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Abstract—In a significant class of sensor-network applications,
the identities of the reporting sensors constitute the bulk of the
communicated data, whereas the message itself can be as small
as a single bit—for instance, in many cases, sensors are used to
detect whether and where a certain interesting condition occured,
or to track incremental environmental changes at fixed locations.
In such scenarios, the traditional network-protocol paradigm
of separately specifying the source identity and the message in
distinct fields leads to inefficient communication.

This work addresses the question of how should communi-
cation happen in such identity-aware sensor networks. We re-
examine the traditional source-identity/message separation and
propose a scheme for jointly encoding the two. We use this
to develop a communication method for identity-aware sensor
networks and show it to be energy efficient, simple to implement,
and gracefully adaptable to scenarios frequently encountered in
sensor networks—for instance, node failures, or large numbers
of nodes where only few are active during each reporting round.

I. I NTRODUCTION

In traditional network protocols, each packet carries its
source identity in a dedicated header field, separately from
the communicated message, which constitutes the packet’s
payload. To increase their information rate, several protocols
use encoding or compression techniques that look to minimize
the size of the message; to the best of our knowledge, none
of these techniques consider the source identity as part of
the data that needs to be encoded or compressed—and for
good reasons: In the typical communication scenarios where
encoding or compression makes sense, the message constitutes
the bulk of the communicated data, whereas the source-identity
overhead is relatively insignificant.

The situation is reversed in wireless sensor networks that
monitor the evolution of an environmental variable over time
and space: Sensors are often used to trackwhetherandwhere
a certain condition occurs—e.g., temperature exceeds a thresh-
old, a perimeter is violated, soil or water is contaminated;in
other cases, they are used to track incremental changes at fixed
locations,e.g., the evolution of snow height at mountain peaks
for avalanche prediction or seismic activity for earthquake
prediction. In such scenarios, it makes sense to associate each
sensor with a fixed location and have it report, periodically,
its identity and measurement to a collecting sink (i.e., in this
context, an identity represents a specific location); assuming a
network of tens or hundreds of nodes, the identities of the re-
porting nodes now become the bulk of the communicated data,
whereas the message itself (i.e., each reported measurement)
can be as small as a single bit.

We use the termidentity-aware sensor networkto describe
such a paradigm—where each sensor periodically communi-
cates to the sink its identity plus a small measurement. This

is in contrast to the identity-unaware sensor networks usually
encountered in the literature, where the sink collects functions
of the histogram of the sensor measurements, such as the
average or maximum temperature measured by all the sensors.

In an identity-aware sensor network, every piece of infor-
mation (identity and measurement) produced by each sensor
must reach the sink. This affects energy consumption in two
ways: First, there is no room for reducing the amount of
transmitted traffic (and, hence, overall energy consumption) by
combining multiple sensor measurements into one value (e.g.,
their sum)—as typically done in identity-unaware networks.
Second, nodes located close to the sink have to forward much
more traffic than nodes in the network periphery. For sensor
networks operating with renewable energy [1], this raises the
amount of per-sensor energy required to run the network for a
given amount of time, making it harder (i.e., more expensive)
to charge the network through solar energy or other natural
resources.

With this work, we address the question of how should
communication happen in identity-aware sensor networks—
to the best of our knowledge, this question has not been
addressed before, although such networks are useful in practice
(see§II-A). We start by observing that sensor identities are
a special kind of data: for a fixed node, the identity is a
constant number that does not change with every transmission,
in contrast to the messages that do. Based on this observation,
we develop a new communication protocol for identity-aware
sensor networks that is energy efficient, but also simple to
implement and inherently adaptable to scenarios frequently
encountered in sensor networks—for instance, node failures,
or large numbers of nodes where only few are active during
each reporting period.

Our method is distinguished by two key elements:
• Instead of specifying its identity and measurement in

separate fields, each sensorjointly encodesthe two using
a set of fixed-size vectors.

• The encoding is such that intermediate nodes cancombine
multiple incoming vectorsinto a single one (of the same
fixed size) and forward only that toward the sink.

The basic idea is to assign a different codebook to each
sensor and let each sensor implicitly convey its identity
through its choice of codebook, as illustrated in§II-B. We
realize this using subspace encoding: each reporting sensor
communicates its identity by generating a set of vectors that
represent a distinct subspace—distinct from the subspaces gen-
erated by all other sensors. By combining incoming vectors,
intermediate nodes essentially produce different (compact)
representations of the subspaces generated by the reporting
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sensors. We exploit the invariance properties of subspaces,
such that neither sensors nor sink need any knowledge of either
network topology or intermediate-node operations in orderto
generate their vectors or (in the sink’s case) decode them. We
describe our coding scheme at a high level in§II and more
formally in §III.

We show that the resulting communication method has the
following properties:

• Energy efficiency and balancing: We look to minimize the
number of frames and bytes transmitted by each sensor.
Moreover, each sensor performs approximately the same
amount of frame and byte transmissions, independently
from its position in the network.

• Low-complexity network operation: Intermediate nodes
perform the same simple operations (vector combina-
tions) irrespective of their position in the network and
thus transparently to topology changes.

• Error resilience and adaptability: Our method gracefully
incorporates protection against errors and node failures.
Moreover, it allows end-to-end adaptation to specific
application needs without perturbing intermediate-node
operation.

We close with some preliminary experimental results obtained
using the TOSSIM [2] simulator (§IV).

Related Work

Recently, techniques inspired from coding and network
coding have been successfully used to harness the broadcasting
capabilities of the wireless medium [3], [4], [5], [6], [7],imple-
ment intelligent in-network storage [8], and provide resilience
in lossy environments [9], [10]. These coding techniques are
not suitable for identity-aware sensor networks, as they are
developed with a focus on data dissemination (as opposed to
joint identity and message delivery).

Our proposed coding scheme relies on subspace codes,
which have been studied in the context of non-coherent com-
munication over fading point-to-point wireless channels [11],
quantum communication [12], and, more recently, network
coding, to provide error and erasure correction [13]. All
previous constructions address the single-source case, donot
encode the source identity, and are designed for large-packet
transfers. We develop constructions that incorporate in the
code the identity of multiple sources with low communication
overhead and are targeted to (very) small-packet transfers.

Significant research effort has been invested in reduc-
ing sensor-communication overhead through distributed, in-
network data aggregation. The proposed techniques exploit
data correlation to perform compression [14], [15], [16] or
calculate functions of the observed measurements such as
their average [16]. None of these is applicable in the case
where we need to convey node identities. A naive aggregation
approach would be to package, at each node, all the received
identities and messages into a single packet. As we discuss
in more detail in the paper, this requires in-network content
processing and, most importantly, results in unequal-length
packets whose size increases significantly as we approach

the sink (see§III-A, Example 3); hence, energy consumption
is unequally distributed among sensor nodes, in particular,
concentrated on centrally located “bottleneck nodes” thatcan,
as a result, fail and disrupt network operation.

II. SENSORIDENTIFICATION

A. Applications

We consider sensor networks where each node needs to
communicate (1) its identity and (2) a small (relative to the
identity) measurement to a collecting sink. This is different
from the typical scenarios discussed and analyzed in the
literature, where sensor networks are used to compute ag-
gregate statistics (e.g., the average temperature in a building)
that do not require associating each measurement with a
specific sensor. Given our departure from the commonly used
paradigm, to motivate our work, we discuss a few examples
of applications where our conditions hold,i.e., sensor identity
is a critical part and forms the bulk of the communicated data.
These are all cases where the sensors are used to periodically
reconstruct thespatial fieldof the physical quantity measured
by the sensors,i.e., the variation of that quantity as a function
of space [17].

Differential Updates: In many cases of environmental
monitoring, to avoid unpleasant surprises, we need to choose
the measurement frequency such that the spatial field under
measurement changes relatively slowly. For instance, when
monitoring the level of snow on a mountain surface for
avalanche prediction, it makes sense to measure frequently
enough, such that, at any location, the snow level never
changes by more than2-4 centimeters between measurements.
In such scenarios, each sensor needs to communicate only the
difference of its new measurement from the last one, together
with its identity. Assuming networks of tens or hundreds of
nodes, the identity may require one or two bytes, while the
update itself needs only a few bits [17].

Spatial Correlation: In other cases, the spatial field under
measurementat a given timevaries smoothly over space—this
is the case, for instance, with temperature and pressure [17],
[15]. We can leverage such smooth variation by having a set
of densely deployed sensors communicate only few bits of
information, then use techniques like distributed source coding
[14] to reconstruct the entire spatial field.

Multi-stage Collection:Sometimes we are not interested
in reconstructing an entire spatial field, only a few “interest-
ing” regions,e.g., examine only the areas where the measure-
ments suggest that there is potential for an avalanche. In such
cases, it makes sense to collect data in stages: in the first stage,
each sensor communicates its identity along with few bits of
information (just enough to get a coarse representation of the
field); if something interesting is revealed, the sink queries the
relevant sensors for more information in the second stage [18],
[19]. In many practical scenarios, it is enough for each sensor
to send a single bit of information during the first stage—
signaling, for instance, whether a threshold was reached, a
perimeter was violated, or an animal was sighted.
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B. Basic Idea: Representation of Identities

In the context of the applications discussed above, the
traditional approach of keeping the source identity and the
message in separate fields leads to inefficient communication.
We now illustrate this inefficiency with a simple example and
introduce the idea of joint identity-message coding.

Sink

AB

S1

[10000000]
S2

[00000000]

S3
[00100000]

S4[00000000]

S5[00001000]

S6[00000100]
S7

[00000010]

S8

[00000000]

[10101110]

Fig. 1. SourcesS1, . . . , S8 send their id and a one-bit message to
the sinkA through a relay nodeB.

Consider the simplified network of Fig. 1, where8 source
nodes communicate information to a sink nodeA via a relay
node B. Suppose each sourceSi, i = 1, . . . , 8, wants to
communicate a1-bit message to the sinkA. Each source
creates a packet that contains 3 bits specifying its identity
and a 1-bit message, and sends this to the intermediate node
B. To relay this information toA, B could naively forward
the 8 packets, which would result in8 packet transmissions
over link BA; to avoid this overhead,B combines the8 × 4
identity and message bits in a single packet. We call this
communication protocolpacket aggregation; it can be easily
extended to work on an arbitrary tree: each source sends out a
packet with an identity and a message specified in separate
fields; intermediate nodes aggregate and forward incoming
packets toward the sink. Packet aggregation results in unequal
transmission load over the different network links, with the
heavier burden placed on the links closer to the sink. In our
example, it results in 4 bits of information being transmitted
over each linkSiB as opposed to 32 bits over linkBA.

Now consider the following alternative communication pro-
tocol: Each sourceSi sends out an8-bit packet with its
message encoded in biti and all other bits set to0; this
is the simplest example of using a “code” to represent the
identity of a node along with its message. NodeB just XORs
all incoming packets and sends the resulting8-bit packet to
A, as depicted in Fig. 1. NodeA can interpret its received
message with the understanding that positioni corresponds
to the message sent by nodeSi. Again, this protocol can be
easily extended to work on an arbitrary tree: sourceSi sends a
packet with its message specified at biti and all other bits set
to 0; each intermediate nodeXORs all incoming packets and
forwards the one resulting packet toward the sink. Compared
to packet aggregation, this “coding-based” protocol leadsto
more efficient communication on linkBA (8 bits instead of
32); the price we pay is a small decrease in efficiency on the
SiB links, which now have to carry8 (rather than4) bits
of information per packet. Note that nodeB is not required

to understand and process the contents of incoming packets;
information is always encoded at its source and decoded at
the sink, while each node is oblivious to the codes used by
other nodes.

Although simple, the tree of Fig. 1 captures the behavior
of the two protocols on all trees (with an arbitrary number of
nodes) that connect8 sources to a sink through a single link;
for instance, in the 14-node tree of Fig. 2, packet aggregation
would result in 32 bits being transmitted over linkBA,
whereas the coding-based protocol would result in8 bits being
transmitted over the same link, exactly as in the tree of Fig.1.

More formally, we propose that each source employs a
different codebook, i.e., a different mapping of messages to
packets; the sink knows the codebook used by each source
and, hence, can determine who sent what,i.e., the sender
implicitly communicates its identity through its choice of
codebook. This approach agrees with the insight we have from
information theory: the scenario of Fig. 1 is reminiscent of
the classic multiple-access channel problem, where multiple
users simultaneously transmit to a single receiver over a
common channel; it is well known that the users do not have
to explicitly specify their identities, as long as they choose
distinct enough codebooks that can be disambiguated at the
receiver ([20], Chapter 14).

Note that in our joint identity-message coding protocol,
each node forwards thesamenumber of packets and bits,
i.e., communication overhead is evenly distributed across the
network. This alleviates the problem of depleting the battery
of the nodes located close to the sink, thus making it ideally
suited for environmentally powered sensor networks.
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S7

S8

Fig. 2. A tree with 8 sources.

The simple coding-based protocol we have described illus-
trates the basic idea and benefits of joint identity-message
coding, but is specialized to the case where all sources
communicate information at about the same time (such that
intermediate nodes can combine their packets) and convey a
single value to the sink. We present our general code design
in §III.

C. Definitions and Assumptions

Subspaces:In our communication protocol, information is
transferred through the exchange of vectors of lengthℓ, i.e.,
vectors that belong to theℓ-dimensional vector spaceV = F

ℓ
q.

A subspace, denoted byπ, is a subset of the vector spaceV ,
which is a vector space itself [21]. We say that two subspaces
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aredistinct if they differ in at least one dimension. The number
of distinct d-dimensional subspaces ofF

ℓ
q equals

Gq(ℓ, d) ,

[

ℓ

d

]

q

=
(qℓ − 1) · · · (qℓ−d+1 − 1)

(qd − 1) · · · (q − 1)
, (1)

and is called the Gaussian number. We use two subspace
operations:

• πα + πβ = {x + y | x ∈ πα, y ∈ πβ} is the sum of
subspacesπα and πβ , i.e., the subspace spanned by the
vectors inπα andπβ ;

• πα∩πβ = {x | x ∈ πα andx ∈ πβ} is their intersection,
i.e., the largest subspace that belongs to bothπα andπβ .

Moreover, we need a quantitative metric of “how far apart” two
subspaces are; we define thedistancebetween two subspaces
πα andπβ as

d(πα, πβ) , dim(πα + πβ) − dim(πα ∩ πβ). (2)

Network Operation:We consider a network ofn sensors
(hence,n potential sources) and a sink, where the nodes
have formed a spanning tree rooted at the sink. Our network
operates in rounds; in each round, the following takes place:

• Encoding: Sourcei potentially communicates to the sink
its identity and a message from a small setMi. For this,
it uses codebookCi, which maps each message inMi to
a d-dimensional subspace1 of F

ℓ
q, i.e.,

Ci : Mi → {π
(i)
j : 1 ≤ j ≤ |Mi|}, i = 1, . . . , n

To communicate a certain message, nodei chooses the
corresponding subspaceπ from Ci and generatesd vec-
tors that spanπ.

• Relaying: A node without children sends its vectors to its
parent; a node with children linearly combines the vectors
generated by itself with the vectors sent by its children
into d new vectors, and sends these to its parent.

• Decoding: Like any other node, the sink combines the
vectors sent by its children intod new vectors. These
are linear combinations of the vectors generated by
the sources—in particular, if sourcei generates vectors
that span subspaceπi, the sink observes vectors from
subspaceπ1 + π2 + · · ·+ πn. The sink then uses thesed
vectors and the codebooks{Ci} to decode the identities
of all the sources along with the message sent by each
source.

We can represent the set ofd vectors,{yj}, produced by
the sink, as

Y =









...
yj

...









=

n
∑

i=1

GiXi

where Xi is a matrix that has the original vectors sent by
source i as its rows, andGi is a “mixing matrix” that

1In principle, we can use subspaces of different dimensions, but, for
simplicity, in this paper, we restrict our code design to subspaces of equal
dimension.

TABLE I
CODING FOR TWO SOURCES

C2/C1 π1 π2 π3

π4 π1 + π4 π2 + π4 π3 + π4

π5 π1 + π5 π2 + π5 π3 + π5

π6 π1 + π6 π2 + π6 π3 + π6

represents the end-to-end transformation ofXi. A key point of
our approach is that neither the sink nor the sources know the
mixing matrices{Gi}, i.e., the specific set of linear operations
performed by the network is unknown to all parties. A source
can only communicate information to the sink, because it
represents each message with a subspace, and subspaces are
unaffected by linear operations.

Identifiability: We define acodeas a set ofn codebooks,
each corresponding to a source. We say that a code isiden-
tifiable, if every possible combination of subspaces generated
by the n sources using this code results in adistinct union
subspace. More formally:

Definition 1 (Identifiable Code): An identifiable code is a
set ofn codebooksCi = {π

(i)
j : 1 ≤ j ≤ |Mi|}, i = 1, . . . , n,

with π
(i)
j ⊆ F

ℓ
q such that we haveπi1 + · · · + πin

6= πj1 +

· · · + πjn
when2 (i1, . . . , in) 6= (j1, . . . , jn) andπik

andπjk

are the subspaces chosen by sourcek.
Example 1:Consider two sources,S1 with codebookC1 =

{π1, π2, π3}, and S2 with codebookC2 = {π4, π5, π6}.
Table I summarizes all possible subspace combinations that
can be generated when each of the two sources communicates
a message to the sink. For this code to be identifiable, we want
all 9 entries in Table I to correspond to distinct subspaces.�

III. JOINT IDENTITY AND DATA CODING

We design codes that have the following properties:

1) Identifiability: They allow sources to convey their iden-
tities and messages to the sink.

2) Error resilience: They gracefully incorporate protection
against packet loss and corruption.

3) Adaptability: They are easily adaptable to specific
application needs.

We address each of these properties in turn.

A. Identifiable Codes

We start from the observation that, in many practical
scenarios, the network topology as well as the application
impose a natural limit on the number of source vectors that
get combined within the network. Indeed, two source vectors
(generated by two different sources) get combined only if their
paths to the sink overlap: In Fig. 2, the sink has a single
neighbor (nodeB), so all the source vectors get combined
at that neighbor. Now consider a network, where the sink
has k neighbors, and sources are symmetrically deployed
along thesek directions—in which case, we can think of
Fig. 2 as the “branch” of the network corresponding to one

2This inequality simply means that there is at least one sourcek such that
ik 6= jk.
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of these neighbors; in this case, each packet that reaches
the sink contains approximatelyn

k
combined source vectors.

Moreover, in many applications (for instance, anomaly-sensing
applications), we expect only a subset of the sensors to report
during each round, hence, fewer thann sets of source vectors
to get combined within the network. Finally, we can also
enforce a strict upper limit on the number of source vectors
that get combined—if we append to each vector a few bits
that count the number of combined source packets it contains.

With this in mind, we formulate our code-design problem
as follows: Givenn potential sources, we assume that each
vector that reaches the sink is a linear combination of source
vectors fromat mostm sources. We want to design codes that
allow the sink to look at each received vector and determine (1)
which is the corresponding subset of sources and (2) what are
their messages. Note thatm = n corresponds to the special
case where all sources are active and all source vectors are
combined.

For simplicity, we first describe a code for the case where
each sensor either communicates a single bit of information
(to indicate that a certain event occurred) or remains silent
(to indicate that it didn’t). We later generalize to an arbitrary
message-set size.

Single-bit Messages:Our construction proceeds as follows:
select a linear code of lengthn, minimum distancedmin =
min{2m + 1, n + 1}, and redundancyℓ, with ℓ as small as
possible; consider theℓ×n parity check matrixH [22]; assign
to each source a different column ofH, which corresponds to
a one-dimensional subspace of theℓ-dimensional space. This
code results in each active source generating a single vector
of length ℓ.

Identifiable Codes for Single-bit Messages:

• Let H be theℓ × n parity check matrix of a binary

code with minimum distancedmin = min{2m + 1, n + 1}

• Sourcei usesCi = {< hi >}, wherehi is a column ofH
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Fig. 3. Bounds on the lengthℓ of generated binary vectors (q = 2)
when m = 2 and m = 20 sources get combined, as a function of
the number of sensor nodesn.

This code is identifiable because of a well known property
of the matrixH: given a linear code with minimum distance
dmin, any set ofdmin − 1 columns of the parity check matrix

H are linearly independent[22]. For example, fordmin =
2m+1, any2m columns of the parity check matrix are linearly
independent; thus, if at one round we havem1 ≤ m active
sources, each sending a different vectorui, and at another
round we have a different set ofm2 ≤ m active sources, each
sending a vectorvj , then

v1 + v2 + · · · + vm1
6= u1 + u2 + · · · + um2

(3)

This inequality is a direct consequence of the fact that any2m

vectors are linearly independent: indeed, if (3) was an equality,
there would be2m or fewer linearly dependent vectors. Hence,
every possible combination of subspaces generated by the
active sources results in a distinct union subspace, which
means that our code is identifiable.

Note that we never need to have minimum distance greater
thann+1, since there existn nodes and, thus, we can have at
mostn distinct vectors appearing in (3). This implies that, for
all the cases wheren ≥ m ≥ n

2 , i.e., at least half of the nodes
are active, we needdmin = n + 1 and we can select w.l.o.g.
the full rankn×n parity matrixH to be the identity matrix. In
this case, sourcei generates a vector with1 at positioni and
0 elsewhere, which corresponds to the simple code of§II-B.

The scalability of our code depends on howℓ (the size of
the vector generated by each source) scales withn (the size
of the network) andm (the maximum number of vectors that
can get combined). This is related to a well studied problem
in coding theory, namely, for a given code lengthn, and a
given minimum distance2m + 1, what are upper and lower
bounds on the number of codewordsA(n,m) this code can
have [22]. Using the Gilbert-Varshamov lower bound and the
sphere packing upper bound [22], form < n

4 we get that

ℓ ≤ nHq(
dmin − 1

n
), and (4)

ℓ ≥ nHq(
dmin − 1

2n
) −

1

2
logq

(

4(dmin − 1)(1 −
dmin − 1

2n
)

)

whereHq(·) is the q-ary entropy function, namely,Hq(p) =
p logq(q− 1)− p logq p− (1− p) logq(1− p). It is easy to see
that for fixed values ofm the upper and lower bounds behave
asO(m log n) as n grows. Fig. 3 plots the bounds from (4)
as a function ofn, for m = 2 andm = 20. We can see that
the vector lengthl resulting from our code is a fraction of the
network sizen that goes to zero as the ratiodmin−1

n
= 2m

n

goes to zero; we conclude that our code is scalable, in the
sense that the vector length does not increase proportionally
to the network size, but, instead, more slowly, as a function
of the maximum number of combined packets.

Example 2:Using a table of the best known codes [22], we
can see that there exist binary linear codes of lengthn = 512
with redundancyℓ = 18 and minimum distance2m + 1 = 5.
This means that, in a sensor network withn = 512 nodes, if
at mostm = 2 source vectors get combined, we need to use
vectors of lengthℓ = 18. �

General Case:We now consider the general case, where
each source communicates one of|Ci| messages. The only
difference from the single-bit-message case is that, instead of
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allocating a single column of the matrixH to sourcei, we
allocate to it∆ columns that span a subspaceΠi; sourcei can
use any sub-subspace withinΠi as a codeword. For simplicity,
we only consider the case where sourcei uses each of the
q∆ − 1 one-dimensional subspaces withinΠi to communicate
one of |Ci| = q∆ − 1 different messages. In this particular
case, the code results in each active source generating a single
vector of lengthl. In principle, however, we can also use multi-
dimensional subspaces as codewords—for instance, any code
design method from [13], usingΠi as our original space.

Identifiable Codes:

• Let H be theℓ × n∆ parity check matrix of a binary

code with minimum distancemin{2m∆ + 1, n∆ + 1}

• Assign to sourcei the subspaceΠi spanned by the

(i − 1)∆ + 1 to i∆ columns ofH, i = 1, . . . , n

• Sensori usesCi = {πi | πi ⊂ Πi,dim πi = 1}

Each active source now generates one vector of lengthl,
which is a linear combination of at most∆ columns of the
matrix H. Since at mostm vectors can get combined, the sink
will receive vectors that are linear combinations of at mostm∆
columns ofH. Thus, provided the minimum distance of the
code is greater than2m∆ + 1, two received vectors will be
equal if and only if the set of active users and their messages
are the same, so our code is identifiable. As before, given
the total number of sources equalsn, we can never have a
combination of more thann∆ columns ofH, leading to the
second upper limit in the required minimum distance.

Example 3:We now illustrate the theoretical benefits of
joint identity-message coding over packet aggregation, with
respect to the maximum amount of energy consumed per
sensor. Consider a tree, similar to the example in Fig. 2, where
n sources connect to a sinkA through a single linkBA.
Assume that at mostm sources are active, each communicat-
ing a single-bit message. Packet aggregation requiresm log2 n

identity bits to traverse the linkBA, while coding requires a
number of bitsℓ bounded according to (4). Fig. 4 shows that,
with aggregation, the load on linkBA is significantly larger
in the case of packet aggregation than with coding.
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Fig. 4. Comparison of the maximum transmission load for aggrega-
tion and coding as a function ofm and forn = 128.

The difference can be interpreted as follows: With coding,
to each set ofm sources corresponds a specific coded packet
that is received by the sink. With aggregation, them source
packets may be aggregated in an arbitrary order, and allm!
possible permutations convey the same message to the sink;
because this ordering conveys no information, we loselog2 m!
bits, which equals the gap between the coding lower bound3

and aggregation in the plot. �

B. Error Resilience

In real networks, packets get lost due to congestion, corrup-
tion, or failures. One method to deal with such scenarios is to
rely on MAC-layer retransmissions to provide error resilience.
Alternatively, our code construction can be naturally extended
to provide forward error correction (which, unlike MAC-layer
retransmissions, does not require feedback). Such an approach
is well matched to the cases where feedback cannot be readily
used or sensors fail (and could not retransmit anyway).

Our general code construction allocated one∆-dimensional
subspaceΠi to each sourcei. Instead, we now used-
dimensional subspaces withinΠi and, moreover, construct
each codebookCi to no longer contain allGq(∆, d) distinct
d-dimensional subspaces withinΠi, but only a set ofd-
dimensional subspaces that are “far apart.” The idea is to
introduce redundancy into the transmitted information, by
separating the subspaces chosen as codewords by a certain
“distance.”4 We define the minimum distance of the codebook
Ci as the closest two subspaces from this codebook can get.
More formally,

D(Ci) , min
πα,πβ∈Ci:πα 6=πβ

d(πα, πβ), (5)

whered(πα, πβ) was defined in (2).

Identifiable Codes for Error Protection:

• Same steps 1 and 2 as in identifiable codes

• Sensori usesCi = {πi | πi ⊂ Πi,dim πi = d}

with D(Ci) > 2r

We provide without proof the following theorem, and refer
the interested reader to the extended version of this paper [23]
for a detailed discussion of the proof and the general scheme.

Theorem 1:Consider a set of codebooksCi used over a
channel that erasesri vectors from sourcei; moreover, assume
that t corrupted vectors are injected in the network. If

(2ri + t) < D(Ci), (6)

whereD(Ci), defined in (5), is the minimum distance of the
codebookCi, then the sink can successfully determine whether
sourcei was active and recover its message. �

3The currently best found codes closely follow the lower bound.
4Note that traditional erasure correcting codes (like the Reed-Solomon code

[22]) would not work in our case, since they wouldnot be oblivious to linearly
mixing packets generated by thesamesource.
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TABLE II
CODE THAT CHECKS CONSISTENCY

C2/C1 π1 π2 π3

π4 α β γ
π5 ǫ α δ
π6 ζ θ α

C. Adaptability

Different sensor-network applications impose different re-
quirements on our code design; we now illustrate through ex-
amples how we can adapt our codes to suit such requirements
in an end-to-end fashion,i.e., without changing the relaying
operation at intermediate nodes. Such flexible and network-
transparent operation is not possible with packet aggregation
and is a distinct advantage of our architecture. We discuss
two specific applications, data-dependent identifiabilityand
sensor clustering, and refer the reader to [23] for additional
applications.

Data-dependent Identifiability:Suppose that we are inter-
ested in sensor identities only when certain combinations of
measurement data occur,e.g., we care to know the sensor iden-
tities only when there are discrepancies in their observations.

Example 4:Consider two sources, each observing one of
three possible values in the setM = {0, 1, 2}. SourceS1

employs codebookC1 = {π1, π2, π3}, while sourceS2,
codebookC2 = {π4, π5, π6}. We are interested in their
identities, only when their observations do not match. Hence,
we need to implement the function specified in Table II,
according to which, when the two sources observe the same
value, the sink receives the same subspace, no matter what the
observed value is.

To implement this function we use vectors of sizeℓ = 2d,
andd-dimensional subspaces ofF

ℓ
2 as codewords. Given any

d-dimensional subspaceπ ⊂ F
ℓ
2, by definition, its complement

π̄ is also ad-dimensional subspace that satisfiesπ + π̄ =
F

ℓ
2. We select the codebookC1 to contain threedistinct d-

dimensional subspaces{π1, π2, π3} of F
ℓ
2; we constructC2

by usingπ4 = π̄1, π5 = π̄2, andπ6 = π̄3. Note that the sink
receives a vector in the spaceπi,j = πi + π̄j , when i, j are
respectively the observations of sourcesS1, S2. Our code is
identifiable, becauseπi,i = F

ℓ
2 and, by construction,πi + π̄j

is distinct fori 6= j. Note that each individual source does not
need to know what the other source has observed. �

Sensor Clustering:Consider a densely deployed sensor
network that measures a certain spatial field; suppose we want
only care to coarsely divide this field into regions of interest.
In this case, it makes sense to cluster sensors into groups; by
assigning to all the sensors in each group the same codebook,
the sink can distinguish whether any sensor in a given group
observed a given value, but not the number of nodes observing
that value. Once this coarse characterization of the spatial
field is complete, we can explore areas of interest at a better
granularity by asking the sensors in this area to switch to
identifiable codebooks.

Other Adaptations:In this paper, we only considered sensor
networks with a single sink, which create a tree topology to

connect the sources to the sink. However, networks can have
more than one sinks or employ multi-path routing for increased
error resilience. Our codes are oblivious to network structure
and the number of sinks—indeed, this is one of the strengths
of our design.

IV. SIMULATIONS

Setup:We used our joint identity-message coding scheme to
implement a data-collection protocol that operates in rounds:
The nodes first use the collection tree protocol (CTP) [24] to
build a spanning tree rooted at the sink. In each round, each
node produces a message, jointly encodes it with its identity,
and sends the resulting vector(s) to its parent; each node
waits to collect vectors from all its children, linearly combines
(i.e., XORs) them with its own vector(s), and propagates them
further upstream. Hence, in each round, each node produces a
set of fixed-size vectors, whose size depends on the particular
code used. We will refer to this protocol as “coding-based
collection.”

As a baseline for comparison, we implemented a similar
tree-based data-collection protocol that uses aggregation: in-
stead of linearly combining the data sent by its children, each
node packs that data into a sequence of{identity, message}
pairs. Hence, in each round, each node produces a variable-
length sequence, whose size depends on the node’s position
on the tree—nodes that are closer to the sink produce longer
sequences.

We implemented both protocols as TinyOs [25] modules
and tested them with the TOSSIM simulator [2]. We present
some preliminary results regarding the energy-efficiency of the
two protocols in the context of a simple application, where
sensors produce single-bit messages, all sensors are active in
every round, and vectors from all sensors may be combined;
we should note that this is the worst-case scenario for our
coding scheme, which was designed assuming that vectors
from only a subset of the sensors can be combined. For this
application, coding-based collection uses the identifiable codes
for single-bit messages defined in III-A; in ann-node network,
this results in each node transmitting onen-bit vector per
round. We are currently working on extending our simulations
to cover more applications, as well as demonstrate the error
resilience of the two protocols.

Preliminary Results:Fig. 5(a) shows the average per-node,
per-round transmissions for the two protocols (i.e., we count
the total number of bytes transmitted during the experiment
and divide them by the number of rounds and nodes); this
is useful in determining the overall energy consumed by the
network. Fig. 5(b) shows the average per-round transmissions
performed by the most burdened node(i.e., we count the
average per-round bytes transmitted by each node and report
the highest number); this is useful in determining the period
of maintenance of the network (how often a battery needs
to be changed) or the minimum per-sensor energy required
in networks periodically recharged through natural resources.
Figs. 6(a) and 6(b) show a detailed breakdown for the same
numbers. We show our results in terms of bytes, not frames,
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Fig. 5. Average and maximum per-node transmissions excluding
MAC headers. The nodes are placed on a square grid,8 meters from
one another. We chose this density, because it allows the CTP protocol
to operate without end-to-end loss. We stop atn = 100 nodes,
because connecting more nodes to a single sink introduced contention
and end-to-end loss independently from the chosen density. Simulator
parameters are set according to an outdoors environment. For each
n we ran our protocols for1000 rounds.

as the two protocols lead to similar frame transmissions; also,
in Figs. 5 and 6, we do not take into account MAC-header
and acknowledgment overhead, as they are the same for both
protocols—we discuss these overheads later.

As expected, aggregation-based collection performs better
in terms of the total number of bytes transmitted by the
network. On the other hand, coding-based collection performs
significantly better in terms of the maximum number of bytes
transmitted by any single node. For instance, according to
Figs. 6(a) and 6(b), in a64-node network that is recharged
through natural resources, aggregation-based collectionre-
quires more sophisticated recharging equipment than coding-
based collection: the former imposes65% more byte transmis-
sions than the latter on the most burdened node—ignoring, for
the moment, the MAC-layer overhead.

A closer look (Fig. 6(b)) reveals that, for coding-based
collection, maximum per-node transmissions are dominated
by link-layer retransmissions,i.e., the more burdened nodes
are the ones that have to retransmit more frequently due to
weak connectivity—which are often located on the periphery
of the network. In contrast, for aggregation-based collection,
the most burdened nodes are the ones that need to convey
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(b) Breakdown of the maximum number of average per-round bytes
transmitted by any node

Fig. 6. Fig. 5 breakdown. “Data” corresponds to packets that were
properly aggregated or combined. “Delayed data” corresponds to
packets that were not aggregated or combined with other packets,
because they reached the corresponding nodeafter it sent out
its sequence/vector; such delays are a result of topology changes.
“Retransmissions” corresponds to packets retransmitted due to link-
layer errors.

the most data,i.e., the nodes located closest to the sink; these
nodes are most important for the operation of the network, yet
they would be the first to fail from battery depletion.

It is also worth noting that, in the case of coding-based
collection, the values for the average and maximum per-node
transmissions would be exactly the same, if it weren’t for
retransmissions and topology changes that introduce delayed
transmissions (Fig. 6). Still, they are significantly closer than
in the case of aggregation-based collection, suggesting uniform
energy consumption across the network.

Link-layer Overheads:Fig. 6(b) shows that coding signif-
icantly outperforms aggregation in terms of maximum per-
node data transmissions. However, with our current imple-
mentations, the gap is reduced by retransmissions and MAC
headers—17 bytes for data frames and11 bytes for acknowl-
edgments. Figs. 7(a) and 7(b) show the performance of the
two protocols when taking into account these headers.

We should note that these overheads are not fundamental
to our joint identity-message coding and can be removed:
Acknowledgments and retransmissions are due to our CTP-
based implementation, which relies on the link layer for
reliable communication; we plan to replace them with multi-
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Fig. 7. Average and maximum per-node transmissions including
MAC headers. These numbers correspond to the same experiments
depicted in Figs. 5 and 6, but take into account the17-byte MAC-
layer header for data packets and11-byte acknowledgments.

path communication—i.e., send each piece of information
through multiple paths, such that, even if a path fails, the
message reaches the sink with a high probability. Unlike
aggregation5, coding-based collection can use multi-path com-
munication and still be energy efficient, as each node always
transmits the same number of fixed-size vectors independently
from the number of paths. Moreover, for networks where the
measurement reported by each sensor consists of a few bytes,
the17-byte header dictated by the IEEE 802.15.4 frame format
becomes inappropriate as it dominates transmission cost; for
such applications, it makes sense to develop a lighter link-
layer protocol. Addressing these issues is part of our future
work.

V. CONCLUSIONS

We have formulated the paradigm of identity-aware sensor
networks to capture applications where, as illustrated in§II-A,
the identities of the sensors form the bulk of the communicated
data. We have proposed a communication protocol for such
networks, where sensor identities and measurements are jointly
encoded in fixed-size vectors. To the best of our knowledge,
this is the first such approach. Its benefits consist of (1)
equally balancing the transmission load across all nodes inthe

5Using aggregation with multi-path communication results in multiple
copies of the same data in different parts of the network, significantly
increasing traffic load.

network, which is important for networks that are periodically
recharged through natural resources; (2) low complexity net-
work operation; (3) graceful incorporation of error resilience
and flexible adaptation to specific application needs that is
transparent to the operation of intermediate nodes.
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