expécto visit the guessed weight. Whenever this
occurs, the bib is set to3 — b, and the weight of the state ig + v,. All other statesi(e. when

b is unchanged) have weightin{v, + v2 | v1 € Vi A vs € Va}. Let the automata constructed
be Ay, ). ThENA = max(y, v,) A(v,,0,)- SiNCE RSLIMSUP (resp. AsLIMSUP) is closed under
max the result follows. |

Lemma 25. PosLIMINF andAsLIMINF are closed under sum.

Proof. Given two ROSLIMINF (resp. ASLIMINF) A; and Az, we construct a BsLIMINF (resp.
AsLIMINF) A for the sum of their languages as follows. Fet 1, 2, let V; be the set of weights that
appear inA;. Letvyi, = min{v; + vy | v1 € Vi Awvg € Va}. Forvy € V4 andu, € Vo, fori = 1,2,
consider the BsCW (resp. AACW) A,,, obtained from4, by making all states with weights at least
v; as accepting states. Lét,, ..,y be the BSCW (resp. ACW) such thatd,, ,,) = Ay, N Ay,:
such an BSCW (resp. ASCW) exists since BSCW (resp. ACW) is closed under intersection. In
other words, for a wordy we haveA,, ,.,)(w) = 1iff Aj(w) > v andAz(w) > ve. Let A, )
be the RsLIMINF (resp. AsLIMINF) obtained fromA4,,, ..y by assigning weight; + v to all
accepting states and weight,;,, to all other states. Then the automaton for the sur paind A,
(denoted asl; + Az) iISmax(y, v, )ev; x Vs Z(mm). Since PSLIMINF (resp. ASLIMINF) is closed
undermax the result follows. |

Lemma 26. ASLIMAVG is not closed under sum.

Proof. Consider the alphabet = {a, b}, and consider the Div AvG-definable languages, and
L, that assigns to each wotd the long-run average number @6 andb’s in w respectively. Let
Ly = L, + Ly. We show that_, is not expressible by 8L IMAVG. Assume towards contradiction
that L, is defined by an ALIMAVG A with set of state§) (we assume w.l.0.g that every statejn
is reachable). Lef > 1 be greater than the maximum absolute value of the weights in

First, we claim that from every statec (), if we consider the automatat, with ¢ as starting
state themd, (a¥’) = 1: this follows since if we consider a finite word, to reachy, thenL_ (w -
a”) = 1 and henced(w, - a¥) = 1. It follows that from any state, ask tends toso, the expected
average of the weights converges almost-surely to 1. Tiptiésif we consider the-Markov chain
arising fromA, then from any state, for all closed recurrent se€t of states reachable from the
expected average of the weights@fis 1. Hence for every > 0 there exists a natural numbkef
such that from any statg for all k > k] given the word:* the expected average of the weights is
at Ieast% with probability 1 — ~ (this is because we can chose long enokguch that the closed
recurrent states are reached with probabilityy by property 1 for Markov chains, and then the long
enough sequence ensures that the expected average agsrbdghproperty 2 for Markov chains),
and for the first; steps the expected average of the weights is at fedsThe same result holds if
we consider as input a sequencé’sfinstead ofu’s.

Consider the worab generated inductively by the following procedure:«g)is the empty word;
(b) we generatev; ., from w; as follows: () the sequence of letters addedutpto obtainw;; is
at leasti; (i4) first we generate a long enough sequengeg, of a's afterw; such that the average
number ofb’s in w; -wj_, falls below%; (4i7) then generate a long enough sequengg of b's such
that the average number@b in w;-w;, , -w/, , falls below}; (iv) the wordw; 1 = w;-w}, ;-wY, ;.
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The worduw is the limit of these sequences. For- 0, consider > 6 - k] - 8 (Wherek, satisfies the
properties described above for. By construction foi > 6-k, -3, the length ofw; is atleast ko - 3,
and hence it follows that in the segment constructed betwgamdw, 1, for all |w;| < ¢ < |w; 41|
with probability at leasi — ~ the expected average of the weights is at least

S 2
-2 14 -2

2 _
14

>

W
| =

Hence for ally > 0, the expected average of the weights is at I%aatth probability at least — ~.
Since this holds for al{ > 0, it follows that the expected average of the weights is aitlgalmost—
surely, (i.e., A(w) > £). We haveL,(w) = Ly(w) = 0 and thusL, (w) = 0, while A(w) > 3
Thus we have a contradiction.

.@I

Lemma 27. PosDisc andAsDisc are closed under sum.

Proof. The result for ®sDisc follows from Theorem 5 and the fact that N&z and UDsc are
closed under sum (which is easy to prove using a synchropizetlict of automata where the weight
of a joint transition is the sum of the weights of the corregging transitions. |

Open question.Whether BsLIMAVG is closed under sum remains open.

5 Decision Problems for Probabilistic Weighted Automata

We conclude the paper with some decidability and undedithat@sults for classical decision prob-
lems about quantitative languages (see Table 1). Most ofl tae direct corollaries of the results
in [1]. Given a weighted automatos and a rational number € Q, the quantitative emptiness
problemasks whether there exists a ward € X“ such thatL 4(w) > v, and thequantitative
universality problenasks whethef 4 (w) > v for all wordsw € X*.

Theorem 6. The emptiness and universality problemsRasSup and AsSup are decidable.

Proof. By Theorem 1, these problems reduce to emptiness affbhich is decidable ([7, Theo-
rem 1]).

The following theorems are trivial corollaries of [1, Thear 2].

Theorem 7. The emptiness problem f@osL im Sup and the universality problem foksLim Sup
are undecidable.

It is easy to obtain the following result as a straightfordvgeneralization of [1, Theorem 6].

Theorem 8. The emptiness problem férsLim Sup and the universality problem fdPosLIMINF
are decidable.

Theorem 9. The emptiness problem f&osLIMINF and the universality problem foksLim Sup
are decidable.
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Proof (Sketch)We sketch the main ideas of the proof that emptiness of chgiitomata in positive
semantics is achievable in EXPTIME and with exponential memThe proof extends easily to
PosLIMINF and to the universality problem forgh im Sup.

Emptiness of coBiichi automata in positive semantics cavidveed as deciding the existence
of a blind positive-winning strategy in a stochastic gamewoBuichi objective. We show that this
problem can be decomposed into positive winning for safetyraachability objectives.

Positive reachability. For positive winning for reachability we have the following

1. if there is a blind winning strategy for positive reachigpithen the memoryless strategy that
plays all actions uniformly is a positive winning strategy feachability;

2. from the randomized strategy there is a deterministatesyy that is positive winning (since
there is a finite path and we can select the letters of the path)

Positive safety.We first assume that finite-state randomized strategy eixis{sositive safety. We
then show that there is a finite-state deterministic styatége fix a finite-state randomized strategy
that is positive winning, then in the Markov chain obtainkeere must be a closed recurrent set that
is subset of the safe set. If we restrict the strategy to armhétestic strategy obtained from the
restriction of the randomized strategy, and the closedrrentiset will be a subset of the original
closed recurrent set, and hence we would obtain a detetinigisategy for positive safety.

From positive reachability and safety to positive coBilichiWe present an iterative algorithm. Let
C be the set of coBuchi states. Uédf, = @. We obtainlV;;.; from W, as follows: let”; be the set
of states such that player 1 can ensure staying safeuriV; with positive probability, andV;, ; is
obtained as the set of states that can regchith positive probability. Clearly player 1 can ensure
from all W, that coBuchi objective is satisfied with positive probilLet 1W* be the fixpoint.
From every state in the complementidf player 1 cannot ensure positive probability to stay safe
in C'U W*, and hence for every player 1 strategy player 2 can ensumrath+-C' N =W* with
probability 1. From every state in the complementiof player 1 cannot ensure positive probability
to reach tdl/*, and hence against every player 1 strategy, player 2 camesttsgtay safe imIl/*.
Hence given a strategy for player 1, the player 2 strateggdoh—C' N —W* with probability 1 and
stay safe in~1/* ensure that the fromWW* the coBuchi condition is falsified with probability 1.

Positive Safety Finite-memory.Consider the knowledge based constructigimhere we consider
essentially the probability support (instead of the prepiobability). If player 1 can ensure positive
probability safety with knowledge based strategy, theartyethat is a positive winning strategy for
safety. If there is no knowledge based strategy for posgafety, then for any observation based
strategy, the target set is reachednirsteps with probabilityx™ (this holds for all deterministic
strategies of lengtln, and hence for all probabilistic choices as well). It folkthat the target is
reached with probability 1.

The following result is a particular case of [1, Corollary 3]

Theorem 10. The emptiness problem férsLiM INF and the universality problem fd?osL im Sup
are undecidable.

Finally, by Theorem 5 and the decidability of emptiness f@kIc, we get the following result.
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Theorem 11. The emptiness problem fé&tosDiIsc and the universality problem fohsDisc are
decidable.

Note that by Theorem 5, the universality problem for I$D (which is not know to be decidable)
can be reduced to the universality problem fas®i1sc and to the emptiness problem fosBisc.
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