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Abstract. Nondeterministic weighted automata are finite automat# witmerical weights
on transitions. They define quantitative languadiethat assign to each word a real num-
ber L(w). The value of an infinite worab is computed as the maximal value of all runs ower
and the value of a run as the maximum, limsup, liminf, limiéage, or discounted sum of the
transition weights. We introduce probabilistic weightedamata, in which the transitions are
chosen in a randomized (rather than nondeterministic)idastunder almost-sure semantics
(resp. positive semantics), the value of a wards the largest reab such that the runs ovew
have value at leastwith probability 1 (resp. positive probability).

We study the classical questions of automata theory forghititic weighted automata: empti-
ness and universality, expressiveness, and closure uadeus operations on languages. For
quantitative languages, emptiness and universality aiieeteas whether the value of some
(resp. every) word exceeds a given threshold. We prove sdrfeese questions to be decid-
able, and others undecidable. Regarding expressive paxeshow that probabilities allow us
to define a wide variety of new classes of quantitative laggeaexcept for discounted-sum
automata, where probabilistic choice is no more expresb@e nondeterminism. Finally, we
give an almost complete picture of the closure of varioussda of probabilistic weighted au-
tomata for the following pointwise operations on quanitiatanguages: max, min, sum, and
numerical complement.

1 Introduction

In formal design, specifications describe the set of cotvebwviours of a system. An implementa-
tion satisfies a specification if all its behaviours are oditré we view a behaviour as a word, then
a specification is a language, i.e., a set of words. Languzgyebe specified using finite automata,
for which a large number of results and techniques are kneem;11, 13]. We call therboolean
languagesecause a given behaviour is either good or bad accordirgetsgecification. Boolean
languages are useful to specify functional requirements.

In a generalization of this approach, we consigeantitative languagesvhere each word is
assigned a real number. The value of a word can be interpastéde amount of some resource
(e.g., memory or power) needed to produce it, or as a quakgsurement for the corresponding
behaviour [4, 5]. Therefore, quantitative languages agéulito specify non-functional requirements
such as resource constraints, reliability propertiesgeels of quality (such as quality of service).

Quantitative languages can be defined using (nondeteiio)nigeighted automata, i.e., finite
automata with numerical weights on transitions [9, 10].1p fve studied quantitative languages of
infinite words and defined the value of an infinite wardas the maximal value of all runs of an
automaton oveuw (if the automaton is nondeterministic, then there may beymans overw). The



value of a rurr is a function of the infinite sequence of weights that appkeaga:. There are several
natural functions to consider, such &sp, LimSup, LimInf, limit average, and discounted sum of
weights. For example, peak power consumption can be modsléie maximum of a sequence of
weights representing power usage; energy use, as a digthaur; average response time, as a limit
average [3, 4].

In this paper, we considerobabilisticweighted automata as generator of quantitative languages.
In such automata, nondeterministic choice is replaced lopatility distributions on successor
states. The value of an infinite wotd is defined to be the maximal valuesuch that the set of
runs overw with value at least has either positive probabilitpfsitive semantigsor probability 1
(almost-sure semantitsThe probabilistic Buichi and coBuichi automata of [2] arspecial case of
probabilistic weighted automata with weights 0 and 1 onhd(tne value of an infinite run computed
asLimSup or LimInf, respectively). We are not aware of any other model comgipiobabilities
and weights for the specification of quantitative languages

We study fundamental questions about the expressive polesyre properties, and the empti-
ness and universality problems for probabilistic weigrgatbmata.

First, we compare the expressiveness of the various clagpesbabilistic and nondeterministic
weighted automata over infinite words. RomSup, LimInf, and limit average, we show that a wide
variety of new classes of quantitative languages can beeatkfising probabilities, which are not
expressible using nondeterminism. Our results rely onha&itity properties of closed recurrent
sets in Markov chains. For discounted sum, we show that jilkétéic weighted automata under the
positive semantics have the same expressive power as eomigstic weighted automata, while
under the almost-sure semantics, they have the same eixprpss/er as weighted automata with
universal branching, where the value of a word is the mini(matead of maximal) value of all
runs. The question of whether the positive semantics of kite@jlimit-average automata is more
expressive than nondeterminism, remains open.

Second, we give an almost complete picture of the closureotfgbilistic weighted automata un-
der the pointwise operations of maximum, minimum, and sungémntitative languages. Note that
closure under max trivially holds for the positive semasitend closure under min for the almost-
sure semantics. We also define toenplemenL* of a quantitative languageby L¢(w) = 1— L(w)
for all words w. Only LimSup-automata under positive semantics drehInf-automata under
almost-sure semantics are closed under all four operatioese results extend corresponding results
for the boolean (i.e., non-quantitative) case [1]. To dighlihe closure properties of limit-average
automata, we characterize the expected limit-average davidMarkov chains. Our characterization
answers all closure questions except for the language stine ioase of positive semantics, which
we leave open. Note that expressiveness results and clpsyperties are tightly connected. For
instance, because they are closed under max,ithinf-automata with positive semantics can be
reduced td_imInf-automata with almost-sure semantics andlitaSup-automata with positive se-
mantics; and because they are not closed under complemehinytSup-automata with almost-sure
semantics andimInf-automata with positive semantics have incomparable sgjye powers.

Third, we investigate the emptiness and universality mwots for probabilistic weighted au-
tomata, which ask to decide if some (resp. all) words haveuwevabove a given threshold. Using
our expressiveness results, as well as [1, 6], we estalaisk slecidability and undecidability results
for Sup, LimSup, andLimInf automata; in particular, emptiness and universality ameuaitdable
for LimSup-automata with positive semantics and EamInf-automata with almost-sure semantics,
while the question is open for the emptinessLohinf-automata with positive semantics and for



the universality olLimSup-automata with almost-sure semantics. We also prove thidalatty of
emptiness for probabilistic discounted-sum automata patitive semantics, while the universality
problem is as hard as for the nondeterministic discountead-@utomata, for which no decidability
result is known. We leave open the case of limit average.

2 Definitions

A quantitative language over a finite alphabgis a functionZ : ¥ — R. A boolean language (or a
set of infinite words) is a special case whéiev) € {0, 1} for all wordsw € X“. Nondeterministic

weighted automata define the value of a word as the maximaéwafl a run [7]. In this paper, we
study probabilistic weighted automata as generator of tifaséime languages.

Value functions. We consider the following value function&l : Q¥ — R to define quantitative
languages. Given an infinite sequence vyv; ... of rational numbers, define

— Sup(v) = sup{v, | n > 0};

LimSup(v) = limsup v, = lim sup{v; | i > n};

— LimInf(v) = liminf v, = lim inf{v; | i > n};
1 n—1
— LimA —liminf =S v,
imAvg(v) im in n;v

For0 < A < 1,Discx(v) = > X' - w;;
1=0

Given a finite setS, a probabilistic distributionover S is a functionf : S — [0, 1] such that
> .cs f(s) = 1. We denote byD(S) the set of all probabilistic distributions ovsr

Probabilistic weighted automata. A probabilistic weighted automatons a tuple A =
(Q,pr, X, 6,7) where:

— Q is afinite set of states;

— pr € D(Q) is the initial distribution;

— Y is afinite alphabet;

- §:Q x X — D(Q) is a probabilistic transition function;
—7:Q x X x Q — Qis aweight function.

We can define aon-probabilisticautomaton fromA by ignoring the probability values, and
saying thay is initial if p;(¢) > 0,and(q, o, ¢’) isan edge ofA if 6(¢q,0)(¢’) > 0. The automator
is deterministicif p;(¢;) = 1 for someq; € @, and for allg € @Q ando € X, there existgy’ € Q
such that(q,0)(¢") = 1.

A run of A over a finite (resp. infinite) wordr = o105 ... is a finite (resp. infinite) sequence
r = qoo1q102 ... Of states and letters such tha#) f;(q0) > 0, and ¢i) §(¢:, oi+1,qi+1) > 0 for
all 0 < i < |w|. We denote byy(r) = wvov; ... the sequence of weights that occurrinvhere
v; = ’}/(qi, Tit1, Qi+1) forall0 <i< |w|

The probability of a finite runr = ¢go1g102...0kq, over a finite wordw = oy ...0% iS
PA(r) = prqo)-TI1_, 6(gi—1,04)(qi). For eachw € %*, the functionP*(-) defines a unique
probability measure over Borel sets of (infinite) runsdobverw.



Given a value functiotval : Q¥ — R, we say that the probabilisti¢al-automatonA gener-
ates the quantitative languages defined for all wards X« by L7'(w) = sup{n | PA({r €
Run®(w) | Val(y(r)) > n}) = 1} under the almost-sure semantics, ang (w) = sup{n |
PA({r € Run”(w) | Val(y(r)) > n}) > 0} under the positive semantics. For non-probabilistic au-
tomata, the value of a word is either the maximal value of tims (i.e.,L'}**(w) = sup{Val(v(r)) |
r € Run®(w)} for all w € ¥*) and the automaton is then calledndeterministicor the minimal
value of the runs, and the automaton is then calleigtersal

Note that Buchi and coBuchi automata ([2]) are speciabsasf respectivel\LimSup- and
LimInf-automata, where all weights are eitlieor 1.

Notations. The first letter in acronyms for classes of automata can bendi@rministic),
D(eterministic), U(niversal), &s for the language in the positive semantics, & fAr the language

in the almost-sure semantics. We use the notatidogdenote the classes of automata whose deter-
ministic version has the same expressiveness as their tesrmdristic version. When the type of an
automatond is clear from the context, we often denote its language siroplZ 4 () or evenA(-),
instead ofL 3!, L%, etc.

Reducibility. A classC of weighted automata ieducibleto a clas<’ of weighted automata if for
every A € C there existsd’ € ¢’ such thatLy = La/, i.e. La(w) = La/(w) for all wordsw.
Reducibility relationships for (non)deterministic weig automata are given in [7].

Composition. Given two quantitative languagds L' : Y¥¥ — R, we denote bymax(L, L’)
(resp.min(L, L) and L + L’) the quantitative language that assignsx{L(w), L'(w)} (resp.
min{L(w), L'(w)} and L(w) + L'(w)) to each wordw € X*. The languagé — L is called the
complemenbf L. Themax, min and complement operators for quantitative languages gkrner
respectively the union, intersection and complement dpefar boolean languages. The closure
properties of (non)deterministic weighted automata arergin [6].

Remark. We sometimes use automata with weight functions Q — Q that assign a weight
to states instead of transitions. This is a convenient imotdbr weighted automata in which from
each state, all outgoing transitions have the same weiglgictorial descriptions of probabilistic
weighted automata, the transitions are labeled with pritibab, and states with weights.

3 Expressive Power of Probabilistic Weighted Automata

We complete the picture given in [7] about reducibility fandeterministic weighted automata, by
adding the relations with probabilistic automata. The ltsdor LimInf, LimSup, andLimAvg are
summarized in Fig. 1s, and f6up- andDisc-automata in Theorems 1 and 5.

3.1 Probabilistic Sup-automata

Like for probabilistic automata over finite words, the quetive languages definable by probabilis-
tic and (non)deterministiup-automata coincide.

Theorem 1. PosSup and AsSuPp are reducible toD Sup.
Proof. Itis easy to see thatdsSupP-automata define the same language when interpreted 88-NS

automata, and the same holds fos3upP and USup. The result then follows from [7, Theorem 9].
[ |
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Fig. 1. Reducibility relation.C is reducible toC’ if C — C’. Classes that are not connected by an arrow are
incomparable. Reducibility for the dashed arrow is open.

3.2 Probabilistic LimAvg-automata

Many of our results would consid&tarkov chainsandclosed recurrent stataa Markov chains. A
Markov chainM = (S, E, 0) consists of a finite sef of states, a sef’ of edges, and a probabilistic
transition functiory : S — D(S). For alls,t € S, there is an edgés, t) € Eiff (s)(¢t) > 0. A
closed recurrent set’ of states inM is a bottom strongly connected set of states in the gt&ph).
We will use the following two key properties of closed reant states.

1. Property 1.Given a Markov chainV/, and a start state, with probability 1, the set of closed
recurrent states is reached frarim finite time. Hence for any > 0, there existg; such that for
all k > ko, for all starting state, the set of closed recurrent states are reached with pidiabi
at leastl — e in k steps.

2. Property 2.If a closed recurrent sét is reached, and the limit of the expectation of the average
weights ofC' is «, then for alle > 0, there exists &, such that for alk > &, the expectation of
the average weights férsteps is at least — .

The above properties are the basic properties of finite 8fatdov chains and closed recurrent
states [12].

Lemma 1. Let A be a probabilistic weighted automata with alphaldet= {a,b}. Consider the
Markov chain arising ofd on inputb“ (we refer to this as thé-Markov chain) and we use similar
notation for thea-Markov chain. The following assertions hold:

1. If for all closed recurrent set€’ in the b>-Markov chain, the (expected) limit-average value (in
probabilistic sense) is at least 1, then there exjsssich that for all closed recurrent sets arising
of A oninput(’ - a)* the expected limit-average reward is positive.

2. If for all closed recurrent set€’ in the b-Markov chain, the (expected) limit-average value (in
probabilistic sense) is at most 0, then there exjstach that for all closed recurrent sets arising
of A oninput(b’ - a)* the expected limit-average reward is strictly less than 1.



3.

If for all closed recurrent set€' in the b-Markov chain, the (expected) limit-average value (in
probabilistic sense) is at most 0, and if for all closed reeunt setsC' in thea-Markov chain, the
(expected) limit-average value (in probabilistic sensejtimost 0, then there existsuch that
for all closed recurrent sets arising of on input(b’ - a?)“ the expected limit-average reward
is strictly less than 1/2.

Proof. We present the proof in three parts.

1.

N

Let 3 be the maximum absolute value of the weightslof-rom any state € A, there is a path

of length at most to a closed recurrent sétin the b-Markov chain, where: is the number of
states ofd. Hence if we choosg > n, then any closed recurrent set in the Markov chain arising
on the inpuf(®’ -a)* contains closed recurrent sets of tAlarkov chain. Foe > 0, there exists

k. such that from any statec A, for all & > k., on inputb® from s, the closed recurrent sets of
theb-Markov chain is reached with probability at ledst e (by property 1 for Markov chains).

If all closed recurrent sets in thieMarkov chain have expected limit-average value at least 1,
then (by property 2 for Markov chains) for alt> 0, there existg. such that for all > I, from

all statess of a closed recurrent set on the inplthe expected average of the weights is at least
1—¢, (i.e., expected sum of the weightdis [ - €). Conside) < e < min{1/4,1/(20-3)}, we
choosej = k+1, wherek = k. > 0 andl > max{l., k}. Observe that by our choige+1 < 2.
Consider a closed recurrent set in the Markov chairjién )~ and we obtain a lower bound
on the expected average reward as follows: with probalilitye the closed recurrent set of the
b-Markov chain is reached withih steps, and then in the negteps at the expected sum of the
weights is at least— [ - ¢, and since the worst case weightig we obtain the following bound
on the expected sum of the rewards

l l l
(-0 (1= f-(41) 25 =2

Hence the expected average reward is at ledstind hence positive.

. The proof is similar to the previous result.
. The proof is also similar to the first result. The only diffiece is that we use a long enough

sequence of’ such that with high probability a closed recurrent set initidarkov chain is
reached and then stay long enough in the closed recurretat approach the expected sum of
rewards to 0, and then present a long enough sequengesuich that with high probability a
closed recurrent set in theMarkov chain is reached and then stay long enough in thedlos
recurrent set to approach the expected sum of rewards toeCcdlbulation is similar to the first
part of the proof.

Thus we obtain the desired result. [ |

We consider the alphab&t consisting of letters andb, i.e., X = {a, b}. We define the language

L offinitely manya’s, i.e., for an infinite wordo if w consists of infinitely many’s, thenL p(w) =
0, otherwiseL »(w) = 1. We also consider the language of words with infinitely many’s (it is
the complement of. r).

Lemma 2. Consider the languagé » of finitely many.’s. The following assertions hold.

1.

The language can be expressed &élam AvG.



Fig.2. A PosLIMAVG for Lemma 2.

2. The language can be expressed @&osL IMAVG.
3. The language cannot be expressed\at IMAVG.

Proof. We present the three parts of the proof.

1. The result follows from the results of [7, Theorem 12] wehéne explicit construction of a
NLIMAVG to expresd.r is presented.
2. A PosLIMAVG automatond to expresd.r is as follows (see Fig. 2):
(a) States and weight functiofithe set of states of the automaton{ig, q1, sink}, with ¢o as
the starting state. The weight functigns as follows:y(qo) = ~(sink) = 0 andy(¢1) = 1.
(b) Transition functionThe probabilistic transition function is as follows:
(i) from qo, givena or b, the next states awg, g1, each with probability 1/2;
(ii) from ¢; givenbd the next state ig; with probability 1, and fromy; givena the
next state isink with probability 1; and
(i) from sink state the next state ignk with probability 1 on bothw andb. (it is
an absorbing state).
Given the automatod consider any woray with infinitely manya’s then, the automata reaches
sink state in finite time with probability 1, and hendéw) = 0. For a wordw with finitely many
a’s, let k be the last position that anappears. Then with probability/2*, afterk steps, the
automaton only visits the stage and henced(w) = 1. Hence there is a®sLIMAVG for L.
3. We show that.» cannot be expressed as aslAMAVG. Consider an ALIMAVG automaton
A. Consider the Markov chain that arises frehif the input is onlyb (i.e., onb*), we refer to it

as theb-Markov chain. If there is a closed recurrent 6ethat can be reached from the starting

state (reached by any sequencexcdind b’s), then the limit-average reward (in probabilistic
sense) inC' must be at least 1 (otherwise, if there is a closed recuregidt svith limit-average
reward less than 1, we can construct a finite worthat with positive probability will reacld’,
and then followw by * and we will haveA(w - b¥) < 1). Hence any closed recurrent set on
theb-Markov chain has limit-average reward at least 1 and by Lartirthere existg such that
the A((t’ - a)*) > 0. Hence it follows thatd cannot express r.

Hence the result follows. [ ]

Lemma 3. Consider the languagg; of infinitely many’s. The following assertions hold.

1. The language cannot be expressed adlamv AvG.



Fig. 3. An AsLIMAVG for Lemma 3.

2. The language cannot be expressed &oaL IM AVG.
3. The language can be expressediat IM AVG.

Proof. We present the three parts of the proof.

1. It was shown in the proof of [7, Theorem 13] that NLAVG cannot express ;.

2. We show thaf.; is not expressible by adsLIMAvVG. Consider a BsLIMAVG A and consider
the b-Markov chain arising fromd under the inpud®. All closed recurrent set€' reachable
from the starting state must have the limit-average valuecat0 (otherwise we can construct
an wordw with finitely manya’s such thatd(w) > 0). Since all closed recurrent set in the
b-Markov chain has limit-average reward that is 0, using Lerimwe can construct a word
w = (b7 - a)¥, for a large enough, such thatd(w) < 1. Hence the result follows.

3. We now show thaf.; is expressible as anhIMAVG. The automator is as follows (see
Fig. 3):

(a) States and weight functiofhe set of states afey, sink} with gy as the starting state. The
weight function is as followsy(qo) = 0 andv(sink) = 1.

(b) Transition functionThe probabilistic transition function is as follows:

(i) from ¢ givenb the next state igy with probability 1;

(ii) at go givena the next states ar@ andsink each with probability 1/2; (iii) the

sink state is an absorbing state.

Consider a wordv with infinitely manya'’s, then the probability of reaching the sink state is 1,
and henced(w) = 1. Consider a wordv with finitely manya’s, and letk be the number of’s,
and then with probabilityt /2% the automaton always stay 49, and henced(w) = 0.

Hence the result follows. [ |

Lemma 4. There exists a language that can be expressed?bglL IMAVG, PosLiMSupP and
PosLiMINF, but not byNLIMAVG, NLIMSuP or NLIMINF.

Proof. Consider an automato# as follows (see Fig. 4):

1. States and weight functiofihe set of states arey, ¢1, sink } with ¢y as the starting state. The
weight function is as followsy(qp) = v(¢1) = 1 and~(sink) = 0.
2. Transition functionThe probabilistic transition is as follows:



Fig. 4. A probabilistic weighted automaton @RL IM AvG, POsL IM SuP, or PosLIMINF) for Lemma 4.

(i) from ¢ if the input letter isa, then the next states agg andg; with probability 1/2;
(ii) from qq if the input letter ish, then the next state ignk with probability 1;

(iii) from ¢y, if the input letter ish, then the next state ig with probability 1;

(iv) from ¢y, if the input letter isa, then the next state ig with probability 1; and

(v) the statesink is an absorbing state.

If we consider the automatad, and interpret it as a®sLIMAVG, PosLIM SuP, or POSLIMINF,
then it accepts the following language:

o0

1
L. = {a"ba"ba™b. .. | ki ko, - € Ny - [J(1 - o) > 0k
=1

e, A(w) = 1ifw e L, andA(w) = 0if w ¢ L,: the above claim follows from the argument
following Lemma 5 of [2]. We now show thdt, cannot be expressed as NMAvG, NLIMSup or
NLIMINF. Consider a non-deterministic automatdn Suppose there is a cycé in A such that
average of the rewards ifi is positive. If no such cycle exists, then clearlycannot expresé

as there exists word for which, (w) = 1. Consider a cycl€’ such that average of the rewards is
positive, and let the cycle be formed by a finite ward = agpa; . . . a,, and there must exist at least
one index) < i < n such thati; = b. Hence the word can be expressedias= a’1ba’2b . .. a’*b,
and hence there exists a finite warg; (that reaches the cycle) such thétwr - wg) > 0. This
contradicts thatd is an automaton to expreds, as L. (wgr - wg) = 0. Simply exchanging the
average reward of the cycle by the maximum reward (resp.nmimi reward) shows thdt, is not
expressible by a NiM Sup (resp. NUM INF). |

The next theorem summarizes the results for limit-averagenaata obtained in this section.

Theorem 2. AsLIMAVG is incomparable in expressive power wiRosLIMAVG and NLIMAVG,
andNLIMAVG cannot express all languages expressiblé?bygL IM AVG.

Open question.Whether NLMAVG is reducible to BsSLIMAVG or NLIMAVG is incomparable to
PosLIMAVG (i.e., there is a language expressible byiIMAVG but not by a BsLIMAVG) remains
open.



3.3 Probabilistic LimInf-automata

Lemma5. NLIMINF is reducible to bothAsLIMINF and POSLIM INF.

Proof. It was shown in [7] that NiMINF is reducible to DUMINF. Since DUMINF are special
cases of ALIMINF and RosLiIMINF the result follows. |

Lemma 6. The languagd.; is expressible by aAsL IMINF, but cannot be expressed abla M INF
or a POSLIMINF.

Proof. It was shown in [7] that the languadg; is not expressible by Niv INF. If we consider

the automatom of Lemma 3 and interpret it as anshIMINF, then the automatoA expresses the
languagel ;. The proof of the fact that ®sLimMINF cannot expres$ ; is similar to the the proof
of Lemma 3 (part(2)) and instead of the average reward of libeed recurrent set’, we need to

consider the minimum reward of the closed recurrentset [

Lemma 7. PosLIMINF is reducible toASLIMINF.

Proof. Let A be a PsLIMINF and we construct a 8L IMINF B such thatB is equivalent toA. Let
V' be the set of weights that appeardnand letv; be the least value ii. For each weight € V,
consider the BSCW A" that is obtained from¥ by considering all states with weight at leasas
accepting states. It follows from the results of [1] that$2 W is reducible to ACW (it was shown
in [1] that ASBW is reducible to BsSBW and it follows easily that dually ®sCW is reducible to
ASCW). Let D” be an ASCW that is equivalent tod¥. We construct a 8sLIMINF BY from DV
by assigning weights to the accepting states @i and the minimum weight; to all other states.
Consider a wordv, and we consider the following cases.

1. If A(w) = v, then for allv’ € V such that’ < v we haveD"' (w) = 1, (i.e., the RSCW A"’
and the ASCW D*’ acceptay).
2. Forv € V, if DY(w) = 1, thenA(w) > v

It follows from above thatd = max,cy BY. We will show later that ALIMINF is closed under
max (Lemma 18) and hence we can construct 8L INF B such thatB = max,cy B. Thus
the result follows. |

Theorem 3. We have the following strict inclusion

NLIMINF C PosLIMINF C ASLIMINF
Proof. The fact that NtmINF is reducible to BsLiMINF follows from Lemma 5, and the fact
the RPosLIMINF is not reducible to NIMINF follows from Lemma 4. The fact thatdsLIMINF

is reducible to ASLIMINF follows from Lemma 7 and the fact thatsAiMmINF is not reducible to
PosLiMINF follows from Lemma 6. [ |
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3.4 Probabilistic LimSup-automata

Lemma 8. NLim Sup and PosL M SupP are not reducible teASL iM Sup.

Proof. The languagd.r of finitely manya’s can be expressed as a non-deterministic Biichi au-
tomata, and hence as a NALSup. We will show that NLM SuP is reducible to BsLimMSup. It
follows that  is expressible as Nim Sup and RosLiM Sup. The proof of the fact that 8L 1M Sup
cannot express g is similar to the the proof of Lemma 2 (part(3)) and insteathefaverage reward

of the closed recurrent sét, we need to consider the maximum reward of the closed reuiset

C. [ |

Deterministic in limit NLiMSup. Consider an automatas that is a NUMSuUP. Letv; < vy <
... < v be the weights that appear ih We call the automatod deterministic in the limiif for
all statess with weight greater than,, all states reachable frons are deterministic.

Lemma 9. For everyNLIM SuP A, there exists &LIMSup B that is deterministic in the limit and
equivalent toB.

Proof. From the results of [8] it follows that a NBW can be reduced to an equivalent NBBV
such thatB is deterministic in the limit. Letd be a NUM Sup, and letV be the set of weights that
appear inA. and letV = {vq,..., v} with v; < v < -+ < vg. For eachv € V, consider the
NBW A, whose (boolean) language is the set of wardsuch thatl 4 (w) > v, by declaring to
be accepting the states with weight at leadtet B, be the deterministic in the limit NBW that is
equivalenttad, . The automato® that is deterministic in the limit and is equivalent4ads obtained
as the automaton that by initial non-determinism choosesd®n theB, s, forv € V. [ |

Lemma 10. NLiM SuP is reducible toPosL iM Sup.

Proof. Given a NUmSuP A, consider the NLv SuP B that is deterministic in the limit and equiv-
alent to B. By assigning equal probabilities to all out-going traiasis from a state we obtain a
PosLimSuPp C thatis equivalent t& (and henced). The result follows. |

Lemma 11. AsLIiMSuPr is reducible toPosL M Sup.

Proof. Consider a ALIMSUP A and let the weights oft bev; < vo... < v Forl < i <
consider the ABW obtained fromA with the set of state with reward at leastas the Biichi states.
It follows from the results of [1] that ABW is reducible to BSBW. Let B; be the ®sSBW that
is equivalent ta4;. Let C; be the automaton such that all Biichi state$3pis assigned weight;
and all other states are assigngdConsider the automata that goes with equal probability to the
starting states of’;, for 1 < i < [, and we interpre’ as a ®sLimSup. Consider a wordv, and
let A(w) = v; for somel < j <[, i.e., givenw, the set of states with reward at leastis visited
infinitely often with probability 1 inA. Hence the BSBW B; acceptsv with positive probability,
and sinceC' chooses”; with positive probability, it follows that givem, in C' the weightv; is
visited infinitely often with positive probability, i.e(/(w) > v;. Moreover, givenw, for all v, > vy,
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the set of states with weight at leagtis visited infinitely often with probability O imd. Hence for
all £ > j, the automataB, acceptsw with probability 0. ThusC'(w) < vy, for all v, > v;. Hence
C(w) = A(w) and thus ALiMSup is reducible to BsL M Sup. [

Lemma 12. AsLiMSuPr is not reducible td\NL 1M Sup.

Proof. It follows from [1] that for0 < A < 1 the following languagd., can be expressed by a
AsBW and hence by ALIM SuUP:

Ly = {a"ba™ba**b. . | k1 ko, - € Noy [ J(1 = AF) > 0}

i=1

It follows from argument similar to Lemma 4 that there exi$ts A < 1 such thatL, cannot be
expressed by a NiIM Sup. Hence the result follows. |

Theorem 4. AsLim Sup andNLIM Sup are incomparable in expressive power, dolsL IM SUP is
more expressive thafsL iM Sup andNL 1M SuPp.

Lemma 13. POsSCW is reducible toPOsSBW.

Proof. LetA = (Q, q1, X, 6, C) be a BSCW with the setU C (@ of accepting states. We construct
a PosBW A as follows:

1. The set of states i@ U Q whereQ = {7 | ¢ € Q} is a copy of the states iQ};
2. ¢y is the initial state;
3. The transition function is as follows, for atle X
(a) for all statesy, ¢’ € Q, we haved(q,0,q¢') = 6(q,0,q¢') = % - 6(q,0,¢), i.e., the state/
and its copyy’ are reached with half of the original transition probapjlit
(b) the stateg € Q such thayy ¢ C are absorbing states (i.6(7, o,7) = 1);
(c) for all states; € C andq’ € Q, we havei(g, o, ¢’') = d(q, 0, ¢'), i.e., the transition function
in the copy automaton follows that df for states that are copy of the accepting states.
4. The set of accepting states(is= {7 € Q | ¢ € C}.

We now show that the language of the$€ W A and the language ofdsBW A coincides. Consider
awordw such thatd (w) = 1. Leta be the probability that given the wordeventually always states
in C are visited in4, and sinced(w) = 1 we havea > 0. In other words, as limit: tends tooo,
the probability that aftek steps only states i6' are visited iso. Hence there existk, such that
the probability that aftek, steps only states i’ are visited is at least. In the automatom,
the probability to reach states Gf after ko steps has probability = 1 — 2% > (. Hence with
positive probability (at least - 5) the automaton visits infinitely often the states(@fand hence
A(w) = 1. Observe that since every statedn, C is absorbing and non-accepting), it follows that if
we consider an accepting ruh then the run must eventually always visits stateS'ifi.e., the copy
of the accepting states). Hence it follows that for a given word, if A(w) = 1, then with positive
probability eventually always states @ are visited in4. ThusA(w) = 1, and the result follows.
|
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Lemma 14. PosLIMINF is reducible toPosL M Supr, andAsLIM SuP is reducible toASLIMINF.

Proof. We present the proof thatd2LIMINF is reducible to BsLiMSup, the other proof being

similar. Let A be a PsLIMINF, and letl be the set of weights that appeardn For eachv € V,

it is easy to construct adsCW A, whose (boolean) language is the set of wordsuch that

La(w) > v, by declaring to be accepting the states with weight at leagfe then construct for

eachv € V a PosBW A4, that accepts the language 4f (such a ®sSBW can be constructed by

Lemma 13). Finally, assuming th&t = {v4,...,v,} with v; < v < -+ < v,, we construct the

PosLIMSUP B; fori = 1,2,...,n whereB; is obtained fromA,, by assigning weight; to each

accepting states, and to all the other states. TheoRL im SuP that expresses the language/fs

» B; and since BsLIM SuP is closed undemax (see Lemma 16), the result follows.
[

maxi;—1,2

ceey

Lemma 15. AsLiMmINFandPosLIMmSup are reducible to each otheAsLiM Sup andPoOSLIMINF
have incomparable expressive power.

Proof. This result is an easy consequence of the fact that an autonrderpreted as 8L IMINF
defines the complement of the language of the same autonratemprieted as ®sLim Sup (and
similarly for AsLim Sup and RosLIMINF), and from the fact that ALIMINF and RosLIM Sup are
closed under complement, whilesAiM Sup and POSLIMINF are not (see Lemma 21 and 22).

[ |

3.5 Probabilistic Disc-automata

For probabilistic discounted-sum automata, the followiesult establishes equivalence of the non-
deterministic and the positive semantics, and the equical®f the universal and the almost-sure
semantics.

Theorem 5. The following assertions hold: (8yDisc and PosDisc are reducible to each other;
(b) UDIscandAsDisc are reducible to each other.

Proof. (a) We first prove that NBsC is reducible to BsDisc. Let A = (Q, pr, X, 04,7) be a
NDisc, and letv,in, vmax b€ its minimal and maximal weights respectively. ConsitlerRosDisc
B =(Q,p1, %, dp,v) wheredp(q, o) is the uniform distribution over the set of statgsuch that
(¢,0,{q'}) € da. Letr = goo1¢102... be a run ofA (overw = o102 ...) with valuen. For
all ¢ > 0, we show tha?({r € Run®(w) | Val(y(r)) > n — €}) > 0}. Letn € N such that

% - (Umax — Vmin) < €, and letr,, = gqoo1¢102 . .. 0,g,. The discounted sum of the weightsrin

is at leasty — 1%1 - (vmax). The probability of the set of runs over that are continuations of,
is positive, and the value of all these runs is at Ie;ast% - (Vmax — Ymin ), and therefore at least
1 — e. This shows thal 5(w) > 7, and thusLz(w) > L4(w). Note thatLz(w) < La(w) since
there is no run i (nor in B) overw with value greater thah 4 (w). HenceLp = L 4.

Now, we prove that BsDisc is reducible to NDsc. Given a BsDisc B = (Q, pr, X, 5, 7),
we constructa NsC A = (Q, pr, X, 54,7) where(q,0,{q¢'}) € 64 ifand only if 65(q,0)(¢") >
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max|min|comp|sum | emptinessuniversality|
PosSup NERVARES Vv N N
_|PosLiMSuP | v | V| V |V X X
A|POSLIMINF | / | /| X |V ? vV
POSLIMAVG| / | x | x | ? ? ?
PosDisc Vx| x|V N ?(1)
o|ASSUP VIV x TV V v
a|AsLimSup ViV x|V vV ?
glAsLimINF | V[V | V |V X X
E[ASLIMAVG | x | /| x | x ? ?
AsDisc X || x |V ? (1) vV

The universality problem for Nc can be reduced to (1). It is
not known whether this problem is decidable.

Table 1. Closure properties and decidability of the emptiness aiktsality problems.

0,forallq, ¢’ € Q, 0 € X. By analogous arguments as in the first part of the proof éaiy to see
thatLp = L 4.

(b) It is easy to see that the complement of the quantitatimguage defined by a UBc (resp.
AsDisc) can be defined by a NIBC (resp. P sDisc). Then, the result follows from Padb (essen-
tially, given a UDsc, we obtain easily an N3¢ for the complement, then an equivalem@$Pisc,
and finally a AsDisc for the complement of the complement, i.e., the originalniitative lan-
guage). [ |

Note that a by-product of this proof is that the language obaMsc does not depend on the
precise values of the probabilities, but only on whethey #re positive or not.

4 Closure Properties of Probabilistic Weighted Automata

We consider the closure properties of the probabilistigived automata under the operatiamnsx,
min, complement, and sum. The results are presented in Table 1.

4.1 Closure undermax and min

Lemma 16 (Closure by initial non-determinism).PosL M Sup, PosL IMINF andPOSLIMAVG is
closed undemax; and AsLIMSUP, ASLIMINF andAsSLIMAVG is closed undemin.

Proof. Given two automatal; andA, consider the automat&obtained by initial non-deterministic
choice ofA; and A,. Formally, letg; andg, be the initial states ofl; and A,, respectively, then
in A we add an initial statg, and the transition frong, is as follows: forc € Y, consider the
setQ, = {qg € Q1 UQ2 | d01(q1,0)(q) > 00rda(ga,0)(q) > 0}. Fromgqo, for input lettero,
the successors are fro@, each with probabilityl /|Q.|. If A; and A, are PosLiM Sup (resp.
PosLIMINF, POSLIMAVG), thenA is a RosLIM SuP (resp. ®sSLIMINF, PosLIMAVG) such that
A = max{A;, A2}. Similarly, if A; and A, are ASLIMSuP (resp. ASLIMINF, ASLIMAVG), then
Ais a AsLIMSUP (resp. AsLIMINF, AsLIMAVG) such thatd = min{4;, A5}. [ |
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Lemma 17 (Closure by synchronized product)AsLIMSuP is closed undemax and POSL M-
INF is closed undemin.

Proof. We present the proof that#\ IM Sup is closed undemax. Let A; andAs be two probabilis-
tic weighted automata with weight functien and~., respectively. Letd be the usual synchronized
product of4; and A, with weight functiony such thaty((s1, s2)) = max{~y1(s1),v2(s2)}. Given

a pathr = ((s},s2),(s1,s?),...) in A we denote byr | 1 the path inA4; that is the projec-
tion of the first component of and we use similar notation for [ 2. Consider a wordov, let
max{A; (w), A2(w)} = v. We consider the following two cases to show tHitv) = v.

1. W.Lo.g. let the maximum be achieved Hy, i.e., A;(w) = v. Let B} be the set of states
in A; such that weight of; is at leasw. SinceA; (w) = v, given the wordw, in A; the event
Buchi(BY) holds with probability 1. Consider the following set of psith A

I° = {r | (| 1) € Biichi(B?)}.

Since givenw, the event BlicHiBY ) holds with probability 1 inA;, it follows that givenw, the
event/7" holds with probability 1 inA. The~ function ensures that every pathe 1 visits
weights of value at leastinfinitely often. Henced(w) > v.

2. Consider a weight value > v. Let C? be the set of states in A; such that the weight of
s; is less than/. Given the wordw, sinceA;(w) < v/, it follows that probability of the event
coBuch{C?) in A;, given the wordw, is positive. Hence given the word, the probability of
the event coBUCliCY x CY)) is positive inA. It follows thatA(w) < v'.

The result follows. IfA; and A; are RosLIMINF, and inA we assign weights such that every state
in A has the minimum weight of its component states, and we censgicas a ®SLIMINF, then
A =min{A;, A>}. The proofis similar to the result for gL 1m Sup. [ |

Lemma 18. PosLiM SuP is closed undemin andAsLIMINF is closed undemax.

Proof. Let A; and A, be two RosLIMSupP. We construct a &sLiMSuP A such thatd =
min{A;, As}. LetV; be the set of weights that appeardn (for : = 1, 2), and letV = V; UV, and
let v, be the least value ifY. For each weight € V; UV, = {vy,..., v}, consider the BSBW
AY that is obtained fromd; by considering all states with weight at leasis accepting states. Since
PosBW is closed under intersection(by the results of [2]), we canstruct a BSBW AY, that is
the intersection ofd} and A3, i.e. A}, = A} N AY. We construct a 8sLiMSup BY, from A}, by
assigning weights to the accepting states df}, and the minimum weight, to all other states.
Consider a wordv, and we consider the following cases.

1. If min{A;(w), A2(w)} = v, then for allv’ € V such that’ < v we havedl,(w) = 1, (i.e.,
the PoSBW AY, acceptav).
2. If AV (w) = 1, thenA; (w) > vandAz(w) > v, i.e.,min{ A4 (w), Az (w)} > v.

It follows from above thainin{A4;, A2} = max,cy B},. Since ®sLIMSuUP is closed undemax
(by initial non-determinism), it follows that®sL im SuPp is closed undemin. The proof of closure
of ASLIMINF undermax is similar. [ |

The closure properties dimAvg-automata in the positive semantics rely on the followingiea.
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Lemma 19. Consider the alphabe¥ = {a, b}, and consider the languagés, and L, that assigns
the long-run average number o% andb’s, respectively. Then the following assertions hold.

1. There is ndPosLIMAVG for the languag€.,,, = min{L,, L }.
2. There is ndPosLIMAVG for the languagd.™ = 1 — max{L,, L }.

Proof. To obtain a contradiction, assume that there existo sLiM AvG A (for eitherL,,, or L*).
We first claim that if we consider theMarkov or theb-Markov chain of4, then there must be either
ana-closed recurrent set ortaclosed recurrent st that is reachable idl such that the expected
sum of the weights 6 is positive. Otherwise, if for ali-closed recurrent sets ahdtlosed recurrent
sets we have that the expected sum of the weights is zero ativeghen we fool the automaton
as follows. By Lemma 1, it follows that there existg auch thatA((a’ - b)~) < 1/2, however,
L(w) = L*(w) = 3, i.e., we have a contradiction. W.l.0.g., we assume thaettseana-closed
recurrent set such that expected sum of weights@fis positive. Then we present the following
word w: a finite wordw¢ to reach the cycle”, followed by a“; the answer of the automaton is
positive,i.e., L 4(w) > 0, while L,,,(w) = L*(w) = 0. Hence the result follows. |

Lemma 20. PosLIMAVG is not closed undemnin and ASLIMAVG is not closed undemax.

Proof. The result for BsLiMAvVG follows from Lemma 19. We now show thatsBIM AvG is not
closed undemax. Consider the alphabét = {a, b} and the quantitative languagés and L; that
assign the value of long-run average numberstandb’s, respectively. There exists Dt AvG (and
hence ALiMAVG) for L, and L,. We show thatl,, = max(L,, L) cannot be expressed by an
AsLIMAVG. By contradiction, assume thdtis an AsL M AvG with set of states) that defined.,,, .
Consider any:-closed recurrent’ in A. The expected limit-average of the weights of the recurrent
set must be 1, as if we consider the warl = w¢ - a* wherewc is a finite word to reaclt,
the value ofw* in L,, is 1. Hence, the limit-average of the weights of all the reachabtlosed
recurrentse in Ais 1.

Givene > 0, there existg. such that the following properties hold:

1. from any state ofi, given the word:’= with probabilityl — e ana-closed recurrent set is reached
(by property 1 for Markov chains);

2. once aru-closed recurrent set is reached, given the wgrd (as a consequence of property 2
for Markov chains) we can show that the following propertietd: (a) the expected average of
the weights is at leagt - (1 — ¢), and (b) the probability distribution of the states is withf the
probability distribution of the states for the wod7« (this holds as the probability distribution
of states on wordsa’ converges to the probability distribution of states on tloedw~).

Let 3 > 1 be a number that is greater than the absolute maximum valweights inA. We chose

e > 0 such thate < ﬁ. Letj = 2 - j. (such thatj. satisfies the properties above). Consider
the word(a’ - 3)~ and the answer byl must be2, asL,,((a’ - 5*)“) = 3. Consider the word
@ = (a¥ - b%)« and consider a closed recurrent set in the Markov chainmlitain A on @. We
obtain the following lower bound on the expected limit-age of the weights: (a) with probability
at leastl — ¢, afterj/2 steps,a-closed recurrent sets are reached; (b) the expected avefdlge

weights for the segment betweehanda?’ is at leastj - (1 — €); and (c) the difference in probability
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distribution of the states after’ anda?/ is at moste. Since the limit-average of the weights of
(a? - b¥)“ is 2, the lower bound on the limit-average of the weights is e

(173'6)'(%;176))73'6'6:

—~

1—(t—£)—3-c8

> % —e—3-¢- 0
>3-4 p
251
> 5 >1
It follows that A((a? - b%7)~) > 2. This contradicts thal expresses,,. [ |

4.2 Closure under complement

Lemma 21. PosLIMSup andAsLIMINF are closed under complement.

Proof. We first present the proof fordsLiMSuP. Let A be a RsLiMSupP, and letV be the
set of weights that appear iA. For eachv € V, it is easy to construct adsBW A, whose
(boolean) language is the set of wordssuch thatL 4 (w) > v, by declaring to be accepting the
states with weight at least We then construct for eaghc V a POsBW A,, (with accepting states)
that accepts the (boolean) complement of the language t&ctby A, (such a BSBW can be
constructed since®sBW is closed under complementation by the results of [1p)aly, assuming
thatV = {vy,...,v,} withv; < vg < --- < v,, we constructthe ®sLIMSuP B; fori =2,...,n
where B; is obtained fromA,,, by assigning weight-v;_; to each accepting states, and,, to
all the other states. The complementlof is thenmax{Lp,,...,Lp,} which is accepted by a
PosL im SuP (since PsLIM SuP is closed undemax). The result for ALIMINF is similar and it
uses the closure of #CW under complementation which can be easily proved fromcthsure
under complementation ofdsBW. [ |

Lemma 22. AsLiM Sup andPosLIMINF are not closed under complement.

Proof. It follows from Lemma 8 that the languade- of finitely manya’s is not expressible by an
AsLim SuP, whereas the complemeni of infinitely manya’s is expressible as a DBW and hence
as a AsLim Sup. It follows from Lemma 6 that languagk; is not expressible as amoBL IM INF,
whereas its complemeiitz is expressible by a DCW and hence@dR IMINF. |

Lemma 23. PosLIMAVG andAsLIMAVG are not closed under complement.

Proof. The fact that BsL M AVG is not closed under complement follows from Lemma 19. We now
show that ASLIMAVG is not closed under complement. Consider theiDAvVG A over alphabet

Y = {a,b} that consists of a single self-loop state with weighfor « and0 for b. Notice that
A(w.a¥) = 1landA(w.b¥) = 0 forallw € X*. To obtain a contradiction, assume that there exists a
ASLIMAVG B such thatB = 1 — A. For all finite wordsw € X*, let B(w) be the expected average
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weight of the finite run of3 overw. Fix 0 < e < . For all finite wordsw, there exists a number

n,, such that the average numberad in w.b™> is at moste, and there exists a number,, such

that B(w.a™») < e (sinceB(w.a*) = 0). Hence, we can construct a ward= b"1a™1b"2a™> . ..

such thatd(w) < e andB(w) < e. SinceB = 1 — A, this implies thatl < 2¢, a contradiction.
|

4.3 Closure under sum

Lemma 24. PosLiMm Sup andAsL M Sup are closed under sum.

Proof. Given two RosLIMSup (resp. ASLIMSUP) A; and Ao, we construct a 8sLim Sup (resp.
AsLimSuP) A for the sum of their languages as follows. For a gair, v2) of weights ¢; in 4;, for

i = 1,2), consider a copy of the synchronized productigfand A,. We attach a bib whose range
is {1,2} to each state to remember that we expégto visit the guessed weight. Whenever this
occurs, the bib is set to3 — b, and the weight of the state ig + v,. All other statesi(e. when

b is unchanged) have weightin{v; + v2 | v1 € Vi A vs € Va}. Let the automata constructed
be Ay, ). ThENA = max(y, v,) A(v,,0,)- SiNCE RSLIMSUP (resp. AsLIMSUP) is closed under
max the result follows. u

Lemma 25. PosLIMINF andASLIMINF are closed under sum.

Proof. Given two ROSLIMINF (resp. ASLIMINF) A; and A,, we construct a 8sLIMINF (resp.
AsLIMINF) A for the sum of their languages as follows. Fet 1, 2, letV; be the set of weights that
appear ind;. Let vy, = min{v; +vs | v1 € V1 Avg € Va}. Forvg € Vi anduvy € Vo, fori = 1,2,
consider the BSCW (resp. ACW) A4,, obtained from4, by making all states with weights at least
v; as accepting states. Ldt,, ..,y be the RSCW (resp. ACW) such thatd,, ,,) = Ay, N Ay,:
such an BSCW (resp. ASCW) exists since BSCW (resp. ACW) is closed under intersection. In
other words, for a word we haveA,, ..,y(w) = 1iff A;(w) > v; andAz(w) > vs. LetZ(vhvz)
be the P SLIMINF (resp. AsLIMINF) obtained fromA4,, ,,) by assigning weight; + v, to all
accepting states and weighj,;,, to all other states. Then the automaton for the sumofind A,
(denoted asl; + Az) IS max(y, v,)ev, x Vs Z(m,w)' Since PSLIMINF (resp. AsLIMINF) is closed
undermax the result follows. |

Lemma 26. ASLIMAVG is not closed under sum.

Proof. Consider the alphabét = {a, b}, and consider the Div AvG-definable languages, and
L, that assigns to each word the long-run average number @5 andb’s in w respectively. Let
L. = L, + Ly. We show thaf is not expressible by AL IMAVG. Assume towards contradiction
that L is defined by an ALIMAVG A with set of stateg) (we assume w.l.0.g that every statejn
is reachable). Let > 1 be greater than the maximum absolute value of the weights in

First, we claim that from every statec Q, if we consider the automataf, with ¢ as starting
state therd, () = 1: this follows since if we consider a finite word, to reachg, thenL (w, -
a?) = 1 and henced(w, - a¥) = 1. It follows that from any state, ask tends toco, the expected
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average of the weights converges almost-surely to 1. Thptesif we consider the-Markov chain
arising fromA, then from any state, for all closed recurrent st of states reachable from the
expected average of the weights®@fis 1. Hence for every > 0 there exists a natural numbkef
such that from any statg for all k > k] given the wordz* the expected average of the weights is
at Ieast% with probability 1 — ~ (this is because we can chose long enokguch that the closed
recurrent states are reached with probabilityy by property 1 for Markov chains, and then the long
enough sequence ensures that the expected average agsrbdphproperty 2 for Markov chains),
and for the first steps the expected average of the weights is at ledsThe same result holds if
we consider as input a sequencésfinstead ofu’s.

Consider the wordy generated inductively by the following procedure:4g)is the empty word;
(b) we generatev;, from w; as follows: ¢) the sequence of letters addeduipto obtainw;; is
at leasti; (i) first we generate a long enough sequengg, of a’s afterw; such that the average
number ofb’s in w; -wj_ , falls below%; (4i7) then generate a long enough sequenge of b's such
that the average number@$ in w;-w/,, -w}, , falls below}; (iv) the wordw; 1 = w;-w}, ,-wY, ;.
The worduw is the limit of these sequences. For- 0, consider > 6 - k] - 3 (wherek satisfies the
properties described above for. By construction foi > 6-k -3, the length ofw; is atleast ko - 3,
and hence it follows that in the segment constructed betwe@mdw;1, for all jw;| < £ < |w;41]
with probability at leasi — ~ the expected average of the weights is at least

—kY
SEokB 1 2 k8 1
I -2 I -2

-5

W =
[ N

Hence for ally > 0, the expected average of the weights is at I%amtth probability at least — ~.
Since this holds for aly > 0, it follows that the expected average of the weights is ait@almost-
surely, (i.e.,A(w) > §). We haveL,(w) = Ly(w) = 0 and thusL, (w) = 0, while A(w) > .
Thus we have a contradiction. [

Lemma 27. PosDisc andAsDisc are closed under sum.

Proof. The result for ®sDisc follows from Theorem 5 and the fact that Né&Z and UDsc are
closed under sum (which is easy to prove using a synchropizehlict of automata where the weight
of a joint transition is the sum of the weights of the corregting transitions. |

Open question.Whether BsLIMAVG is closed under sum remains open.

5 Decision Problems for Probabilistic Weighted Automata

We conclude the paper with some decidability and undedithat@sults for classical decision prob-
lems about quantitative languages (see Table 1). Most ofl tae direct corollaries of the results
in [1]. Given a weighted automatoA and a rational number € Q, the quantitative emptiness
problemasks whether there exists a woud € X such thatL 4(w) > v, and thequantitative
universality problenasks whethef 4 (w) > v for all wordsw € X“.

Theorem 6. The emptiness and universality problemsParsSup and AsSup are decidable.
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Proof. By Theorem 1, these problems reduce to emptiness affbghich is decidable ([7, Theo-
rem 1]).

The following theorems are trivial corollaries of [1, Theor 2].

Theorem 7. The emptiness problem f@osLim Sup and the universality problem foksLim Sup
are undecidable.

It is easy to obtain the following result as a straightfordvgeneralization of [1, Theorem 6].

Theorem 8. The emptiness problem férsLim Sup and the universality problem fdPOsSLIMINF
are decidable.

The following result is a particular case of [1, Corollary 3]

Theorem 9. The emptiness problem férsLimINF and the universality problem fdPosLim Sup
are undecidable.

Finally, by Theorem 5 and the decidability of emptiness f@klc, we get the following result.

Theorem 10. The emptiness problem f&osDisc and the universality problem fohsDisc are
decidable.

Note that by Theorem 5, the universality problem for i$D(which is not know to be decidable)
can be reduced to the universality problem fas®isc and to the emptiness problem fosBisc.
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