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Abstract. Nondeterministic weighted automata are finite automata
with numerical weights on transitions. They define quantitative lan-
guages L that assign to each word w a real number L(w). The value
of a word is naturally computed as the maximal value of a run, and
the value of a run as the maximum, limsup, liminf, limit average, or
discounted sum of the transition weights.
We introduce probabilistic weighted automata in which the transitions
are chosen in a randomized fashion. Under almost-sure semantics (resp.
positive semantics), the value of a word w is the largest v such that
the runs produced by the automaton over w have value at least v with
probability 1 (resp. positive probability). The main results of this paper
are a comparison of the expressive power of the various classes of prob-
abilistic and nondeterministic weighted automata over infinite words. In
particular, for limit average, we show that probabilities define a wide va-
riety of new classes of quantitative languages, while for discounted sum,
probabilities do not bring more expressive power than nondeterminism.
We next study the closure properties of probabilistic weighted au-
tomata. For quantitative languages L1 and L2, we consider the operations
max(L1, L2), min(L1, L2), 1−L1, and the sum L1 +L2. Finally, we give
(un)decidability results for the emptiness and universality problems.

1 Introduction

In formal design, specifications describe the set of correct behaviours of a system.
An implementation satisfies a specification if all its behaviours are correct. If
we view a behaviour as a word, then a specification is a language, i.e., a set
of words. Languages can be specified using finite automata, for which a large
number of results and techniques are known, see e.g. [10, 11]. We call them
boolean languages because a given behaviour is either good or bad according
to the specification. Boolean languages are useful to specify computational (or
functional) requirements.

In a generalization of this approach, we consider quantitative languages where
each word is assigned a real number. The value of a word can be interpreted as
the amount of some resource (e.g., memory consumption, or power consumption)
needed to produce it, or as a quality measurement of the corresponding be-
haviour. Therefore, quantitative languages are useful to specify non-purely com-
putational requirements such as resource constraints, reliability requirements, or
level of quality.



Nondeterministic weighted automata (i.e., finite automata with numerical
weights on transitions) have been used to define quantitative languages over
infinite words [8, 9, 6]. In [6], we defined the value of an infinite word w as the
maximal value of all runs over w (if the automaton is nondeterministic, then
there may be many runs over w), and the value of a run r is a function of the
infinite sequence of weights that appear along r. We consider several functions,
such as Sup, LimSup, LimInf, limit average, and discounted sum of weights. For
example, peak power consumption can be modeled as the maximum of a sequence
of weights representing power usage; energy use can be modeled as the discounted
sum; average response time as the limit average [3, 4].

In this paper, we consider probabilistic weighted automata as generator of
quantitative languages. The value of an infinite word w is defined as the maximal
value v such that the set of runs over w with value at least v has either positive
probability (positive semantics), or probability 1 (almost-sure semantics). The
probabilistic Büchi and coBüchi automata of [2] are a special case of probabilistic
weighted automata with weights 0 and 1 only (and value computed as LimSup

and LimInf). We are not aware of any other model combining probabilities and
weights for the specification of quantitative languages.

As a continuation of [5, 6], we consider fundamental questions about the
expressive power, the closure properties, and the emptiness and universality
problems for probabilistic weighted automata.

We compare the expressive power of the various classes of probabilistic and
nondeterministic weighted automata over infinite words. For LimSup, LimInf,
and limit average, we show that a wide variety of new classes of quantitative
languages can be defined with probabilitic automata, but are not expressible
using nondeterminism. The results are based on reachability properties of closed
recurrent sets in Markov chains. For discounted sum, we show that probabilistic
weighted automata under the positive semantics have the same expressive power
as the nondeterministic ones. Under the almost-sure semantics, they have the
same expressive power as the automata with universal branching, where the value
of a word is the minimal (instead of maximal) value of a run. On the other hand,
some questions remain open about expressiveness, for instance which of limit-
average automata with almost-sure or positive probability is more expressive, or
whether they are incomparable.

We next study the closure properties of probabilistic weighted automata.
We consider the operations of maximum, minimum, and sum defined, for
quantitative languages L1 and L2, as the quantitative language that assigns
max(L1(w), L2(w)), min(L1(w), L2(w)), and L1(w) + L2(w) to each word w.
The complement Lc of a quantitative language L is defined by Lc(w) = 1−L(w)
for all words w. Note that closure under max always holds for the positive
semantics, and closure under min always holds for the almost-sure semantics.
The closure properties of Sup-, LimSup-, and LimInf-automata are obtained as
an extension of known results for the boolean finite automata [1], and for dis-
counted sum as a corollary of our results about expressiveness and [5]. Only
LimSup-automata under positive semantics and LimInf-automata under almost-
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sure semantics are closed under the four operations. To establish the closure
properties of limit-average automata, we study the expected limit-average re-
ward of Markov chains. This approach solves all closure questions except for
the sum in the positive semantics which we leave open. Note that expressiveness
results and closure properties are tightly connected. For instance, because they
are closed under max, the LimInf-automata with positive semantics can be re-
duced to LimInf-automata with almost-sure semantics and to LimSup-automata
with positive semantics; and because they are not closed under complement, the
LimSup-automata with almost-sure semantics and LimInf-automata with positive
semantics have incomparable expressiveness.

Finally, and for the sake of completeness, we consider the classical emptiness
and universality problems which ask to decide if some (resp. all) words have
value above a given threshold. Using our results about expressiveness and [1,
5], we establsih decidability and undecidability results for Sup-, LimSup-, LimInf,
and discounted sum. We leave the question open for limit average.

♣ Add some more positive/optimistic statement ?? ♣

2 Definitions

A quantitative language over a finite alphabet Σ is a function L : Σω → R. A
boolean language (or a set of infinite words) is a special case where L(w) ∈ {0, 1}
for all words w ∈ Σω. Nondeterministic weighted automata define the value of
a word as the maximal value of a run [6]. In this paper, we study probabilistic
weighted automata as generator of quantitative languages.

Value functions We consider the following value functions Val : Qω → R to
define quantitative languages. Given an infinite sequence v = v0v1 . . . of rational
numbers, define

– Sup(v) = sup{vn | n ≥ 0};

– LimSup(v) = lim sup
n→∞

vn = lim
n→∞

sup{vi | i ≥ n};

– LimInf(v) = lim inf
n→∞

vn = lim
n→∞

inf{vi | i ≥ n};

– LimAvg(v) = lim inf
n→∞

1

n

n−1∑

i=0

vi;

– For 0 < λ < 1, Discλ(v) =

∞∑

i=0

λi · vi;

Given a finite set A, a probabilistic distributions over A is a functions f : A →
[0, 1] such that

∑
a∈A f(a) = 1. We denote by D(A) the set of all probabilistic

distributions over A.
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Probabilistic weighted automata. A probabilistic weighted automaton is a
tuple A = 〈Q, ρI , Σ, δ, γ〉 where:

– Q is a finite set of states;

– ρI ∈ D(Q) is the initial distribution;

– Σ is a finite alphabet;

– δ : Q × Σ → D(Q) is a probabilistic transition function;

– γ : Q × Σ × Q → Q is a weight function.

We can define a non-probabilistic automaton from A by ignoring the prob-
ability values, and saying that q is initial if ρI(q) > 0, and (q, σ, q′) is an edge
of A if δ(q, σ)(q′) > 0. The automaton A is deterministic if for all q ∈ Q and
σ ∈ Σ, there exists q′ ∈ Q such that δ(q, σ)(q′) = 1.

A run of A over a finite (resp. infinite) word w = σ1σ2 . . . is a finite (resp.
infinite) sequence r = q0σ1q1σ2 . . . of states and letters such that (i) ρI(q0) > 0,
and (ii) δ(qi, σi+1, qi+1) > 0 for all 0 ≤ i < |w|. We denote by γ(r) = v0v1 . . . the
sequence of weights that occur in r where vi = γ(qi, σi+1, qi+1) for all 0 ≤ i < |w|.

The probability of a finite run r = q0σ1q1σ2 . . . σkqk over a finite word w =
σ1 . . . σk is PA(r) = ρI(q0).

∏k
i=1 δ(qi−1, σi)(qi). For each w ∈ Σω, the function

PA(·) defines a unique probability measure over Borel sets of (infinite) runs of A
over w. Given a function f that maps each run to a real number, we denote by
EA

w(f) the expected value of f over the runs of A over w.

Given a value function Val : Qω → R, we say that the probabilistic Val-
automaton A generates the quantitative language defined for all words w ∈ Σω

by L=1
A (w) = sup{η | PA({r ∈ RunA(w) | Val(γ(r)) ≥ η}) = 1} under the almost-

sure semantics, and L>0
A (w) = sup{η | PA({r ∈ RunA(w) | Val(γ(r)) ≥ η}) > 0}

under the positive semantics. For non-probabilistic automata, the value of a word
is either the maximal value of the runs (i.e., Lmax

A (w) = sup{Val(γ(r)) | r ∈

RunA(w)} for all w ∈ Σω) and the automaton is then called nondeterministic,
or the minimal value of the runs, qnd the automaton is then called universal.

Note that Büchi and coBüchi automata ([2]) are special cases of respectively
LimSup- and LimInf-automata, where all weights are either 0 or 1.

Notations. The first letter in acronyms for classes of automata can be
N(ondeterministic), D(eterministic), U(niversal), Z for the language in the pos-
itive semantics, or As for the language in the almost-sure semantics. We use
the notations D

N to denote the classes of automata whose deterministic version
has the same expressiveness as their nondeterministic version. When the type of
an automaton A is clear from the context, we often denote its language simply
by LA(·) or even A(·), instead of L=1

A , Lmax
A , etc.

Reducibility. A class C of weighted automata is reducible to a class C′ of
weighted automata if for every A ∈ C there exists A′ ∈ C′ such that LA = LA′ ,
i.e. LA(w) = LA′(w) for all (finite or infinite) words w. Reducibility relationships
for (non)deterministic weighted automata are given in [6].
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AsLinf ↔ ZLsup

AsLavg ZLavg NLavg ZLinf NLsup AsLsup

DLavg
D
NLinf DLsup NBW

DBW
D
NSup

D
NCW

?

quantitative

boolean

Fig. 1. Reducibility relation. C is reducible to C′ if C → C′. Classes that are not
connected by an arrow are incomparable. Reducibility for the dashed arrow is open.

Composition. Given two quantitative languages L, L′ : Σω → R, we denote by
max(L, L′) (resp. min(L, L′) and L + L′) the quantitative language that assigns
max{L(w), L′(w)} (resp. min{L(w), L′(w)} and L(w) + L′(w)) to each word
w ∈ Σω. The language 1 − L is called the complement of L. The max, min
and complement operators for quantitative languages generalize respectively the
union, intersection and complement operator for boolean languages. The closure
properties of (non)deterministic weighted automata are given in [5].

Remark. We sometimes use automata with weight functions γ : Q → Q that
assign a weight to states instead of transitions. This is a convenient notation for
weighted automata in which from each state, all outgoing transitions have the
same weight. In pictorial descriptions of probabilistic weighted automata, the
transitions are labeled with probabilities, and states with weights. For automata
with weights in {0, 1}, the states with weights 1 are accepting states; runs with
infinitely many 1’s in Büchi automata, or finitely many 1’s in coBüchi automata
are accepting runs.

3 Expressive Power of Probabilistic Weighted Automata

We complete the picture given in [6] about reducibility for nondeterministic
weighted automata, by adding the relations with probabilistic automata. Fig. 1
summarizes the results.

3.1 Probabilistic Sup-automata

Theorem 1. ZSup and AsSup are reducible to DSup.
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Proof. It is easy to see that ZSup-automata define the same language when
interpreted as NSup-automata, and the same holds for AsSup and USup. The
result then follows from [6, Theorem 9]. �

3.2 Probabilistic LimAvg-automata

We consider the alphabet Σ consisting of letters a and b, i.e., Σ = {a, b}. We
define the language LF of finitely many a’s, i.e., for an infinite word w if w
consists of infinitely many a’s, then LF (w) = 0, otherwise LF (w) = 1. We also
consider the language LI of words with infinitely many a’s (it is the complement
of LF ). Many of our results would consider Markov chains and closed recurrent
states in Markov chains. We define them below.

Definition 1 (Markov chain and closed recurrent states). A Markov
chain M = (S, E, δ) consists of a finite set S of states, a set E of edges, and a
probabilistic transition function δ : S → D(S). For all s, t ∈ S, there is an edge
(s, t) ∈ E iff δ(s)(t) > 0. A closed recurrent set C of states in M is a bottom
strongly connected set of states in the graph (S, E).

We will use the following two key properties of closed recurrent states.

1. Property 1. Given a Markov chain M , and a start state s, with probability 1,
the set of closed recurrent states is reached from s in finite time. Hence for
any ǫ > 0, there exists k0 such that for all k > k0, for all starting state s,
the set of closed recurrent states are reached with probability at least 1 − ǫ
in k steps.

2. Property 2. If a closed recurrent set C is reached, and the limit of the expec-
tation of the average weights of C is α, then for all ǫ > 0, there exists a k0

such that for all k > k0 the expectation of the average weights for k steps is
at least α − ǫ.

The above properties are the basic properties of finite state Markov chains and
closed recurrent states [?].

Lemma 1. Let A be a probabilistic weighted automata with alphabet Σ = {a, b}.
Consider the Markov chain arising of A on input bω (we refer to this as the
b-Markov chain) and we use similar notation for the a-Markov chain. The fol-
lowing assertions hold:

1. If for all closed recurrent sets C in the b-Markov chain, the (expected) limit-
average value (in probabilistic sense) is at least 1, then there exists j such
that for all closed recurrent sets arising of A on input (bj · a)ω the expected
limit-average reward is positive.

2. If for all closed recurrent sets C in the b-Markov chain, the (expected) limit-
average value (in probabilistic sense) is at most 0, then there exists j such
that for all closed recurrent sets arising of A on input (bj · a)ω the expected
limit-average reward is strictly less than 1.
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3. If for all closed recurrent sets C in the b-Markov chain, the (expected) limit-
average value (in probabilistic sense) is at most 0, and if for all closed re-
current sets C in the a-Markov chain, the (expected) limit-average value (in
probabilistic sense) is at most 0, then there exists j such that for all closed re-
current sets arising of A on input (bj ·aj)ω the expected limit-average reward
is strictly less than 1/2.

Proof. We present the proof in three parts.

1. Let β be the maximum absolute value of the weights of A. From any state
s ∈ A, there is a path of length at most n to a closed recurrent set C in the
b-Markov chain, where n is the number of states of A. Hence if we choose
j > n, then any closed recurrent set in the Markov chain arising on the input
(bj ·a)ω contains closed recurrent sets of the b-Markov chain. For ǫ > 0, there
exists kǫ such that from any state s ∈ A, for all k > kǫ, on input bk from s,
the closed recurrent sets of the b-Markov chain is reached with probability
at least 1−ǫ. If all closed recurrent sets in the b-Markov chain have expected
limit-average value at least 1, then for all ǫ > 0, there exists lǫ such that
for all l > lǫ, from all states s of a closed recurrent set on the input bl the
expected average of the weights is at least 1 − ǫ, (i.e., expected sum of the
weights is l− l ·ǫ). Consider 0 < ǫ ≤ min{1/4, 1/(20 ·β)}, we choose j = k+ l,
where k = kǫ > 0 and l > max{lǫ, k}. Observe that by our choice j + 1 ≤ 2l.
Consider a closed recurrent set in the Markov chain on (bj ·a)ω and we obtain
a lower bound on the expected average reward as follows: with probability
1−ǫ the closed recurrent set of the b-Markov chain is reached within k steps,
and then in the next l steps at the expected sum of the weights is at least
l− l · ǫ, and since the worst case weight is −β we obtain the following bound
on the expected sum of the rewards

(1 − ǫ) · (l − l · ǫ) − ǫ · β · (j + 1) ≥
l

2
−

l

10
=

2l

5

Hence the expected average reward is at least 1/5 and hence positive.
2. The proof is similar to the previous result.
3. The proof is also similar to the first result. The only difference is that we

use a long enough sequence of bj such that with high probability a closed
recurrent set in the b-Markov chain is reached and then stay long enough in
the closed recurrent set to approach the expected sum of rewards to 0, and
then present a long enough sequence of aj such that with high probability
a closed recurrent set in the a-Markov chain is reached and then stay long
enough in the closed recurrent set to approach the expected sum of rewards
to 0. The calculation is similar to the first part of the proof.

Thus we obtain the desired result. �

Lemma 2. Consider the language LF of finitely many a’s. The following asser-
tions hold.
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q0

w = 0

q1

w = 1

sink

w = 0

a, b, 1
2

a, b, 1
2

b, 1

a, 1

a, b, 1

Fig. 2. A ZLavg for Lemma 2.

1. The language can be expressed as a NLavg.
2. The language can be expressed as a ZLavg.
3. The language cannot be expressed as AsLavg.

Proof. We present the three parts of the proof.

1. The result follows from the results of [6, Theorem 12] where the explicit
construction of a NLavg to express LF is presented.

2. A ZLavg automaton A to express LF is as follows (see Fig. 2):

(a) States and weight function. The set of states of the automaton is
{q0, q1, sink}, with q0 as the starting state. The weight function w is
as follows: w(q0) = w(sink ) = 0 and w(q1) = 1.

(b) Transition function. The probabilistic transition function is as follows:

(i) from q0, given a or b, the next states are q0, q1, each with
probability 1/2;

(ii) from q1 given b the next state is q1 with probability 1, and
from q1 given a the next state is sink with probability 1; and

(iii) from sink state the next state is sink with probability 1 on
both a and b. (it is an absorbing state).

Given the automaton A consider any word w with infinitely many a’s then,
the automata reaches sink state in finite time with probability 1, and hence
A(w) = 0. For a word w with finitely many a’s, let k be the last position
that an a appears. Then with probability 1/2k, after k steps, the automaton
only visits the state q1 and hence A(w) = 1. Hence there is a ZLavg for LF .

3. We show that LF cannot be expressed as an AsLavg. Consider an AsLavg

automaton A. Consider the Markov chain that arises from A if the input is
only b (i.e., on bω), we refer to it as the b-Markov chain. If there is a closed
recurrent set C that can be reached from the starting state (reached by any
sequence of a and b’s), then the limit-average reward (in probabilistic sense)
in C must be at least 1 (otherwise, if there is a closed recurrent set C with
limit-average reward less than 1, we can construct a finite word w that with
positive probability will reach C, and then follow w by bω and we will have
A(w · bω) < 1). Hence any closed recurrent set on the b-Markov chain has
limit-average reward at least 1 and by Lemma 1 there exists j such that the
A((bj · a)ω) > 0. Hence it follows that A cannot express LF .

8



q0

w = 0

sink

w = 1

b, 1 a, 1
2

a, 1
2

a, b, 1

Fig. 3. An AsLavg for Lemma 3.

Hence the result follows. �

Lemma 3. Consider the language LI of infinitely many a’s. The following as-
sertions hold.

1. The language cannot be expressed as an NLavg.
2. The language cannot be expressed as a ZLavg.
3. The language can be expressed as AsLavg.

Proof. We present the three parts of the proof.

1. It was shown in the proof of [6, Theorem 13] that NLavg cannot express
LI .

2. We show that LI is not expressible by a ZLavg. Consider a ZLavg A and
consider the b-Markov chain arising from A under the input bω. All closed
recurrent sets C reachable from the starting state must have the limit-average
value at most 0 (otherwise we can construct an word w with finitely many
a’s such that A(w) > 0). Since all closed recurrent set in the b-Markov chain
has limit-average reward that is 0, using Lemma 1 we can construct a word
w = (bj · a)ω, for a large enough j, such that A(w) < 1. Hence the result
follows.

3. We now show that LI is expressible as an AsLavg. The automaton A is as
follows (see Fig. 3):
(a) States and weight function. The set of states are {q0, sink} with q0 as

the starting state. The weight function is as follows: w(q0) = 0 and
w(sink ) = 1.

(b) Transition function. The probabilistic transition function is as follows:
(i) from q0 given b the next state is q0 with probability 1;
(ii) at q0 given a the next states are q0 and sink each with prob-

ability 1/2; (iii) the sink state is an absorbing state.
Consider a word w with infinitely many a’s, then the probability of reaching
the sink state is 1, and hence A(w) = 1. Consider a word w with finitely
many a’s, and let k be the number of a’s, and then with probability 1/2k

the automaton always stay in q0, and hence A(w) = 0.

Hence the result follows. �
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q0

w = 1

q1

w = 1

sink

w = 0

a, 1
2

a, 1
2

b, 1

a, 1

b, 1

a, b, 1

Fig. 4. A probabilistic automaton (ZLavg, ZLsup, or ZLinf) for Lemma 4.

Lemma 4. There exists a language that can be expressed by ZLavg, ZLsup

and ZLinf, but not by NLavg, NLsup or NLinf.

Proof. Consider an automaton A as follows (see Fig. 4):

1. States and weight function. The set of states are {p, q, sink} with p as the
starting state. The weight function is as follows: w(p) = w(q) = 1 and
w(sink ) = 0.

2. Transition function. The probabilistic transition is as follows:
(i) from p if the input letter is a, then the next states are p and q

with probability 1/2;
(ii) from p if the input letter is b, then the next state is sink with

probability 1;
(iii) from q, if the input letter is b, then the next state is p with

probability 1;
(iv) from q, if the input letter is a, then the next state is q with

probability 1; and
(v) the state sink is an absorbing state.

If we consider the automaton A, and interpret it as a ZLavg, ZLsup, or ZLinf,
then it accepts the following language:

Lz = {ak1bak2bak3b . . . | k1, k2, · · · ∈ N≥1 ·

∞∏

i=1

(1 −
1

2ki
) > 0};

i.e., A(w) = 1 if w ∈ Lz and A(w) = 0 if w 6∈ Lz: the above claim follows from the
argument following Lemma 5 of [2]. We now show that Lz cannot be expressed as
NLavg, NLsup or NLinf. Consider a non-deterministic automaton A. Suppose
there is a cycle C in A such that average of the rewards in C is positive. If no
such cycle exists, then clearly A cannot express Lz as there exists word for which
Lz(w) = 1. Consider a cycle C such that average of the rewards is positive, and
let the cycle be formed by a finite word wC = a0a1 . . . an and there must exist
at least one index 0 ≤ i ≤ n such that ai = b. Hence the word can be expressed
as wC = aj1baj2b . . . ajkb, and hence there exists a finite word wR (that reaches
the cycle) such that A(wR · wω

C) > 0. This contradicts that A is an automaton
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to express Lz as Lz(wR ·wω
C) = 0. Simply exchanging the average reward of the

cycle by the maximum reward (resp. minimum reward) shows that Lz is not
expressible by a NLsup (resp. NLinf). �

Theorem 2. AsLavg is incomparable in expressive power with ZLavg and
NLavg, and NLavg cannot express all languages expressible by ZLavg.

Open question. Whether NLavg is reducible to ZLavg or NLavg is incom-
parable to ZLavg (i.e., there is a language expressible by NLavg but not by a
ZLavg) remains open.

3.3 Probabilistic LimInf-automata

Lemma 5. NLinf is reducible to both AsLinf and ZLinf.

Proof. It was shown in [6] that NLinf is reducible to DLinf. Since DLinf are
special cases of AsLinf and ZLinf the result follows. �

Lemma 6. The language LI is expressible by an AsLinf, but cannot be ex-
pressed as a NLinf or a ZLinf.

Proof. It was shown in [6] that the language LI is not expressible by NLinf. If
we consider the automaton A of Lemma 3 and interpret it as an AsLinf, then
the automaton A expresses the language LI . The proof of the fact that ZLinf

cannot express LI is similar to the the proof of Lemma 3 (part(2)) and instead
of the average reward of the closed recurrent set C, we need to consider the
minimum reward of the closed recurrent set C. �

Lemma 7. ZLinf is reducible to AsLinf.

Proof. Let A be a ZLinf and we construct a AsLinf B such that B is equivalent
to A. Let V be the set of weights that appear in A and let v1 be the least value
in V . For each weight v ∈ V , consider the ZCW Av that is obtained from A by
considering all states with weight at least v as accepting states. It follows from
the results of [1] that ZCW is reducible to AsCW (it was shown in [1] that
AsBW is reducible to ZBW and it follows easily that dually ZCW is reducible
to AsCW). Let Dv be an AsCW that is equivalent to Av. We construct a
ZLinf Bv from Dv by assigning weights v to the accepting states of Dv and the
minimum weight v1 to all other states. Consider a word w, and we consider the
following cases.

1. If A(w) = v, then for all v′ ∈ V such that v′ ≤ v we have Dv′

(w) = 1, (i.e.,
the ZCW Av′

and the AsCW Dv′

accepts w).
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2. For v ∈ V , if Dv(w) = 1, then A(w) ≥ v

It follows from above that A = maxv∈V Bv. We will show later that AsLinf is
closed under max (Lemma 17) and hence we can construct an AsLinf B such
that B = maxv∈V Bv. Thus the result follows. �

Theorem 3. We have the following strict inclusion

NLinf ( ZLinf ( AsLinf

Proof. The fact that NLinf is reducible to ZLinf follows from Lemma 5, and
the fact the ZLinf is not reducible to NLinf follows from Lemma 4. The fact
that ZLinf is reducible to AsLinf follows from Lemma 7 and the fact that
AsLinf is not reducible to ZLinf follows from Lemma 6. �

3.4 Probabilistic LimSup-automata

Lemma 8. NLsup and ZLsup are not reducible to AsLsup.

Proof. The language LF of finitely many a’s can be expressed as a non-
deterministic Büchi automata, and hence as a NLsup. We will show that NLsup

is reducible to ZLsup. It follows that LF is expressible as NLsup and ZLsup.
The proof of the fact that AsLsup cannot express LF is similar to the the proof
of Lemma 2 (part(3)) and instead of the average reward of the closed recurrent
set C, we need to consider the maximum reward of the closed recurrent set C.

�

Deterministic in limit NLsup. Consider an automaton A that is a NLsup.
Let v1 < v2 < . . . < vk be the weights that appear in A. We call the automaton
A deterministic in the limit if for all states s with weight greater than v1, all
states t reachable from s are deterministic.

Lemma 9. For every NLsup A, there exists a NLsup B that is deterministic
in the limit and equivalent to B.

Proof. From the results of [7] it follows that a NBW A can be reduced to an
equivalent NBW B such that B is deterministic in the limit. Let A be a NLsup,
and let V be the set of weights that appear in A. and let V = {v1, . . . , vk} with
v1 < v2 < · · · < vk. For each v ∈ V , consider the NBW Av whose (boolean)
language is the set of words w such that LA(w) ≥ v, by declaring to be accepting
the states with weight at least v. Let Bv be the deterministic in the limit NBW

that is equivalent to Av. The automaton B that is deterministic in the limit and
is equivalent to A is obtained as the automaton that by initial non-determinism
chooses between the Bv’s, for v ∈ V . �

12



Lemma 10. NLsup is reducible to ZLsup.

Proof. Given a NLsup A, consider the NLsup B that is deterministic in
the limit and equivalent to B. By assigning equal probabilities to all out-going
transitions from a state we obtain a ZLsup C that is equivalent to B (and hence
A). The result follows. �

Lemma 11. AsLsup is reducible to ZLsup.

Proof. Consider a AsLsup A and let the weights of A be v1 < v2 . . . < vl. For
1 ≤ i ≤ l consider the AsBW obtained from A with the set of state with reward
at least vi as the Büchi states. It follows from the results of [1] that AsBW is
reducible to ZBW. Let Bi be the ZBW that is equivalent to Ai. Let Ci be the
automaton such that all Büchi states of Bi is assigned weight vi and all other
states are assigned v1. Consider the automata C that goes with equal probability
to the starting states of Ci, for 1 ≤ i ≤ l, and we interpret C as a ZLsup.
Consider a word w, and let A(w) = vj for some 1 ≤ j ≤ l, i.e., given w, the set
of states with reward at least vj is visited infinitely often with probability 1 in
A. Hence the ZBW Bi accepts w with positive probability, and since C chooses
Ci with positive probability, it follows that given w, in C the weight vj is visited
infinitely often with positive probability, i.e., C(w) ≥ vj . Moreover, given w, for
all vk > vl, the set of states with weight at least vk is visited infinitely often
with probability 0 in A. Hence for all k > j, the automata Bk accepts w with
probability 0. Thus C(w) < vk for all vk > vj . Hence C(w) = A(w) and thus
AsLsup is reducible to ZLsup. �

Lemma 12. AsLsup is not reducible to NLsup.

Proof. It follows from [1] that for 0 < λ < 1 the following language Lλ can be
expressed by a AsBW and hence by AsLsup:

Lλ = {ak1bak2bak3b . . . | k1, k2, · · · ∈ N≥1.

∞∏

i=1

(1 − λki ) > 0}.

It follows from argument similar to Lemma 4 that there exists 0 < λ < 1 such
that Lλ cannot be expressed by a NLsup. Hence the result follows. �

Theorem 4. AsLsup and NLsup are incomparable in expressive power, and
ZLsup is more expressive than AsLsup and NLsup.

Lemma 13. ZCW is reducible to ZBW.

Proof. Let A = 〈Q, qI , Σ, δ, C〉 be a ZCW with the set C ⊆ Q of accepting
states. We construct a ZBW A as follows:
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1. The set of states is Q ∪ Q where Q = {q | q ∈ Q} is a copy of the states in
Q;

2. qI is the initial state;

3. The transition function is as follows, for all σ ∈ Σ:

(a) for all states q, q′ ∈ Q, we have δ(q, σ, q′) = δ(q, σ, q′) = 1
2 ·δ(q, σ, q′), i.e.,

the state q′ and its copy q′ are reached with half of the original transition
probability;

(b) the states q ∈ Q such that q 6∈ C are abosrbing states (i.e., δ(q, σ, q) = 1);

(c) for all states q ∈ C and q′ ∈ Q, we have δ(q, σ, q′) = δ(q, σ, q′), i.e., the
transition function in the copy automaton follows that of A for states
that are copy of the accepting states.

4. The set of accepting states is C = {q ∈ Q | q ∈ C}.

We now show that the language of the ZCW A and the language of ZBW A
coincides. Consider a word w such that A(w) = 1. Let α be the probability
that given the word w evenutally always states in C are visited in A, and since
A(w) = 1 we have α > 0. In other words, as limit k tends to ∞, the probability
that after k steps only states in C are visited is α. Hence there exists k0 such
that the probability that after k0 steps only states in C are visited is at least
α
2 . In the automaton A, the probability to reach states of Q after k0 steps has
probability p = 1 − 1

2k0
> 0. Hence with positive probability (at least p · α

2 ) the

automaton visits infinitely often the states of C, and hence A(w) = 1. Observe
that since every state in Q \ C is absorbing and non-accepting), it follows that
if we consider an accepting run A, then the run must eventually always visits
states in C (i.e., the copy of the accepting states C). Hence it follows that for
a given word w, if A(w) = 1, then with positive probability eventually always
states in C are visited in A. Thus A(w) = 1, and the result follows. �

Lemma 14. ZLinf is reducible to ZLsup, and AsLsup is reducible to AsLinf.

Proof. We present the proof that ZLinf is reducible to ZLsup, the other proof
being similar. Let A be a ZLinf, and let V be the set of weights that appear in
A. For each v ∈ V , it is easy to construct a ZCW Av whose (boolean) language
is the set of words w such that LA(w) ≥ v, by declaring to be accepting the
states with weight at least v. We then construct for each v ∈ V a ZBW Av that
accepts the language of Av (such a ZBW can be constructed by Lemma 13).
Finally, assuming that V = {v1, . . . , vn} with v1 < v2 < · · · < vn, we construct
the ZLsup Bi for i = 1, 2, . . . , n where Bi is obtained from Avi

by assigning
weight vi to each accepting states, and v1 to all the other states. The ZLsup

that expresses the language of A is maxi=1,2...,n Bi and since ZLsup is closed
under max (see Lemma 15), the result follows. �
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3.5 Probabilistic Disc-automata

Theorem 5. a) NDisc and ZDisc are reducible to each other; b) UDisc and
AsDisc are reducible to each other.

Proof. a) We first prove that NDisc is reducible to ZDisc. Let A =
〈Q, ρI , Σ, δA, γ〉 be a NDisc, and let vmin, vmax be its minimal and maximal
weights respectively. Consider the ZDisc B = 〈Q, ρI , Σ, δB, γ〉 where δB(q, σ) is
the uniform distribution over the set of states q′ such that (q, σ, {q′}) ∈ δA. Let
r = q0σ1q1σ2 . . . be a run of A (over w = σ1σ2 . . . ) with value η. For all ǫ > 0,
we show that PB({r ∈ RunB(w) | Val(γ(r)) ≥ η − ǫ}) > 0}. Let n ∈ N such that
λn

1−λ
· (vmax − vmin) ≤ ǫ, and let rn = q0σ1q1σ2 . . . σnqn. The discounted sum of

the weights in rn is at least η − λn

1−λ
· (vmax). The probability of the set of runs

over w that are continuations of rn is positive, and the value of all these runs is
at least η − λn

1−λ
· (vmax − vmin), and therefore at least η − ǫ.

This shows that LB(w) ≥ η, and thus LB(w) ≥ LA(w). Note that LB(w) ≤
LA(w) since there is no run in A (nor in B) over w with value greater than
LA(w). Hence LB = LA.

Now, we prove that ZDisc is reducible to NDisc. Given a ZDisc B =
〈Q, ρI , Σ, δB, γ〉, we construct a NDisc A = 〈Q, ρI , Σ, δA, γ〉 where (q, σ, {q′}) ∈
δA if and only if δB(q, σ)(q′) > 0, for all q, q′ ∈ Q, σ ∈ Σ. By analogous argu-
ments as in the first part of the proof, it is easy to see that LB = LA.

b) It is easy to see that the complement of the quantitative language defined
by a UDisc (resp. AsDisc) can be defined by a NDisc (resp. ZDisc). Then,
the result follows from Part a) (essentially, given a UDisc, we obtain easily an
NDisc for the complement, then an equivalent ZDisc, and finally a AsDisc for
the complement of the complement, i.e., the original quantitative language).

�

Note that a by-product of this proof is that the language of a ZDisc does
not depend on the precise values of the probabilities, but only on whether they
are positive or not.

4 Closure Properties of Probabilistic Weighted Automata

4.1 Closure under max and min

Lemma 15 (Closure by initial non-determinism). ZLsup, ZLinf and
ZLavg is closed under max; and AsLsup, AsLinf and AsLavg is closed under
min.

Proof. Given two automata A1 and A2 consider the automata A obtained by
initial non-deterministic choice of A1 and A2. Formally, let q1 and q2 be the initial
states of A1 and A2, respectively, then in A we add an initial state q0 and the
transition from q0 is as follows: for σ ∈ Σ, consider the set Qσ = {q ∈ Q1 ∪Q2 |

15



max min comp. sum emptiness universality

>
0

ZSup
√ √

×
√ √ √

ZLsup
√ √ √ √

× ×
ZLinf

√ √
×

√ √
(?)

√

ZLavg
√

× ×
ZDisc

√
× ×

√ √
(1)

a
lm

o
st

-s
u
re

AsSup
√ √

×
√ √ √

AsLsup
√ √

×
√ √ √

(?)
AsLinf

√ √ √ √
× ×

AsLavg ×
√

× ×
AsDisc ×

√
×

√
(1)

√

The universality problem for NDisc can be reduced to (1).
It is not known whether this problem is decidable.

Table 1. Closure properties and emptiness problems.

δ1(q1, σ)(q) > 0 or δ2(q2, σ)(q) > 0}. From q0, for input letter σ, the successors
are from Qσ each with probability 1/|Qσ|. If A1 and A2 are ZLsup (resp. ZLinf,
ZLavg), then A is a ZLsup (resp. ZLinf, ZLavg) such that A = max{A1, A2}.
Similarly, if A1 and A2 are AsLsup (resp. AsLinf, AsLavg), then A is a AsLsup

(resp. AsLinf, AsLavg) such that A = min{A1, A2}. �

Lemma 16 (Closure by synchronized product). AsLsup is closed under
max and ZLinf is closed under min.

Proof. We present the proof that AsLsup is closed under max. Let A1 and
A2 be two probabilistic weighted automata with weight function w1 and w2,
respectively. Let A be the usual synchronized product of A1 and A2 with
weight function w such that w((s1, s2)) = max{w1(s1), w2(s2)}. Given a path
π = ((s1

0, s
2
0), (s

1
1, s

2
1), . . .) in A we denote by π ↾ 1 the path in A1 that is the

projection of the first component of π and we use similar notation for π ↾ 2.
Consider a word w, let max{A1(w), A2(w)} = v. We consider the following two
cases to show that A(w) = v.

1. W.l.o.g. let the maximum be achieved by A1, i.e., A1(w) = v. Let Bv
i be the

set of states si in Ai such that weight of si is at least v. Since A1(w) = v, given
the word w, in A1 the event Büchi(Bv

1 ) holds with probability 1. Consider
the following set of paths in A

Πv = {π | (π ↾ 1) ∈ Büchi(Bv
1 )}.

Since given w, the event Büchi(Bv
1 ) holds with probability 1 in A1, it follows

that given w, the event Πv holds with probability 1 in A. The w function
ensures that every path π ∈ Πv visits weights of value at least v infinitely
often. Hence A(w) ≥ v.
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2. Consider a weight value v′ > v. Let Cv
i be the set of states si in Ai such that

the weight of si is less than v′. Given the word w, since Ai(w) < v′, it follows
that probability of the event coBüchi(Cv

i ) in Ai, given the word w, is positive.
Hence given the word w, the probability of the event coBüchi(Cv

1 × Cv
2 )) is

positive in A. It follows that A(w) < v′.

The result follows. If A1 and A2 are ZLinf, and in A we assign weights such
that every state in A has the minimum weight of its component states, and we
consider A as a ZLinf, then A = min{A1, A2}. The proof is similar to the result
for AsLsup. �

Lemma 17. ZLsup is closed under min and AsLinf is closed under max.

Proof. Let A1 and A2 be two ZLsup. We construct a ZLsup A such that
A = min{A1, A2}. Let Vi be the set of weights that appear in Ai (for i =
1, 2), and let V = V1 ∪ V2 and let v1 be the least value in V . For each weight
v ∈ V1 ∪ V2 = {v1, . . . , vk}, consider the ZBW Av

i that is obtained from Ai by
considering all states with weight at least v as accepting states. Since ZBW is
closed under intersection(by the results of [2]), we can construct a ZBW Av

12

that is the intersection of Av
1 and Av

2 , i.e. Av
12 = Av

1 ∩Av
2 . We construct a ZLsup

Bv
12 from Av

12 by assigning weights v to the accepting states of Av
12 and the

minimum weight v1 to all other states. Consider a word w, and we consider the
following cases.

1. If min{A1(w), A2(w)} = v, then for all v′ ∈ V such that v′ ≤ v we have
Av′

12(w) = 1, (i.e., the ZBW Av′

12 accepts w).
2. If Av

12(w) = 1, then A1(w) ≥ v and A2(w) ≥ v, i.e., min{A1(w), A2(w)} ≥ v.

It follows from above that min{A1, A2} = maxv∈V Bv
12. Since ZLsup is closed

under max (by initial non-determinism), it follows that ZLsup is closed under
min. The proof of closure of AsLinf under max is similar. �

Lemma 18. Consider the alphabet Σ = {a, b}, and consider the languages La

and Lb that assigns the long-run average number of a’s and b’s, respectively.
Then the following assertions hold.

1. There is no ZLavg for the language Lm = min{La, Lb}.
2. There is no ZLavg for the language L∗ = 1 − max{La, Lb}.

Proof. To obtain a contradiction, assume that there exists a ZLavg A (for
either Lm or L∗). We first claim that if we consider the a-Markov or the b-
Markov chain of A, then there must be either an a-closed recurrent set or a
b-closed recurrent set C that is reachable in A such that the expected sum of the
weights in C is positive. Otherwise, if for all a-closed recurrent sets and b-closed
recurrent sets we have that the expected sum of the weights is zero or negative,
then we fool the automaton as follows. By Lemma 1, it follows that there exists
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a j such that A((aj · bj)ω) < 1/2, however, Lm(w) = L∗(w) = 1
2 , i.e., we have a

contradiction. W.l.o.g., we assume that there is an a-closed recurrent set C such
that expected sum of weights of C is positive. Then we present the following
word w: a finite word wC to reach the cycle C, followed by aω; the answer of the
automaton is positive, i.e., LA(w) > 0, while Lm(w) = L∗(w) = 0. Hence the
result follows. �

Lemma 19. ZLavg is not closed under min and AsLavg is not closed under
max.

Proof. The result for ZLavg follows from Lemma 18. We now show that
AsLavg is not closed under max. Consider the alphabet Σ = {a, b} and the
quantitative languages La and Lb that assign the value of long-run average num-
ber of a’s and b’s, respectively. There exists DLavg (and hence AsLavg) for La

and Lb. We show that Lm = max(La, Lb) cannot be expressed by an AsLavg.
By contradiction, assume that A is an AsLavg with set of states Q that defines
Lm. Consider any a-closed recurrent C in A. The expected limit-average of the
weights of the recurrent set must be 1, as if we consider the word w∗ = wC · aω

where wC is a finite word to reach C, the value of w∗ in Lm is 1. Hence, the
limit-average of the weights of all the reachable a-closed recurrent set C in A
is 1.

Given ǫ > 0, there exists jǫ such that the following properties hold:

1. from any state of A, given the word ajǫ with probability 1 − ǫ an a-closed
recurrent set is reached;

2. once an a-closed recurrent set is reached, given the word ajǫ , the following
properties hold: (a) the expected average of the weights is at least jǫ · (1− ǫ),
and (b) the probability distribution of the states is with ǫ of the probability
distribution of the states for the word a2·jǫ (this holds as the probability
distribution of states on words aj converges to the probability distribution
of states on the word aω).

Let β > 1 be a number that is greater than the absolute maximum value of
weights in A. We chose ǫ > 0 such that ǫ < 1

40·β . Let j = 2 · jǫ (such that jǫ

satisfies the properties above). Consider the word (aj · b3j)ω and the answer by
A must be 3

4 , as Lm((aj · b3j)ω) = 3
4 . Consider the word ŵ = (a2j · b3j)ω and

consider a closed recurrent set in the Markov chain obtain from A on ŵ. We
obtain the following lower bound on the expected limit-average of the weights:
(a) with probability at least 1 − ǫ, after j/2 steps, a-closed recurrent sets are
reached; (b) the expected average of the weights for the segment between aj and
a2j is at least j · (1 − ǫ); and (c) the difference in probability distribution of the
states after aj and a2j is at most ǫ. Since the limit-average of the weights of
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(aj · b3j)ω is 3
4 , the lower bound on the limit-average of the weights is as follows

(1 − 3 · ǫ) · (3·j+j·(1−ǫ)
5j

) − 3 · ǫ · β = (1 − ǫ)(4
5 − ǫ

5 ) − 3 · ǫ · β

≥ 4
5 − ǫ − 3 · ǫ · β

≥ 4
5 − 4 · ǫ · β

≥ 4
5 − 1

10

≥ 7
10 > 3

5 .

It follows that A((a2j · b3j)ω) > 3
5 . This contradicts that A expresses Lm. �

4.2 Closure under complement

Lemma 20. AsLsup and ZLinf are not closed under complement.

Proof. It follows from Lemma 8 that the language LF of finitely many a’s is
not expressible by an AsLsup, whereas the complement LI of infinitely many
a’s is expressible as a DBW and hence as a AsLsup. It follows from Lemma 6
that language LI is not expressible as an ZLinf, whereas its complement LF is
expressible by a DCW and hence a ZLinf. �

Lemma 21. ZLsup and AsLinf are closed under complement.

Proof. We first present the proof for ZLsup. Let A be a ZLsup, and let V be
the set of weights that appear in A. For each v ∈ V , it is easy to construct a
ZBW Av whose (boolean) language is the set of words w such that LA(w) ≥ v,
by declaring to be accepting the states with weight at least v. We then construct
for each v ∈ V a ZBW Āv (with accepting states) that accepts the (boolean)
complement of the language accepted by Av (such a ZBW can be constructed
since ZBW is closed under complementation by the results of [1]). Finally, as-
suming that V = {v1, . . . , vn} with v1 < v2 < · · · < vn, we construct the ZLsup

Bi for i = 2, . . . , n where Bi is obtained from Āvi
by assigning weight −vi−1 to

each accepting states, and −vn to all the other states. The complement of LA is
then max{LB2

, . . . , LBn
} which is accepted by a ZLsup (since ZLsup is closed

under max). The result for AsLinf is similar and it uses the closure of AsCW

under complementation which can be easily proved from the closure under com-
plementation of ZBW. �

Lemma 22. ZLavg and AsLavg are not closed under complement.

Proof. The fact that ZLavg is not closed under complement follows from
Lemma 18. We now show that AsLavg is not closed under complement. Consider
the DLavg A over alphabet Σ = {a, b} that consists of a single self-loop state
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with weight 1 for a and 0 for b. Notice that A(w.aω) = 1 and A(w.bω) = 0 for all
w ∈ Σ∗. To obtain a contradiction, assume that there exists a AsLavg B such
that B = 1 − A. For all finite words w ∈ Σ∗, let B(w) be the expected average
weight of the finite run of B over w. Fix 0 < ǫ < 1

2 . For all finite words w, there
exists a number nw such that the average number of a’s in w.bnw is at most ǫ,
and there exists a number mw such that B(w.amw ) ≤ ǫ (since B(w.aω) = 0).
Hence, we can construct a word w = bn1am1bn2am2 . . . such that A(w) ≤ ǫ and
B(w) ≤ ǫ. Since B = 1 − A, this implies that 1 ≤ 2ǫ, a contradiction. �

4.3 Closure under sum

Lemma 23. ZLsup and AsLsup are closed under sum.

Proof. Given two ZLsup (resp. AsLsup) A1 and A2, we construct a ZLsup

(resp. AsLsup) A for the sum of their languages as follows. For a pair (v1, v2)
of weights (vi in Ai, for i = 1, 2), consider a copy of the synchronized product of
A1 and A2. We attach a bit b whose range is {1, 2} to each state to remember
that we expect Ab to visit the guessed weight vb. Whenever this occurs, the bit
b is set to 3 − b, and the weight of the state is v1 + v2. All other states (i.e.
when b is unchanged) have weight min{v1 + v2 | v1 ∈ V1 ∧ v2 ∈ V2}. Let the
automata constructed be A(v1,v2). Then A = max(v1,v2) A(v1,v2). Since ZLsup

(resp. AsLsup) is closed under max the result follows. �

Lemma 24. ZLinf and AsLinf are closed under sum.

Proof. Given two ZLinf (resp. AsLinf) A1 and A2, we construct a ZLinf

(resp. AsLinf) A for the sum of their languages as follows. For i = 1, 2, let Vi be
the set of weights that appear in Ai. Let vmin = min{v1 +v2 | v1 ∈ V1∧v2 ∈ V2}.
For v1 ∈ V1 and v2 ∈ V2, for i = 1, 2, consider the ZCW (resp. AsCW) Avi

obtained from Ai by making all states with weights at least vi as accepting
states. Let A(v1,v2) be the ZCW (resp. AsCW) such that A(v1,v2) = Av1

∩ Av2
:

such an ZCW (resp. AsCW) exists since ZCW (resp. AsCW) is closed under
intersection. In other words, for a word w we have A(v1,v2)(w) = 1 iff A1(w) ≥ v1

and A2(w) ≥ v2. Let A(v1,v2) be the ZLinf (resp. AsLinf) obtained from A(v1,v2)

by assigning weight v1 + v2 to all accepting states and weight vmin to all other
states. Then the automaton for the sum of A1 and A2 (denoted as A1 + A2) is
max(v1,v2)∈V1×V2

A(v1,v2). Since ZLinf (resp. AsLinf) is closed under max the
result follows. �

Lemma 25. AsLavg is not closed under sum.
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Proof. Consider the alphabet Σ = {a, b}, and consider the DLavg-definable
languages La and Lb that assigns to each word w the long-run average number
of a’s and b’s in w respectively. Let L+ = La + Lb. We show that L+ is not
expressible by AsLavg. Assume towards contradiction that L+ is defined by
an AsLavg A with set of states Q (we assume w.l.o.g that every state in Q
is reachable). Let β > 1 be greater than the maximum absolute value of the
weights in A.

First, we claim that from every state q ∈ Q, if we consider the automaton
Aq with q as starting state then Aq(a

ω) = 1: this follows since if we consider
a finite word wq to reach q, then L+(wq · aω) = 1 and hence A(wq · aω) = 1.
It follows that from any state q, as k tends to ∞, the expected average of the
weights converges almost-surely to 1. This implies if we consider the a-Markov
chain arising from A, then from any state q, for all closed recurrent set C of
states reachable from q, the expected average of the weights of C is 1. Hence for
every γ > 0 there exists a natural number kγ

0 such that from any state q, for all
k > kγ

0 given the word ak the expected average of the weights is at least 1
2 with

probability 1 − γ, and for the first kγ
0 steps the expected average of the weights

is at least −β. The same result holds if we consider as input a sequence of b’s
instead of a’s.

Consider the word w generated inductively by the following procedure: (a) w0

is the empty word; (b) we generate wi+1 from wi as follows: (i) the sequence
of letters added to wi to obtain wi+1 is at least i; (ii) first we generate a long
enough sequence w′

i+1 of a’s after wi such that the average number of b’s in
wi · w′

i+1 falls below 1
i
; (iii) then generate a long enough sequence w′′

i+1 of b’s
such that the average number of a’s in wi · w′

i+1 · w′′
i+1 falls below 1

i
; (iv) the

word wi+1 = wi · w
′
i+1 · w′′

i+1. The word w is the limit of these sequences. For
γ > 0, consider i ≥ 6 · kγ

0 · β (where kγ
0 satisfies the properties described above

for γ). By construction for i > 6 · kγ
0 · β, the length of wi is at least 6 · k0 · β,

and hence it follows that in the segment constructed between wi and wi+1, for
all |wi| ≤ ℓ ≤ |wi+1| with probability at least 1 − γ the expected average of the
weights is at least

ℓ−k
γ
0

2 − kγ
0 · β

ℓ
≥

1

2
−

2 · kγ
0 · β

ℓ
≥

1

2
−

1

3
≥

1

6
.

Hence for all γ > 0, the expected average of the weights is at least 1
6 with

probability at least 1 − γ. Since this holds for all γ > 0, it follows that the
expected average of the weights is at least 1

6 almost-surely, (i.e., A(w) ≥ 1
6 ). We

have La(w) = Lb(w) = 0 and thus L+(w) = 0, while A(w) ≥ 1
6 . Thus we have a

contradiction. �

Lemma 26. ZDisc and AsDisc are closed under sum.

Proof. The result for ZDisc follows from Theorem 5 and ?? and the fact
that NDisc and UDisc are closed under sum (which is easy to prove using a
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q0 q1 sink

a, b, 0

a, b, 0

b, 1

a, 0

a, b, 0

Fig. 5. A nondeterministic limit-average automaton.

synchronized product of automata where the weight of a joint transition is the
sum of the weights of the corresponding transitions. �

5 Comparison of finite max, deterministic in the limit

and non-deterministic automata

LimSup automata. For LimSup automata, (a) since DLsup is closed under
max it follows the expressive power of deterministic automata and finite max of
deterministic automata is the same; (b) the expressive power of non-deterministic
and the deterministic in the limit is the same; and (c) deterministic in the limit
automata is more expressive than finite max of deterministic automata.

Lemma 27. For limit-average automata the following assertions hold:

1. Finite max of deterministic automata is more expressive that deterministic
limit-average automata.

2. Deterministic in the limit non-deterministic limit-average automata is more
expressive that finite max of deterministic limit-average automata.

Proof. We present the proof in two parts.

1. It follows from the results of [6] that DLavg is not closed under max, and
hence the result follows.

2. Consider the language LF of finitely many a’s. It is also easy to see that
the NLavg shown in Fig. 5 defines LF , and also the NLavg shown is de-
terministic in the limit. We show that LF cannot be defined by finite max
of DLavg’s to prove the desired claim. Consider ℓ deterministic DLavg

A1, A2, . . . , Aℓ, and let A = max{A1, A2, . . . , Aℓ}. Towards contradiction we
assume that A defines the language LF . We assume without loss of gener-
ality that every state qi ∈ Qi is reachable from the starting q0

i for Ai by
a finite word wi

q. For every finite word wf , we have A(wf · bω) = 1, and
hence it follows that for every finite word wf , there must exist a component
automata Ai such from the state qi reachable from q0

i by wf , the b-cycle
Ci reachable from qi (the b-cycle is the cycle that can be executed with b’s
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only) satisfy the condition that sum of the weights of the cycle is at least
|Ci|. Let β be the maximum absolute value of the weights that appear in any
Ai, and let |QM | be the maximum number of states in any automata. Let
j = ⌈2 · (2 · |QM |+ 2 · |QM | ·β + β + 1)⌉ and consider the word w = (bj · a)ω.
Since for every finite word wf , there exist an automaton Ai such that the
b-cycle reachable Ci from the state after the word wf has average weight at
least 1, it follows that there exist an automaton Ai such that the b-cycle Ci

executed infinitely often on the word (bj · a)ω has average weight at least 1.
A lower bound on the average of the weights in the unique run of Ai over
(bj · a) is as follows: consider the set of states that appear infinitely often in
the run, then it can have a prefix of length at most Qi whose sum of weights
is at least −|Qi| · β, then it goes through b-cycle Ci for at least j − 2 · |Qi|
steps with sum of weights at least (j − 2 · |Qi|) (since the b-cycle Ci have
average weight at least 1), then again a prefix of length at most |Qi| without
completing the cycle (with sum of weights at least −|Qi|·β), and then weight
for a is at least −β. Hence the average is at least

(j − 2 · |Qi|) − 2 · |Qi| · β − β

j + 1
≥ 1−

2 · |Qi| + 2 · |Qi| · β + β + 1

j
≥ 1−

1

2
=

1

2
;

we used above by choice of j we have 2·|Qi|+2·|Qi|·β+β+1
j

≤ 1
2 since |Qi| ≤

|QM |. Hence we have A((bj · a)ω) ≥ 1
2 contradicting that A defines the

language LF .

�

6 Decision problems

We conclude the paper with (un)decidability results for classical decision prob-
lems about quantitative languages. Given a weighted automaton A and a rational
number ν ∈ Q, the quantitative emptiness problem asks whether there exists a
word w ∈ Σω such that LA(w) ≥ ν, and the quantitative universality problem
asks whether LA(w) ≥ ν for all words w ∈ Σω.

Theorem 6. The emptiness and universality problems for ZSup and AsSup

are decidable.

Proof. By Theorem 1, these problems reduce to emptiness of DSup which is
decidable ([6, Theorem 1]).

The following theorems are trivial corollaries of [1, Theorem 2].

Theorem 7. The emptiness problem for ZLsup and the universality problem
for AsLsup are undecidable.

It is easy to obtain the following result as a straightforward generalization
of [1, Theorem 6].
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Theorem 8. The emptiness problem for AsLsup and the universality problem
for ZLinf are decidable.

The following result is a particular case of [1, Corollary 3].

Theorem 9. The emptiness problem for AsLinf and the universality problem
fotr ZLsup are undecidable.

Finally, by Theorem 5 and the decidability of emptiness for NDisc, we get
the following result.

Theorem 10. The emptiness problem for ZDisc and the universality problem
for AsDisc are decidable.

Note that by Theorem 5, the universality problem for NDisc (which is not
know to be decidable) can be reduced to the universality problem for ZDisc and
to the emptiness problem for AsDisc.
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