
International Journal of Computer Science and Applications, Technomathematics Research Foundation
2008, Vol. 5, No. 3b, pp 45 -68

45

USING DECLARATIVE SPECIFICATIONS IN BUSINESS PROCESS DESIGN

IRINA RYCHKOVA

School of computer and Communication Sciences,
Ecole Polytechnique Fédérale de Lausanne,

CH-1015 Lausanne, Switzerland,
Irina.Rychkova@epfl.ch

GIL REGEV

School of computer and Communication Sciences,
Ecole Polytechnique Fédérale de Lausanne,

CH-1015 Lausanne, Switzerland,
Gil.Regev@epfl.ch

ALAIN WEGMANN

School of computer and Communication Sciences,
Ecole Polytechnique Fédérale de Lausanne,

CH-1015 Lausanne, Switzerland,
Alain.Wegmann@epfl.ch

Business process modeling techniques, such as BPMN, encourage the early specification of the exact
order in which the activities of the process will be executed. However, a business process may be
exposed to different environments and subjected to many conditions in which a sequence cannot be
identified at design time.
We present declarative business process specifications that can be used to align optional process
customizations, as well as process redesign, with the business strategy of an organization. These
specifications complement the traditional (imperative) business process model by specifying the
process independently from a particular environment.

Keywords: Alloy, formal verification, business process modeling, refinement.

1. Introduction

Aligning business processes with business strategy is an important preoccupation in
modern organizations. This alignment is made simpler if an adequate level of abstraction
for business process representation is used. As noted in [Khomyakov and Bider(2001)], a
business process is traditionally defined as “a set of partially ordered activities aimed at
reaching a well-defined goal.” The keyword partial alludes to the problem of defining,
ahead of time, the exact order in which the activities will be executed. Indeed a business
process may be subjected to many conditions in which this order cannot be identified at
design time. The exact sequence of activities is therefore quite impossible to predict
[Khomyakov and Bider(2001)]. Even a simple sale process has been shown to
incorporate optional execution orders depending on, among other aspects, cultural and

I. Rychkova, G. Regev, A. Wegmann 46

legal considerations [Regev and Wegmann (2002)]. The example given in [Regev and
Wegmann (2002)] describes an on-line store that needs to adapt its sale process to local
customs in different countries. The sequence of execution between payment and order
fulfillment needs to be adapted to different local preferences: in the United States for
example, payment by credit card is most often required before goods are shipped. In
some European countries, e.g. Switzerland, customers are used to paying for goods after
they have been received.

Organizations have a marked tendency to limit their interpretations of their
environment [Weick (1979)]. These interpretations constrain their business processes at
the early phases of their design [Narasipuram et al. (2008)]. Modeling techniques, such as
BPMN [OMG (2006)] and use cases [Jacobson et al. (1992)], also encourage modeling
details at an early stage. As a result, in many cases, an organization will commit to one of
the execution paths (e.g. paying before sending the goods) and later, handle the second
one (sending the goods before receiving the payment) as an exception. The number of
exceptions, however, often results in tangled processes containing still more exceptions.
This has two related consequences. First of all, the alignment between the strategy of the
organization (i.e. selling on-line) and its detailed business processes is not apparent.
Second, the flexibility of the processes themselves [Regev et al. (2006)] is limited
because they become difficult to manage and change.

In this paper, we propose a technique that complements imperative business process
specifications with declarative specifications. This declarative specification enables
designers to describe the actions that a business process needs to contain, but not their
sequence. It omits the specification of the control flow between the actions thus keeping
the process design independent from the constraints imposed by an environment in which
this process will be implemented. The control flow, often specific to a given
environment, is later modeled in an imperative specification. Our technique includes
checking the conformance of the imperative and the declarative specifications.

Our technique can improve the alignment of the business process with the business
strategy of an organization by giving a synthesis of a set of business processes
(abstracting the control flow), while maintaining a rigorous relationship with the detailed
process. Flexibility may also be enhanced because alternative paths are modeled as
separate business processes conforming to an overall process, thereby helping
organizations to tailor them to different environments without losing the overall view.

This technique is a new addition to SEAM (Systemic Enterprise Architecture
Method) [Wegmann (2003)]-[Wegmann et al. (2007b)]. We illustrate our technique with
the example of an on-line book store: The company wants to design a global view on its
sale process in order to maintain the alignment between the different customizations of
this process for different countries and to simplify the design of these customizations.
We illustrate a business process redesign task using the same example and show how
declarative specifications help designers to understand the relation between the
redesigned process and the initial one.

We formalize the concepts of the SEAM modeling language using first-order logic
with the Alloy specification language [Jackson (2006)]. This enables us to check our
models using the Alloy Analyzer [Alloy Analyzer].

In Section 2 we briefly present the SEAM method. We give an overview of the
modeling concepts of SEAM and its underlying theory. In Section 3 we describe the
example of the on-line book store and a SEAM declarative specification of the book store

Using Declarative Specifications in Business Process Design 47

sale process. In this section we also illustrate how the sale process redesign can be
rigorously modeled using declarative business process specifications. In Section 4 we
briefly introduce the Alloy specification language [Jackson (2006)] and provide the Alloy
semantics for the SEAM declarative specification. We complete this section with the
validation of the declarative specification for the sale process using the Alloy Analyzer.
In Section 5 we present the relevant related work. In Section 6 we outline what we
envision as future work.

2. Declarative Business Process Specifications

2.1. The SEAM hierarchical model

SEAM is an Enterprise Architecture (EA) method that uses hierarchical modeling of
systems, including business and IT systems. A SEAM model contains a set of
specifications structured in an organizational level hierarchy.

In a SEAM specification, a system is represented by a working object. The working
object can be seen as a whole, where its construction is hidden, or as a composite that
reveals its components. The views as a whole and as a composite belong to two adjacent
organizational levels. A SEAM model is usually represented graphically.
Fig. 1 illustrates four organizational levels and their representation in SEAM. These
levels are:

the market segment level, in which the organization of interest is modeled as a
value network [Stabell and Fjeldstad (1998)], a network of companies serving a
customer (which also can be seen as being part of a value network). The value
network is represented as a whole;
the business level, in which the company of interest is represented as a whole,
collaborating in inter-organizational business process with its partners (suppliers)
within the value network. The company of interest and all its partners are represented
as wholes and described by their responsibility within the inter-organizational
business process [Wegmann et al. (2007a)] and the data they operate with;
the operational level, where the company of interest is represented as a composite.
The employee and IT system are represented as components of the company. They
collaborate in a business process. The IT system is represented as a whole and is
described by its responsibility within the business process and the data it operates
with;
the IT level, where the IT system is represented as a composite, i.e. a set of
collaborating applications, seen as wholes.

To verify that a collaboration of components in one organizational level is consistent
with the definition of the working object as a whole in the upper organizational level, a
relationship between these levels must be made. In this work, we analyze the relationship
between the market segment and the business organizational levels and verify that the
business process defined for the value network (inter-organizational business process) is
aligned with the strategy defined in the market segment level.

I. Rychkova, G. Regev, A. Wegmann 48

O
rg

an
iz

at
io

na
l l

ev
el

s

Fig. 1. Organizational levels.

2.2. A process specification in SEAM

Fig. 2 illustrates a SEAM working object S1 seen as a whole (S1_w) and as a composite
(S1_c), respectively. A working object as a whole has properties and localized actions
(LA). Properties represent the state of the working object. A localized action changes the
state of the working object by modifying its properties (Fig. 2).

Fig. 2. SEAM notation.

A working object as a composite specifies a distributed action (DA) between
components of the working object. These components are also modeled as working
objects (Fig. 2-b). The keyword Distributed stands for a distribution of responsibilities
between components, answering the question, “Who does what?” The responsibilities are
modeled as localized actions.

The specification in Fig. 2-b can be read as follows: “To perform LA_Operation at
S1, the collaboration DA_Operation of component working objects A1 and A2 is

Using Declarative Specifications in Business Process Design 49

required. A1 participates in DA_Operation by performing the localized action
LA_Operation1 that changes Data1. LA_Operation1 is the responsibility of A1 in
DA_Operation. The responsibility of A2 in DA_Operation is represented by the localized
action LA_Operation2 that changes Data2.”

The distributed action DA_Operation is a declarative specification of a business
process within S1. It defines the actions to be performed by components A1 and A2 (i.e.
LA_Operation1, and LA_Operation2), but does not prescribe the order in which these
actions will be performed. Many execution paths are valid for a given distributed action.
The selection of one of them is the business process designer’s choice. When a designer
commits to a concrete control flow, the specification is no longer declarative; it is
transformed into a traditional imperative business process model. We call it a
customization.

2.3. Formal semantics for SEAM specifications

To rigorously reason about graphical specifications, we define a formal semantics for
SEAM. This semantics is based on first-order logic (FOL). It enables the mapping of a
SEAM specification to the Alloy specification language [Jackson (2006)] for further
validation.

SEAM property iP is specified in FOL as a set whose elements are instances of this

property. A state X of a working object seen as a whole is defined by a pair (V, DI),
where V is a tuple of state variables:

),..,(
11 mnppV (1)

The state is computed by assigning state variables to values in the domain DI.
Components nmnnm PppPpp :,..,;..;:,..,

11 111 are instances of properties this working
object hosts; DI is an interpretation domain of a working object, defined as a non empty
set of values of property instances

mnpp ,..,
11 . To compute the state X means

mapping of nmpp ,..,11 to their values in DI ; A state space of a working object defines
all possible interpretations of V in DI.

A state X of a working object seen as a composite is a tuple kXXX ,..,1

whose components are states of (instances of) component working objects.

For every action A of the working object we define a precondition and a postcondition.
Postcondition postA is a condition that a working object meets after the action termination.

Precondition preA specifies a condition that must hold upon the action execution: If A is started

in a state satisfying preA , it is guaranteed to terminate in a state satisfying postA .

Precondition and postcondition are modeled as predicates over state space :

},{:

},,{:

falsetrueA
falsetrueA

post

pre
 (2)

I. Rychkova, G. Regev, A. Wegmann 50

A precondition of the action A specifies a set of states of a working object, where A is
applicable. This set is called a set of pre-states for A; it represents a subset of a state
space of the working object and denoted:

preA . A state X of the working object
satisfies the precondition of the action A, if and only if it belongs to the set of pre-states
of A:

preApre XXAX)(| (3)

A postcondition of the action A defines a relation between the states of a working object
before and after this action respectively. A set of action post-states

postA is defined as

all states 'X of the working object after the action termination and can be denoted as
follows:

postpre ApostA XXXAXX ')',(||' (4)

Here X is a pre-state of A.

Invariant invA is a condition that holds before and after the action execution. In
other terms, during the action execution, the working object must be found only in states,
specified by the action invariant. These states are allowable states for the action. Global
invariants invS specify allowable states for the working object during its entire lifecycle, i.e. any
action it might perform. Invariants are formalized as predicates over state space :

},{:, falsetrueAS invinv .

Action A defines a transition of the working object from state X to state 'X (pre- and post-
states respectively). We define a SEAM action as a binary FOL-
formula },{: falsetrueA . We specify the SEAM action using logical
implication between precondition and postcondition:

)',()()',(XXAXAXXA postpre

def
 (5)

If at a given state X the precondition Apre of the action A holds, then the working object will be
transited to a state 'X , for which the postcondition of A - postA - holds.

If at a given state X preconditions and invariants of some actions nAAA ..,2,1 hold,
then these actions are called available actions for the working object at a given state. The
action definition in Eq. (5) can be read as follows: If a state of the working object is such that the
action A is available, then the working object will be transited to one of the states specified by the
postcondition of A - postA .

Preconditions, postconditions and invariants explicitly relate actions with properties within a
working object. This is visible in a SEAM specification through the action-property relations.
Actions are specified declaratively. The action specification abstracts out how the transition from
the pre- to post- state is made. An imperative specification, in contrast, makes explicit the
intermediate states (if any) between the pre- and the post-states.

Using Declarative Specifications in Business Process Design 51

2.4. Refinement of SEAM specifications

The relationships between working objects in different organizational levels are
captured by the notion of refinement, adopted from software engineering [Wirth (1971)].
In software engineering, a program specification development is considered as a
sequence of stepwise refinements. Along these lines, the SEAM model development can
be considered as a stepwise refinement of its graphical specifications [Rychkova and
Wegmann (2007)]. More precisely, refinement in SEAM specifies a transition from one
organizational level, where the working object is presented as a whole, to another
organizational level, where the same working object is presented as a composite. A
specification of a working object as a whole is usually called abstract, and a specification
of a working object as a composite is called concrete. We say that a concrete
specification refines the abstract one. A relation between the state spaces of the working
object specified as abstract and the working object specified as a concrete is called a
refinement relation.

Let us consider a working objects W seen as a whole, and specified on the state space a with

a localized action aA , and a working object W’, seen as a composite, and specified on the state

space c with a distributed action cA .
Definition.
Given a refinement relation between state spaces, W’ is called a correct refinement of W
if and only if for each run of the },{: falsetrueR ca concrete action Ac of W’,

which starts at ccX and terminates at ccX ' , there exists a run Aa of W, which

starts at aaX such that),(ca XXR holds and terminates at 'aX , such that

)','(ca XXR holds.

This definition can be expressed as follows:

)','()',(|'

)',(),(|,',

};,{:

caaaaaa

ccccaaaccc

ca

XXRXXAX

XXAXXRXXX

falsetrueR

 (6)

if the refinement relation is a function acR : , we rewrite Eq. (6):

))'(),(()',(|', ccacccccc XRXRAXXAXX (7)

Eq. (7) says that for every pair of states cc XX ', of the concrete specification, whenever

action Ac starts with an initial state cX and terminates at a final state cX ' , there exists a

pair of states of the abstract specification)'(),(cc XRXR and a run of an abstract

action Aa, where)(cXR is its initial state, and)'(cXR is its final state respectively.

I. Rychkova, G. Regev, A. Wegmann 52

This refinement is illustrated in Fig. 3. cA correctly refines aA if, when cA makes a

transition from its pre-state cX to its post-state cX ' , aA is also making a transition from its

pre-state aX to its post-state aX ' , and these states are related by R .

Fig. 3. The refinement in SEAM
The proposed formal semantics permit a validation of the SEAM declarative
specifications and a validation of the refinement (i.e. a transition from one specification
to another).

3. Example: A Sale Process for the On-Line Book Store

In this section we illustrate the declarative business process specifications with the
example of a sale process for an on-line book store. We also clarify the relationships
between these declarative specifications and traditional imperative business process
models.

3.1. The on-line book store description

The On-Line Book Store (BS) is a company that collaborates with a publisher (P), and a
bank (B) to sell books to customers. BS manages requests from customers via internet. A
sale begins when a customer logs into www.BS.com using an id (customerID) and
requests a book using a book id (bookID). If the requested book is available in the
publisher’s inventory and if the customer’s rating in the data base of the bank is good
then the sale is successful. The successful sale terminates when the book is delivered by
the publisher to the customer and the payment for the book is received by the bank from
the customer.

If the ordered book is not available or the customer’s rating is not good, we assume that no
action is executed (the cash and the inventory remain unchanged).

3.2. The successful sale: process design

The company wants to design different customizations of its sale process for different countries by
maintaining a global view of this process.

For the sake of simplicity, we limit our discussion to the specification of a successful sale. We
do not specify the case where the payment is not received or the book is not delivered.

Using Declarative Specifications in Business Process Design 53

3.2.1. Localized action LAsellOk

In Fig. 4 the On-Line Book Store value network is modeled as a working object seen as a whole -
SVN_w. The successful sale process is modeled as a localized action LAsellOk of this working
object. LAsellOk specifies the strategic goal of the value network: To perform a sale by
guarantying that if a book is available and if a customer has a good rating then this book will be
delivered and paid by the customer.
Action-property relations are used on the diagram in Fig.4 to specify pre- and post-conditions of
LASellOk. In a legend for Fig.4 we present a formal specification of pre- and post-conditions for
LASellOk written in the Alloy specification language.

3.2.2. Distributed action DAsellOk

To relate the strategic goal of the value network with the specification of a business
process that supports this goal, we represent the On-Line Book Store value network as a
collaboration between the bank, the publisher and the book store – the participants in the
value network. In Fig. 5 the On-Line Book Store value network is modeled as a working
object seen as a composite - SVN_c. The Action DAsellOk in Fig.5 specifies how the
responsibilities in a successful sale are distributed between the value network
participants. It is therefore called a distributed action. The bank, the publisher and the
book store are modeled as working objects seen as wholes. The responsibilities are
modeled as localized actions of the corresponding working objects: for example, the fact
that the bank checks the customer’s rating is modeled by localized action checkRating
within the B working object.

SVN_w

Book

Id
<Int>

Quantity
<Int>

1|id

1|quantity

0..*|inventory

Cash
<int>1|cash

Customer
Info

0..*|customerDB Id
<Int>

Rating
<Int>

1|id

1|rating

Book_id
<Int>1|book_id

Customer_id
<Int>1| cusimer_id

LAsellOk

B. Pre: customer has a good rating

A. Pre: book is available

D.Post: book is delivered

C. Post: payment received

C. (book.quantity= book.quantity- 1) A. (book.id = bookID) and
(book in bInventory) and
(book.quantity>0)
B. (buyer.id = customerID) and
(buyer in customerDB) and
(buyer.rating > 0)

D.(cash = cash + 1)

PRE POST

For all book: Book, buyer: CustomerInfo holds:

Fig. 4. Localized Action SellOk.

I. Rychkova, G. Regev, A. Wegmann 54

SVN_c

BS

1|p

Book

Requested_id
<Int>

Id
<Int>

Quantity
<Int>

1|id

1|quantity

0..*|inventory

1|requested_id

Cash
<int>

1|cash

B P

1|b

Customer
Info

0..*|customerDB Id
<Int>

Rating
<Int>

1|id

1|rating

Requested_id
<Int>

1|requested_id

Book_id
<Int>1|book_id

Customer_id
<Int>1| cusimer_id

DAsellOk

process
Request

getID
getID

getPayment

checkRating

Check
Availability deliverBook

cID

bID

B. Pre: customer has a good rating

C. Post: payment received

A. Pre: book is available

D.Post: book is delivered

Book

Customer
Info

For all sharedBook:one Book, sharedCustomer: one CustomerInfo holds:
C. p_deliverBook[p_bInventory,

p_requestedID, sharedBook,
sharedCustomer]

A. p_checkAvailability[p_bInventory,
p_requestedID, sharedBook]

PRE POST
B.b_checkRating[b_customerDB,
b_requestedID, sharedCustomer]

D.b_getPayment[b_cash,
sharedCustomer]

1|bs

Fig. 5. Distributed Action DAsellOk.

To specify the communication between the book store, the bank and the publisher, we
define additional actions preocessRequest and getID, and properties cID, bID in Fig. 5.
These actions and properties serve for an information exchange between working objects
and are not specific to the successful sale process; we show them without shading and
place the relations between them and other actions and properties as dashed lines.

SEAM uses shared properties to specify distributed actions. Shared properties bind
localized actions and represent a common knowledge that is maintained by the working
object as a composite. In our example, sharedBook and sharedCustomer are shared
properties. They represent the information used by the bank, the publisher, and the book
store to manage their tasks within the successful sale process of the value network.

3.2.3. The process customization

The distributed action DAsellOk is a declarative business process specification that
defines the conditions and the results of the process but does not impose any constraints
on how this process will be conducted in a particular environment.

Considering that the on-line book store wants to pursue international markets, namely
US and European markets (including Switzerland), different process customizations have
to be designed [Regev and Wegmann (2002)].

In the US, most on-line orders are paid by a credit card and shipped only after the payment is
received. A customization of the sale process for the US market is illustrated in Fig.6-a. This
customization is modeled as a BPMN business process diagram (BPD).

Using Declarative Specifications in Business Process Design 55

Fig. 6: On-line book store value network performing Sale:
a) the process customization for US;

b) the process customization for Switzerland

In countries such as Switzerland most mail order companies and on-line stores have
traditionally trusted customers enough to deliver ordered goods without an obligation to
pay in advance. A payment form is shipped with the purchase and customers can then use
it to pay for their purchases in a post office or through their bank [Regev and Wegmann
(2002)]. For the Suisse market, the sell process should be customized allowing for the
delivery prior to (or simultaneously with) the payment procedure as illustrated in Fig. 6-b.

The distributed action DAsellOk relates business process customizations illustrated
in Fig. 6 with the strategic goal of the on-line book store value network, specified as a
localized action in Fig. 4.

3.3. The successful sale: process redesign

The second business process modeling task that can benefit from an additional
declarative specification layer is a business process redesign. A decision of the company
to redesign its business process (or processes) can be based on different internal or
external factors, e.g. the emergence of new technologies or new products, the change of a
political situation, the competitive landscape etc. Considering our example, let’s imagine
that the on-line book store discovered that its shipment service suffers from chronic
delays and is found unsatisfactory by the customers. Hence, the on-line book store
decides to maintain its own inventory and to provide the shipment service by itself
instead of outsourcing this service to the publisher.

I. Rychkova, G. Regev, A. Wegmann 56

Fig. 7 Distributed action for redesigned sale.

Although the strategic goal of the value network remains the same, the value
network itself is reorganized and, as a consequence, a business process redesign is
required. The redesign of a successful sale can be rigorously modeled using a declarative
specification that reflects a new distribution of responsibilities between participants of the
reorganized value network. We specify a new (redesigned) distributed action for sellOk
in Fig. 7. In this specification, the book inventory modeled as a set of books, and the
localized actions checkAvailability and deliverBook become a part of the BS working
object specification. The working object P, which represents the publisher in our
specification, is removed.

The distributed action DAsellOK in Fig.7 is consistent with the localized action
LAsellOk in Fig.4 because the latter specifies only the work to be done, but not the
distribution of this work. This illustrates an integration of two declarative specifications
of the sale process: the initial one and the redesigned one.

Based on the redesigned distributed action, new process customizations for the US
and Switzerland are modeled in Fig. 8. The redesigned distributed action DAsellOk
relates the business process customizations illustrated in Fig. 8 with the strategic goal of
the on-line book store value network, specified as a localized action in Fig. 4.

Using Declarative Specifications in Business Process Design 57

Fig. 8 On-line book store value network performing Sale:
a. the process customization for US (redesigned);

b. the process customization for Switzerland (redesigned)

Fig. 9 presents an overview of the design and redesign of the successful sale business
process and shows how design and redesign tasks can be related via declarative
specifications.

4. Validation of Declarative Specifications in Alloy

We call a transition from the localized action specified for the working object seen as a
whole to the distributed action specified for the same working object seen as a composite
a specification refinement. In this section we demonstrate how SEAM specifications and
a refinement between these specifications can be validated in Alloy.

4.1. Alloy specification language

Alloy is a declarative specification language developed by the Software Design
Group at MIT - http://Alloy.mit.edu/. Alloy is a language for modeling systems as
complex structures with constraints and behavior based on first-order logic. The syntax of
Alloy is similar to the syntax of OCL – the Object Constraint Language for UML.
However, Alloy is a fully declarative, whereas OCL combines both declarative and
imperative (operational) elements.

Unlike a programming language, a declarative Alloy model describes the effect of a
behavior and does not reveal its mechanism. This modeling technique allows for the
creation and analysis of partial models and is beneficial when, for example, a modeler has
a limited knowledge about the system and develops an abstract system specification.
Alloy specification language belongs to the class of formal specification languages like
Z, VDM, B, etc; its main benefit is the possibility of a fully automated analysis of its
models.

I. Rychkova, G. Regev, A. Wegmann 58

SVN_c

M

1|p

Cash
<int>

1|cash

B P

1|b

Customer
Info

0..*|customerDB Id
<Int>

Rating
<Int>

1|id

1|rating

Requested_id
<Int>

1|requested_id

Book_id
<Int>1|book_id

Customer_id
<Int>1| cusimer_id

DAsellOk

process
Request

getID

getPayment

checkRating

Check
Availability

deliverBook

A

cID

B. Pre: customer has a good rating

C. Post: payment received

A. Pre: book is available

D.Post: book is delivered

Customer
Info

Book

Id
<Int>

Quantity
<Int>

1|id

1|quantity

0..*|inventory

Strategic Goal:
Localized action

Declarative Specification A:
Distributed action

Business process
customization 1

Business process
customization 2

Declarative Specification B:
Distributed action

Business process
customization 1

Business process
customization 2

Design

Redesign

Fig. 9. Business process design and redesign schema using declarative SEAM specifications.

For the automated analysis of models written in Alloy, an Alloy Analyzer [Alloy
Analyzer] is used. The Alloy Analyzer is the model checker for Alloy: given a logical
formula and a data structure that defines the interpretation domain for this formula, the
Alloy Analyzer decides whether this formula is satisfiable. Mechanically, the Alloy
Analyzer attempts to find a model instance - a binding of the variables to the values -
that evaluates the formula to ‘true’. A logical formula may correspond to some property
of the modeled system or its behavior.

In this work we are dealing with the latter case: We model the actions performed by a
system as Alloy formulae with variables representing the system states before and after
the action. Using Alloy Analyzer, we verify if the action specifies a legal state transition.

The second analysis presented in this work and performed with the Alloy Analyzer is
refinement checking between the SEAM localized action and the SEAM distributed
action. To check that one (refined) action specification A’ correctly refines another
(abstract) action specification A, we assert that A’ implies A in Alloy. The Alloy

Using Declarative Specifications in Business Process Design 59

Analyzer negates the assertion and looks for a model, which, if found, will be a
counterexample to the claim. The absence of a counterexample automatically validates
the claim.

In the rest of this section we illustrate how the mapping between SEAM and Alloy
languages is done and present the analysis of Alloy specifications obtained in more
details.

4.2. Specification of localized and distributed actions sellOk using Alloy
We begin with a mapping of the SVN_w specification shown in Fig. 4 and the SVN_c
specification shown in Fig. 5 to Alloy. Technically, the mapping of SEAM specifications
to Alloy is based on the XSLT transformation of the XML file, which contains the
SEAM specification, to the Alloy specification file.

We specify the working object SVN_w using an Alloy signature (the analogy of a
class in the object-oriented paradigm). The properties of a working object are represented
by Alloy relations (the analogy of fields in the object-oriented paradigm). To avoid
confusion between the term “relation” in Alloy and in SEAM, we call Alloy relations
“fields” later on in the text.

sig SVN_w{
customerID: one Int, - customer ID
bookID: one Int, - book to buy
customerDB: one CustomerDB, - customer data base
bInventory: one Inventory, - book inventory
cash: one Int - cash
}
Here a book inventory (Inventory) is modeled as a set of books and a customer database
(CustomerDB) is modeled as a set of customer info records:

sig Inventory{content: set Book}
sig CustomerDB{content: set CustomerInfo}
The property CustomerInfo is specified as an Alloy signature with two fields: id and
rating. Respectively, the property Book is specified as a signature with the fields id and
quantity:
sig CustomerInfo{
 id: one Int,
 rating: one Int} - rating>0 - good; <0 - bad;

sig Book{
 id: one Int,
 quantity: one Int} - number of books available

We model SEAM actions as Alloy predicates. In SEAM, an action defines a transition of
a working object from one state (pre-state) to another (post-state). The SEAM action
specification from (4) uses a pre-state and a post-state as parameters and can be rewritten
as follows:

),..,,,..,()',(11 postpostprepre nn ppppAXXA (8)

I. Rychkova, G. Regev, A. Wegmann 60

Components
postpostprepre nn pppp ,..,,,.., 11 define values of properties of the working

object before and after the action happen respectively.
Along these lines we use indexes _pre, _post, and _prepost to model the parameters of
the Alloy predicate:
- all parameters indexed with _pre correspond to the properties of the working object

before the action and define a pre- state of this working object X ;
- all parameters indexed with post- correspond to the properties of the working object

after the action happens and define the post-state 'X of this working object;
- index _prepost specifies parameters that are not modified by the action. These

parameters correspond to the properties that make a part of both X and 'X .
We write the following Alloy specifications of pre- and post- states for localized action
LAsellOk in Fig.4:

bInventory_pre: one Inventory,
customerDB_prepost: one CustomerDB,
customerID_prepost: one Int,
bookID_prepost: one Int,

cash_pre: one Int; X

bInventory_post: one Inventory,
customerDB_prepost: one CustomerDB,
customerID_prepost: one Int,
bookID_prepost: one Int,

cash_post: one Int 'X

The Alloy code below specifies the LAsellOk localized action as a corresponding Alloy
predicate. Lines 1-7 in this code correspond to the action’s precondition; lines 8-14 – to
its postcondition. The predicate LAsellOk holds when its precondition implies its
postcondition.

pred LAsellOk [bInventory_pre, bInventory_post: one Inventory,
customerDB_prepost: one CustomerDB,
customerID_prepost, bookID_prepost, cash_pre, cash_post: one Int]
{
1. (all requested_book: Book, buyer: CustomerInfo|
2. ((requested_book.id = bookID_prepost) and
3. (requested_book in bInventory_pre.content) and
4. (requested_book.quantity>0) and
5. (buyer.id = customerID_prepost) and
6. (buyer in customerDB_prepost.content) and
7. (buyer.rating > 0)) =>
8. ((one b_post: Book |
9. (b_post.id = requested_book.id) and
10. (b_post.quantity= requested_book.quantity- 1) and
11. (bInventory_post.content = bInventory_pre.content -

requested_book + b_post) and

Using Declarative Specifications in Business Process Design 61

12. //(customerToDeliver.id = bookDeliveredToID)
13. (cash_post = cash_pre + 1))
14. // (buyer.id = paymentFromID)

))}

The specification of the localized action LAsellOk in Alloy can be read as follows:
For all buyers and requested books (line 1): the precondition of LAsellOk holds if the
values of their id fields are equal to the values of bookID and customerID, respectively
(lines 2,5), and the requested book exists in the inventory (line 3), and is available (line
4), and a buyer exists in the customer DB (line 6), and has a good rating (line 7). The
postcondition stands that there exists a book_post (line 8) that corresponds to the
requested book (line 9) and its quantity is equal to the quantity of the requested book
decreased by one (line 10), and the book inventory after the action (bInventory_post) is
equivalent to the inventory before this action (bInventory_pre) with the requested book
substituted by the book_post (line 11), and the cash value after the action is augmented
by one unit (line 13). We also need to specify that the requested book is delivered to the
proper buyer, and that the payment is received from the proper customer (lines 12, 14).
For the sake of simplicity we do not model it in this example.

We specify the working object SVN_c from the SEAM specification in Fig.5 as follows:
sig SVN_c{
b: one B,
p: one P,
bs: one BS}

The three fields of this signature represent three component working objects:
lone sig B{ - the bank
customerDB: set CustomerInfo,
cash: one Int,
requestedID: one Int }

lone sig P{ - the publisher
bInventory: set Book,
requestedID: one Int }

lone sig BS{ - the book store
customerID: one Int, //customer ID
bookID: one Int //book to buy
}

The localized actions of component working objects are modeled as the following Alloy
predicates:
pred p_checkAvailability[..]{..} – the publisher checks if the requested book
is available;
pred b_checkRating[..]{..}- the bank checks if a rating of the customer is good;
pred p_deliverBook[..]{..} – the publisher delivers the book to the customer;
pred b_getPayment[..]{..}- the bank receives payment from the customer.

I. Rychkova, G. Regev, A. Wegmann 62

The following predicates specify communication between the book store, the bank, and
the publisher, as do the corresponding localized actions in Fig. 5:
pred bs_processRequest[..]{..}- the book store gets request and externalizes
the requested book id and the customer id for the rest of the network.
pred p_getID[..]{..} – the publisher gets the requested book id;
pred b_getID[..]{..}- the bank gets the customer id.

 The distributed action DAsellOk specifies an interaction between component working
objects and an invocation of the localized actions of these component working objects:

kd

def
LALADA ,..,1 (9)

If a distributed action is modeled declaratively, then the ordering function d is not
specified – all combinations of localized action invocations are possible. We denote this
as follows:

O
k

def
LALAXXDA ..)',(1 (10)

Here ‘O’ stands for some ordering between two localized actions. If localized actions in
Eq. (10) operate on disjoint states (i.e. do not affect each other), these actions are called
independent and can be executed in parallel. Then the distributed action specified
declaratively can be expressed as a conjunction of these component actions:

)',(..)',()',(1 XXLAXXLAXXDA k

def
 (11)

A partial ordering of localized actions within the distributed actions can be defined:
)',(..)',()',(..)',()',(11 XXLAXXLAXXLAXXLAXXDA kmm

 (12)
Here, the fact that predicates mLALA ..1 hold implies the fact that predicates

km LALA ..1 hold. The first group can be considered as ‘responsible’ for a

precondition preA of an action from Eq. (5), whereas the second group – for its

postcondition postA .

The Alloy code below specifies the DAsellOk distributed action as an Alloy
predicate. This action is obtained as a refinement of a localized action LAsellOk. Lines 1-
7 in this code correspond to the precondition of a localized action LAsellOk from the
listing above; lines 8-9 – to its postcondition.
pred DAsellOk[p_bInventory_pre, p_bInventory_post: one Inventory,
p_requestedID_prepost: one Int,
b_customerDB_prepost: one CustomerDB, b_requestedID_prepost: one
Int, b_cash_pre, b_cash_post: one Int,
bs_customerID_prepost, bs_bookID_prepost: one Int]{

1. (one cID,bID: Int |
2. bs_processRequest[bs_bookID_prepost, bs_customerID_prepost,

bID,cID] and
3. p_getID[bID, p_requestedID_prepost] and
4. b_getID[cID, b_requestedID_prepost]) and
5. all sharedBook:one Book, sharedCustomer: one CustomerInfo|

Using Declarative Specifications in Business Process Design 63

6. (p_checkAvailability[p_bInventory_pre,
p_requestedID_prepost, sharedBook] and

7. b_checkRating[b_customerDB_prepost, b_requestedID_prepost,
sharedCustomer])
=>

8. (p_deliverBook[p_bInventory_pre,
p_bInventory_post,p_requestedID_prepost, sharedBook,
sharedCustomer] and

9. b_getPayment[b_cash_pre,b_cash_post, sharedCustomer])}

Prefixes p_, b_, bs_ in the names of predicates specifying localized actions and in the
names of predicate parameters specifying properties refer to the component working
objects these localized actions or properties belong to (e.g. p_bInventory specifies the
book inventory, which is the property of the publisher).

4.3. Validation of Specifications using Alloy Analyzer 4.0

Specifications written in Alloy can be automatically analyzed using the Alloy
Analyzer [Alloy Analyzer]. The Alloy Analyzer tool can generate examples of the
working object and counterexamples to claims made about this working object and its
behavior. For example, Alloy formal semantics allows for validation the specification
consistency: this analysis can detect overconstrained specifications. A specification is
overconstrained if it contains contradictory preconditions or postconditions. A transition
from pre-state to a post- in such specifications may never happen.

To validate if Alloy specifications of sellOk are consistent, we specify a predicate that
evaluates to 'true' if the action makes a correct transition and to 'false' otherwise. We call
it a successful action specification. An action is successful if its precondition holds and
its postcondition realizes. For successful action we write:

)',()()',()()',(XXAXAXXAXAXXA postprepre

def
success (13)

We execute corresponding predicates in the Alloy Analyzer [Alloy Analyzer]. The
Alloy Analyzer examines a predicate and looks for the possibility to instantiate this
predicate, i.e. to find a set of values that evaluates this predicate as true. If such an
instance is found, then the predicate is consistent on the test space provided by the
analyzer. If no instance is found, then the predicate is inconsistent, and the specification
may contain contradictory constraints. Note that the predicate consistency (as well as
inconsistency) is checked only on the limited test space. An example of the execution
trace in the Alloy Analyzer is provided below:
Executing "Run LAsellOk "
Solver=sat4j Bitwidth=4 MaxSeq=4 Symmetry=20
3605 vars. 561 primary vars. 8156 clauses. 80ms.
Instance found. Predicate is consistent. 55ms

Underconstraied specifications represent another class of semantically incorrect
specifications. These specifications can be also called ‘incomplete’, as they do not
specify all the constraints and permit the state transitions, which make no sense - are
absurd. In contrast to overconstrained specifications, the predicate from Eq. (13) for
underconstrained specifications can always be instanciated; therefore, these
specifications cannot be detected automatically. A designer who should guarantee that the
specification is adequate and complete.

I. Rychkova, G. Regev, A. Wegmann 64

4.4. Validation of Refinement from LA to DA using Alloy Analyzer 4.0

To relate the designed business process of successful sale to the strategic goal of the on-
line book store, we have to guarantee that:

1) the refinement from the localized action LAsellOk to the distributed action
DAsellOk is correct;

2) the mapping between the declarative specification DAsellOk and the imperative
business process specifications (i.e. BPMN diagrams) that specify process
customizations is correct.

To check if the distributed action DAsellOk correctly refines the localized action
LAsellOk in our example, we use the definition of refinement from Eq. (6),(7). We
consider the distributed action DAsellOk to be a concrete specification and the localized
action LAsellOk to be an abstract specification. We rewrite Eq. (6) as an Alloy assertion
that specifies the correct refinement from abstract to concrete specification:

assert DA_LA{

all acc XXX ,', |

(R_LA_to_DA (ac XX ,)and DAsellOk(cc XX ',)) =>

some aX ' | LAsellOk(aa XX ',)and R_LA_to_DA(ac XX ',')}

Here aacc XXXX ',,', stand for pre- and post- states at concrete and abstract
specifications respectively. R_LA_to_DA is a refinement function that relates state
spaces of the SVN_w and SVN_c. We provide the complete specification of this
refinement function:

pred R_LA_to_DA[p_bInventory_t: one Inventory, p_requestedID_t:
one Int, b_customerDB_t: one CustomerDB, b_requestedID_t: one Int,
b_cash_t: one Int,
bs_customerID_t, bs_bookID_t: one Int,
// concrete
bInventory_t: one Inventory,
customerDB_t: one CustomerDB, customerID_t, bookID_t, cash_t: one
Int // abstract
]{
p_bInventory_t = bInventory_t
p_requestedID_t = bookID_t
b_customerDB_t = customerDB_t
b_requestedID_t = customerID_t
b_cash_t = cash_t
bs_customerID_t = customerID_t
bs_bookID_t = bookID_t
} R[

ac XX ,]

To validate an assertion, the Alloy Analyzer looks for a counterexample, i.e. a set of
values that evaluates this assertion to false. If such a counterexample is found, then the
assertion is invalid. In our case it also means that the refinement is incorrect. If no
counterexample is found, then the assertion is valid and the refinement is correct. An
example of the execution trace is provided below:

Using Declarative Specifications in Business Process Design 65

Executing "Check DA_LA"
Solver=sat4j Bitwidth=4 MaxSeq=4 Symmetry=20
5352 vars. 593 primary vars. 16733 clauses. 618ms.
No counterexample found. Assertion may be valid. 1166ms.

The Alloy language and analyzer are known to be used for industrial purposes, i.e. for
modeling and verification of the large-scale systems [survey-tbd]. Based on this, we
conclude that our approach is scalable and limited only by the size of a SEAM model.

4.5. From declarative to imperative business process specification
The mapping between SEAM distributed actions, modeled declaratively, and the
imperative business process diagrams modeled in BPMN can be done in two steps:

First, we define a control flow for SEAM distributed actions modeled declaratively.
This is equivalent to a specification of intermediate states, caused by execution of
individual localized action, and the order of there occurrence. For a distributed action,
modeled imperatively, we specify the intermediate states 11,.., kXX and obtain the
following formula:

)',(..),(|,..,)',(11111 XXLAXXLAXXXXDA kkk

def
(14)

The second step is a mapping of obtained imperative specifications to BPMN. Table 1
presents three mapping rules that illustrate how a SEAM action, modeled imperatively
(with explicit intermediate states) can be translated to a BPMN diagram. For example, in
Eq. (14), the intermediate states are connected by a logical conjunction , which stands
for sequential composition of actions.

Table 1. Mapping of SEAM specifications, formalized in FOL, to BPMN.

SEAM/FOL: BPMN

),(),(| 3222112 XXAXXAX
Sequential Composition

),()(),(| 32222112 XXAXCXXAX
Conditional Transition

),(),(),(| 4233222112 XXAXXAXXAX

Parallel Fork

The conformance of the imperative specification with the declarative specification in SEAM
can be formally verified in Alloy by using the same approach as for refinement verification and by
assuming that the imperative action specification is nothing but a correct refinement of this action,
specified declaratively.

The imperative specification of a distributed action contains the information required for the
mapping to BPMN. In our future work we will address a more detailed discussion about the
mapping between SEAM and BPMN using these specifications.

I. Rychkova, G. Regev, A. Wegmann 66

5. Related Work
The possibility of customizing a business process while taking into account an

environment where this business process is instantiated is a part of the more general
problem of flexibility. This problem was identified in [Knoll and Jarvenpaa (1994)] and
[Heinl et al. (1999)] in general and in the context of WfMS respectively: Knoll and
Jarvenpaa [Knoll and Jarvenpaa (1994)] introduce the term of flexibility as a form of
alignment between organizations and their IT systems in turbulent environments, and
they point out that “The principle of flexibility explicitly assumes that the world is too
dynamic for a static order between different organizational components.” The authors
recognize three types of flexibility in the context of IT: flexibility in functionality, in use
and in modification. Heinl [Heinl et al. (1999)] illustrate the necessity of flexibility in
workflow management applications and identify two classes of flexibility: by selection
and by adaption. Flexibility by selection implies that more than one valid interpretation
of a workflow type exists and might be selected based on a concrete situation. Flexibility
by adaption defines new variants of workflow execution when flexibility by selection is
not sufficient. Flexibility by selection covers the topic of business process customization,
whereas flexibility by adaption is related to the process redesign considered in our work.

Another stream of research, e.g. [Khomyakov and Bider (2001)] and [van der Aalst,
W.M.P. et al. (2005)] favors what we refer to as declarative business process modeling.
In [Khomyakov and Bider (2001)] the representation of a business process as a trajectory
in a state space is introduced. The authors attempt to declaratively describe the dynamics
of a business process by defining a notion of a valid state and planning rules that make a
state valid. Van der Aalst in [van der Aalst, W.M.P. et al. (2005)] presents a case
handling paradigm to cope with business process flexibility. In contrast to workflow
management, case handling aims to describe what can be done to achieve a business goal
but not what should be done and how.

The flexibility of a business process is usually understood as the capability of
accepting changes without losing identity [Regev and Wegmann (2005)]. Hence, this
capability is not always beneficial, because some changes can be contradictory to the
strategy of an organization. In [Regev et al. (2006)] invariants for business processes are
introduced and formalized. Invariants define an identity of an organization that must
remain unchanged. Rittgen [Rittgen (2006)] proposes the notion of Collaboration Model
to capture the stable part of a business process model. The part of the model that is
flexible is addressed in business process rules. In [Rolland and Prakash (2007)] the
authors discuss a variability applied to business process modeling and propose modeling
a family of business processes adaptable to different environments and organizations. The
authors define common and variable parts for an entire family based on the fact that all of
the processes are designed to achieve the same goal but in a different way.

In [Soffer (2005)] the definition of flexibility is grounded on two concepts: (1) the
notion of a process goal, which defines a set of final states of the process, and (2) the
theory of coordination, which describes dependencies between processes.

Providing other types of semantics (including formal semantics) for visual models
was recognized as a useful way to increase model precision and to automate model
verification. Baar and Marcovi [Baar and Markovi (2007)] introduce a proof technique
for the semantic preservation of refactoring rules for UML[OMG (2007)] class diagrams
and OCL constraints. This technique is implemented in the RoclET tool. In [Dijkman et
al. (2007)] formal semantics of Petri nets are defined for BPMN models. A mapping

Using Declarative Specifications in Business Process Design 67

between BPMN and Petri Net is implemented as a tool that generates Petri Net Markup
Language specifications for further static analysis.

In spite of their effectiveness, approaches based on a formal validation and
verification using theorem proving are rarely used in practice due to the high cost.
However, we want to point out the following work:

In [Bordbar and Anastasakis (2005)] the UML2Alloy tool for the modeling and
analysis of discrete event systems is presented. UML2Alloy is based on MDA [OMG]
and implements research results that attempt to formalize UML[OMG (2007)] using
Alloy. This is remarkable because it results in the integration of semi-formal UML and
formal Alloy languages within one tool.

6. Conclusion

In this paper, we have presented declarative business process specifications as a mechanism to
integrate different customizations and redesigns of a business process. Declarative specifications
focus on the definition of a business process and on its alignment with the organization’s strategic
goals. They omit the definition of the process control flow thus keeping the process design
independent from constraints imposed by an environment in which this process will be
implemented.

Once a control flow is selected for a process based on a specific environment, the declarative
specification can be transformed into a corresponding imperative specification; the latter can be
mapped to an imperative business process model.

In the future we envision that the work described in this paper will enable us to link the SEAM
modeling tool SeamCAD [Lê and Wegmann (2006)] and BPMN tools [OMG (2006)]. In
particular, we want to automatically generate imperative BPMN models from the SEAM models
defined in SeamCAD.

References

Alloy Analyzer 4.0, http://Alloy.mit.edu/Alloy4/
van der Aalst, W.M.P.; Weske, M.; Grünbauer, D. (2005): Case Handling: A New Paradigm for

Business Process Support, Data Knowl. Eng. 53(2), pp. 129–162.
Baar, T.; Markovi , S. (2007): A Graphical Approach to Prove the Semantic Preservation of

UML/OCL Refactoring Rules, Perspectives of Systems Informatics, 6th International Andrei
Ershov Memorial Conference, Russia, Proceedings, LNCS 4378, pp. 70-83, Springer.

Bordbar, B.; Anastasakis, K. (2005): UML2Alloy: A tool for lightweight modelling of Discrete
Event Systems, IADIS International Conference in Applied Computing 2005. Volume 1,
Algarve, Portugal, IADIS Press, pp. 209-216

Dijkman, R. M.; Dumas, M.; Ouyang, C. (2007): Formal Semantics and Analysis of BPMN Process
Models, preprint version, QUT | ePrints Archive, http://eprints.library.qut.edu.au/

Heinl, P., et al. (1999): A Comprehensive Approach to Flexibility in Workflow Management
Systems, proceedings of the international conference on work activities coordination and
collaboration, San Francisco, California, USA, ACM , pp79-88

Jackson, D. (2006): Software Abstractions: Logic, Language, and Analysis, MIT Press. Cambridge,
MA.. ISBN 0-262-10114-9

Jacobson, I., et al. (1992): Object-Oriented Software Engineering: A Use Case Driven Approach,
ACM Press, Addison-Wesley.

Khomyakov, M.; Bider, I. (2001): Achieving Workflow Flexibility through Taming the Chaos,
Journal of Conceptual Modeling, August 2001.

I. Rychkova, G. Regev, A. Wegmann 68

Knoll, K.; Jarvenpaa, S.L. (1994): Information technology alignment or “fit” in highly turbulent
environments: the concept of flexibility, proceedings of the computer personnel research
conference on Reinventing IS.

Lê, L.S.; Wegmann, A. (2006): SeamCAD: Object-Oriented Modeling Tool for Hierarchical
Systems in Enterprise Architecture, 39h IEEE Hawaii International Conference on System
Sciences.

Narasipuram, M.M., et al. (2008): Business Process Flexibility through the Exploration of Stimuli,
accepted for publication, International Journal of Business Process Integration and
Management (IJBPIM)

OMG (2007): Unified Modeling Language: Superstructure, version 2.1.2.
OMG (2006): Business Process Modeling Notation (BPMN) Version 1.0, OMG Final Adopted

Specification, February 6, 2006.
Regev, G.; Wegmann, A. (2002): Regulation Based Linking of Strategic Goals and Business

Processes, Proceedings of the 3rd Workshop on Goal-Oriented Business Process Modeling.
Regev, G.; Soffer, P.; Schmidt, R. (2006): Taxonomy of Flexibility in Business Processes,

proceedings of the 7-th workshop on Business Process Modeling, Design and Support
(BPMDS’06).

Regev, G.; Wegmann, A. (2005): A Regulation-Based View on Business Process and Supporting
System Flexibility, proceedings of the CAiSE Workshops, p. 91-98.

Regev, G.; Bider, I.; Wegmann, A. (2006): Defining business process flexibility with the help of
invariants, Special Issue on Design for Flexibility.

Rittgen, P. (2006): Supporting Planned and Ad-Hoc Changes of Business Processes, proceedings
of 7-th workshop on Business Process Modeling, Development, and Support, Luxembourg.

Rolland, C.; Prakash, N. (2007): On the Adequate Modeling of Business Process Families,
proceedings of 8-th workshop on Business Process Modeling, Development, and Support
(BPMDS'07), Trondheim, Norway

Rychkova, I.; Wegmann, A. (2007): Refinement propagation. Towards automated construction of
visual specifications, proceedings of International Conference on Enterprise Information
Systems (ICEIS)

Soffer, P. (2005): On the Notion of Flexibility in Business Processes, proceedings of 6-th workshop
on Business Process Modeling, Development, and Support (BPMDS'05), Porto, Portugal.

Stabell, C. B.; Fjeldstad, Ø. D. (1998): Configuring value for competitive advantage: on chains,
shops, and network, Strategic Management Journal 19(5): p. 413 – 437

Weick, K. E. (1979): The Social Psychology of Organizing, 2-d edition, McGraw-Hill.
Wegmann, A. (2003): On the systemic enterprise architecture methodology (SEAM), proceedings

of International Conference on Enterprise Information Systems, (ICEIS), Angers, France.
Wegmann, A., et al. (2007a): Business-IT Alignment with SEAM for Enterprise Architecture,

proceedings of the 11th IEEE International EDOC Conference (EDOC 2007), Annapolis,
Maryland.

Wegmann, A., et al. (2007b): Early Requirements and Business-IT Alignment with SEAM for
Business, 15th IEEE International Requirements Engineering Conference, New Delhi, India.

Wirth, N. (1971): Program development by stepwise refinement, Communications of the ACM,
14:221–227.

