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Abstract—In a significant class of sensor-network applications, is in contrast to the identitynaware sensor networks usually
the identities of the reporting sensors constitute the bulk of the encountered in the literature, where the sink collects tions

communicated data, whereas the message itself can be as smalbf the histogram of the sensor measurements, such as the
as a single bit—for instance, in many cases, sensors are used to ’

detect whether and where a certain interesting condition occured average pr m§X|mum temperature measured by _aII the s_ensors.
or to track incremental environmental changes at fixed locations |n_ an !dent!ty-aware sensor network, every piece of infor-
In such scenarios, the traditional network-protocol paradigm mation (identity and measurement) produced by each sensor

of separately specifying the source identity and the message inmust reach the sink. This affects energy consumption in two
distinct fields leads to inefficient communication. ways: First, there is no room for reducing the amount of

This work addresses the question of how should communi- transmitted traffic (and, hence, overall energy consumptiy
cation happen in such identity-aware sensor networks. We re- ’ ’ 9y

examine the traditional source-identity/message separation and Combining multiple_sensor measurements into one vaug, (
propose a scheme for jointly encoding the two. We use this their sum)—as typically done in identity-unaware networks.

to develop a communication method for identity-aware sensor Second, nodes located close to the sink have to forward much
networks and show it to be energy efficient, simple to implement, ore traffic than nodes in the network periphery. For sensor

and gracefully adaptable to scenarios frequently encountered in . . . .
sensor networks—for instance, node failures, or large numbers networks operating with renewable energy [1], this raises t

of nodes where only few are active during each reporting round. @mount of per-sensor energy rgquired_to run the network for a
given amount of time, making it harded., more expensive)

|. INTRODUCTION to charge the network through solar energy or other natural

In traditional network protocols, each packet carries it®sources.
source identity in a dedicated header field, separately fromWith this work, we address the question of how should
the communicated message, which constitutes the packetgnmunication happen in identity-aware sensor networks—
payload. To increase their information rate, several mol® to the best of our knowledge, this question has not been
use encoding or compression techniques that look to mieimiaddressed before, although such networks are useful itiggac
the size of the message; to the best of our knowledge, ndseetll-A). We start by observing that sensor identities are
of these techniques consider the source identity as partefspecial kind of data: for a fixed node, the identity is a
the data that needs to be encoded or compressed—andcfmstant number that does not change with every transmissio
good reasons: In the typical communication scenarios whépecontrast to the messages that do. Based on this obseryatio
encoding or compression makes sense, the message casstitue develop a new communication protocol for identity-aware
the bulk of the communicated data, whereas the sourceiiglensensor networks that is energy efficient, but also simple to
overhead is relatively insignificant. implement and inherently adaptable to scenarios frequentl

The situation is reversed in wireless sensor networks thefticountered in sensor networks—for instance, node fajlures
monitor the evolution of an environmental variable overdgimor large numbers of nodes where only few are active during
and space: Sensors are often used to twlektherandwhere each reporting period.
a certain condition occurse-g, temperature exceeds a thresh- Our method is distinguished by two key elements:
old, a perimeter is violated, soil or water is contaminatied; e« Instead of specifying its identity and measurement in
other cases, they are used to track incremental changegat fix  separate fields, each sengaintly encodeghe two using
locations,e.g, the evolution of snow height at mountain peaks a set of fixed-size vectors.
for avalanche prediction or seismic activity for earthgeak  The encoding is such that intermediate nodesozanbine
prediction. In such scenarios, it makes sense to assodcate e multiple incoming vectorito a single one (of the same
sensor with a fixed location and have it report, periodigally  fixed size) and forward only that toward the sink.
its identity and measurement to a collecting sink.(in this The basic idea is to assign a different codebook to each
context, an identity represents a specific location); agsgim sensor and let each sensor implicitly convey its identity
network of tens or hundreds of nodes, the identities of the rarough its choice of codebook, as illustrated §i-B. We
porting nodes now become the bulk of the communicated datealize this using subspace encoding: each reporting senso
whereas the message itsdlie(, each reported measurementtommunicates its identity by generating a set of vectors tha
can be as small as a single bit. represent a distinct subspace—distinct from the subspaxes g

We use the ternidentity-aware sensor netwotk describe erated by all other sensors. By combining incoming vectors,
such a paradigm—where each sensor periodically commuiritermediate nodes essentially produce different (co)pac
cates to the sink its identity plus a small measurement. Thiespresentations of the subspaces generated by the reportin



sensors. We exploit the invariance properties of subspact®e sink (seglll-A, Example 3); hence, energy consumption
such that neither sensors nor sink need any knowledge @freitis unequally distributed among sensor nodes, in particular
network topology or intermediate-node operations in otgder concentrated on centrally located “bottleneck nodes” tiaat,
generate their vectors or (in the sink’s case) decode theen. 6 a result, fail and disrupt network operation.
describe our coding scheme at a high levekihand more
formally in §lII. Il. SENSORIDENTIFICATION
We show that the resulting communication method has tge
following properties: | .
« Energy efficiency and balancing/e look to minimize the ~ e consider sensor networks where each node needs to
number of frames and bytes transmitted by each sensgfmmunicate (1) its identity and (2) a small (relative to the
Moreover, each sensor performs approximately the sarglentity) measurement to a collecting sink. This is differe

amount of frame and byte transmissions, independenflMm the typical scenarios discussed and analyzed in the
from its position in the network. literature, where sensor networks are used to compute ag-

« Low-complexity network operatiorintermediate nodes dregate statisticse(g, the average temperature in a building)

perform the same simple operations (vector combinflat do not require associating each measurement with a
tions) irrespective of their position in the network andPecific sensor. Given our departure from the commonly used
thus transparently to topology changes. paradigm, to motivate our work, we discuss a few examples
« Error resilience and adaptabilityOur method gracefully Of @pplications where our conditions hoid., sensor identity
incorporates protection against errors and node failurd$ 2 critical part and forms the bulk of the communicated data
Moreover, it allows end-to-end adaptation to specifizhese are all cases where the sensors are used to perigdicall

application needs without perturbing intermediate-nod&construct thespatial fieldof the physical quantity measured
by the sensorsg,e., the variation of that quantity as a function

Applications

operation.
We close with some preliminary experimental results oladin of spape [17]_' .
using the TOSSIM [2] simulator(V). .D|ff.erent|al Updates: In many cases of environmental
monitoring, to avoid unpleasant surprises, we need to @&oos
Related Work the measurement frequency such that the spatial field under

Recently, techniques inspired from coding and netwofReasurement changes relatively slowly. For instance, when
coding have been successfully used to harness the broemgcagnonitoring the level of snow on a mountain surface for
capabilities of the wireless medium [3], [4], [5], [6], [1inple- avalanche prediction, it makes sense to measure frequently
ment intelligent in-network storage [8], and provide riesite enough, such that, at any location, the snow level never
in lossy environments [9], [10]. These coding techniques aghanges by more thalr4 centimeters between measurements.
not suitable for identity-aware sensor networks, as they dn such scenarios, each sensor needs to communicate only the
developed with a focus on data dissemination (as opposedditierence of its new measurement from the last one, togethe
joint identity and message delivery). with its identity. Assuming networks of tens or hundreds of

Our proposed coding scheme relies on subspace code@ges, the identity may require one or two bytes, while the
which have been studied in the context of non-coherent cottpdate itself needs only a few bits [17].
munication over fading point-to-point wireless channdlg][ Spatial Correlation: In other cases, the spatial field under
guantum communication [12], and, more recently, networkeasuremerdt a given timevaries smoothly over space—this
coding, to provide error and erasure correction [13]. Alis the case, for instance, with temperature and pressuie [17
previous constructions address the single-source casepido[15]. We can leverage such smooth variation by having a set
encode the source identity, and are designed for largegbackf densely deployed sensors communicate only few bits of
transfers. We develop constructions that incorporate i tinformation, then use technigques like distributed soundirg
code the identity of multiple sources with low communicatio[14] to reconstruct the entire spatial field.
overhead and are targeted to (very) small-packet transfers Multi-stage Collection:Sometimes we are not interested

Significant research effort has been invested in reduicr reconstructing an entire spatial field, only a few “intgre
ing sensor-communication overhead through distributed, iing” regions,e.g, examine only the areas where the measure-
network data aggregation. The proposed techniques explwiénts suggest that there is potential for an avalanche.dn su
data correlation to perform compression [14], [15], [16] ocases, it makes sense to collect data in stages: in the g, st
calculate functions of the observed measurements sucheash sensor communicates its identity along with few bits of
their average [16]. None of these is applicable in the casdormation (just enough to get a coarse representatiomef t
where we need to convey node identities. A naive aggregatifield); if something interesting is revealed, the sink gesithe
approach would be to package, at each node, all the receivelbvant sensors for more information in the second stagk [1
identities and messages into a single packet. As we disc{3]. In many practical scenarios, it is enough for each gens
in more detail in the paper, this requires in-network cohteto send a single bit of information during the first stage—
processing and, most importantly, results in unequaltfengsignaling, for instance, whether a threshold was reached, a
packets whose size increases significantly as we approgemnimeter was violated, or an animal was sighted.



B. Basic Idea: Representation of Identities to understand and process the contents of incoming packets;
In the context of the applications discussed above, tHformation is always encoded at its source and decoded at

traditional approach of keeping the source identity and t/{B€ Sink, while each node is oblivious to the codes used by

message in separate fields leads to inefficient communicatigther nodes.

We now illustrate this inefficiency with a simple example and Although simple, the tree of Fig. 1 captures the behavior

introduce the idea of joint identity-message coding. of the two protocols on all trees (with an arbitrary number of

nodes) that conne® sources to a sink through a single link;
[00000000] E

[00100000] @

[10000000] for instance, in the 14-node tree of Fig. 2, packet aggregati
would result in 32 bits being transmitted over linkBA,
whereas the coding-based protocol would resuft bits being

(00000000] @ [10101110] transmitted over the same link, exactly as in the tree of Fig.
More formally, we propose that each source employs a
[00001000] Sink different codebooki.e., a different mapping of messages to

packets; the sink knows the codebook used by each source
and, hence, can determine who sent what, the sender

[00000100] @

[00000010] [00000000] implicitly communicates its identity through its choice of
Fig. 1. SourcesSs, ..., Ss send their id and a one-bit message t€odebook. This approach agrees with the insight we have from
the sink A through a relay nodes. information theory: the scenario of Fig. 1 is reminiscent of

the classic multiple-access channel problem, where nhailtip

Consider the simplified network of Fig. 1, whesesource users simultaneously transmit to a single receiver over a
nodes communicate information to a sink nadlevia a relay common channel; it is well known that the users do not have
node B. Suppose each sourc§;,i = 1,...,8, wants to to explicitly specify their identities, as long as they cheo
communicate al-bit message to the sinkl. Each source distinct enough codebooks that can be disambiguated at the
creates a packet that contains 3 bits specifying its identiteceiver ([20], Chapter 14).
and a 1-bit message, and sends this to the intermediate nodRote that in our joint identity-message coding protocol,
B. To relay this information ta4, B could naively forward each node forwards theamenumber of packets and bits,
the 8 packets, which would result i packet transmissionsj.e, communication overhead is evenly distributed across the
over link BA; to avoid this overhead3 combines the8 x 4 network. This alleviates the problem of depleting the bwgtte
identity and message bits in a single packet. We call thi§ the nodes located close to the sink, thus making it ideally

communication protocopacket aggregatignit can be easily suited for environmentally powered sensor networks.
extended to work on an arbitrary tree: each source sends out a

packet with an identity and a message specified in separate @ @
fields; intermediate nodes aggregate and forward incoming @ ,@
packets toward the sink. Packet aggregation results inuaieq @\
transmission load over the different network links, witteth G Q
heavier burden placed on the links closer to the sink. In our @
example, it results in 4 bits of information being transewtt e e
over each linkS; B as opposed to 32 bits over linkA. @ (®)

Now consider the following alternative communication pro- 0 Sink

tocol: Each sourceS; sends out ar8-bit packet with its
message encoded in bitand all other bits set t®; this
is the simplest example of using a “code” to represent the
identity of a node along with its message. Nalgust XORs
all incoming packets and sends the resultiibit packet to
A, as depicted in Fig. 1. Nodd can interpret its receive

Fig. 2. A tree with 8 sources.

The simple coding-based protocol we have described illus-
trates the basic idea and benefits of joint identity-message
g coding, but is specialized to the case where all sources
communicate information at about the same time (such that

message with the understanding that positiocorresponds ) " '
to the message sent by node Again, this protocol can be intermediate nodes can combine their packets) and convey a
: single value to the sink. We present our general code design

easily extended to work on an arbitrary tree: sous¢sends a
packet with its message specified atdbénd all other bits set in §il.
to 0; each intermediate nod¥ORs all incoming packets and
forwards the one resulting packet toward the sink. Compargd
to packet aggregation, this “coding-based” protocol letds Subspacesin our communication protocol, information is
more efficient communication on linBA (8 bits instead of transferred through the exchange of vectors of lengthe,,

32); the price we pay is a small decrease in efficiency on thectors that belong to thédimensional vector spadé = ]Ff;

S;B links, which now have to carrg (rather than4) bits A subspacedenoted byr, is a subset of the vector spate

of information per packet. Note that nodg is not required which is a vector space itself [21]. We say that two subspaces

Definitions and Assumptions



TABLE |

ared_is_tinctif they dif_fer in at least one dimension. The number CODING FOR TWO SOURCES
of distinct d-dimensional subspaces Eg equals ey - - -
£ 1Y, .. (ff—d+1 _ UP T+ Ty | T2+ T4 | M3+ T4
g (é,d)é ¢ = (q 1) (q 1), Q) 5 T+ 75 T2+ 75 | w3+ 75
q d . (qd—l)--~(q—1) 6 T +7e | T2+ Te T3 + Te
and is called the Gaussian number. We use two subspace
operations:

i represents the end-to-end transformatiotXef A key point of
* Tatms = {z+y|z €My € mp}is thesumof approach is that neither the sink nor the sources know the
subspaces, andg, i.e, the subspace spanned by the,iving matrices{G,}, i.e. the specific set of linear operations
vectors inm, andmg; _ o _ performed by the network is unknown to all parties. A source
* TaNmg = {2 |z € ™o andx € mp} is theirintersection ¢ only communicate information to the sink, because it
e, the largest subspace that belongs to boffend7s.  epresents each message with a subspace, and subspaces are
Moreover, we need a quantitative metric of “how far apartdtwynaffected by linear operations.
subspaces are; we define tiistancebetween two subspaces |gentifiability: We define acodeas a set of: codebooks,

To andmg as each corresponding to a source. We say that a codldeis
d(To,75) & dim (7, + m5) — dim(m N 7s). (2) lifiable, if every possible combination of subspaces generated
by the n sources using this code results indestinct union
Network Operation:We consider a network ofi sensors sypspace. More formally:
(hence,n potential sources) and a sink, where the nodes pefinition 1 (dentifiable Codg: An identifiable code is a
have f{ormed a sga.n.nlng trﬁe rooée(:hatftr“e S|'nk. tOEr neltwcggt ofn_codebookfi _ {Wéz) 1<ji<|IMihi=1,...,n,
operz es |(;1 rouSn S; |n' eaf[: :omljln , the fo _owlng ta tis p_ai\?vith mORS F such that we haver;, + --- + m, # 7, +
» Encoding Source; potenially communicates (0 the Sink... i wheff (i1 .. in) # (j1. - Ja) and, and
IS 1aent yda'; a@meshs_aﬁe roma srr:]a b orthIs,  are the subspaces chosen by source
It US;.S co ? ocl> Zt\)N |c%: T?Fes gac message; to Example 1:Consider two sourcesy; with codebooklC; =
ad-dimensional subspatef I, i.e. {m, m, w3}, and Sy with codebookCy = {my, w5, 7}
Ci: M; — {7T§i> 1< <MY, i=1,...,n Table | summarizes all possible subspace combinations. that
_ _ can be generated when each of the two sources communicates
To communicate a certain message, nodgooses the a message to the sink. For this code to be identifiable, we want
corresponding subspacefrom C; and generateg vec- all 9 entries in Table | to correspond to distinct subspates.
tors that sparr.
« Relaying A node without children sends its vectors to its [1I. JOINT IDENTITY AND DATA CODING
parent; a node with Children ”nearly Combines the vectors We design Codes that have the fo”owing properties:

genedrated by itself Wltg thedvecr':ors sent by its children 1) Identifiability: They allow sources to convey their iden-
into d new vectors, and sends these to its parent. tities and messages to the sink.

* Dectodlng thk% ar_I[y Otr?'lzr nodet,dthe sink iomb'_?ﬁs the 2) Error resilience: They gracefully incorporate protection
vectors sent by its children intd new vectors. These against packet loss and corruption.

are linear comblnat!ons OT the yectors generated by3) Adaptability: They are easily adaptable to specific
the sources—in particular, if sourgegenerates vectors application needs.

that span subspace;, the sink observes vectors from L

subspacer; + m + - - - +m,. The sink then uses these We address each of these properties in turn.

vectors and the codebooKg;} to decode the identities o |gentifiable Codes

of all the sources along with the message sent by each , : ,
We start from the observation that, in many practical

source.
scenarios, the network topology as well as the application

We can represent the set dfvectors,{y;}, produced by . L pology P
the sink. as impose a natural limit on the number of source vectors that

get combined within the network. Indeed, two source vectors
(generated by two different sources) get combined onlysfrth
paths to the sink overlap: In Fig. 2, the sink has a single
neighbor (nodeB), so all the source vectors get combined
at that neighbor. Now consider a network, where the sink
where X, is a matrix that has the original vectors sent b{fS ¥ neighbors, and sources are symmetrically deployed
sourcei as its rows, andG; is a “mixing matrix’ that a[ong thesek directions—in which case, we can think of
Fig. 2 as the “branch” of the network corresponding to one

Y = y'j = En: G.X,
. =1

lin principle, we can use subspaces of different dimensions, for
simplicity, in this paper, we restrict our code design to gates of equal  2This inequality simply means that there is at least one sokirsach that
dimension. ik # k-



of these neighbors; in this case, each packet that reacl®sare linearly independenf22]. For example, ford,,;, =

the sink contains approximately combined source vectors.2m+1, any2m columns of the parity check matrix are linearly

Moreover, in many applications (for instance, anomalysgggn independent; thus, if at one round we hawe < m active

applications), we expect only a subset of the sensors tatrepsources, each sending a different vectgr and at another

during each round, hence, fewer tharsets of source vectors round we have a different set ai; < m active sources, each

to get combined within the network. Finally, we can alssending a vector;, then

enforce a strict upper limit on the number of source vectors

that get combined—if we append to each vector a few bits Vi v e Uy # U g e U, (3)

that count the number of combined source packets it contaiffiis inequality is a direct consequence of the fact thatany
With this in mind, we formulate our code-design problenyectors are linearly independent: indeed, if (3) was an kigua

as follows: Givenn potential sources, we assume that eadhere would bem or fewer linearly dependent vectors. Hence,

vector that reaches the sink is a linear combination of sourevery possible combination of subspaces generated by the

vectors fromat mostm sources. We want to design codes thaictive sources results in a distinct union subspace, which

allow the sink to look at each received vector and deterniifie (means that our code is identifiable.

which is the corresponding subset of sources and (2) what aréNote that we never need to have minimum distance greater

their messages. Note that = n corresponds to the specialthann + 1, since there exist nodes and, thus, we can have at

case where all sources are active and all source vectors migstn distinct vectors appearing in (3). This implies that, for

combined. all the cases where > m > 3, i.e, at least half of the nodes
For simplicity, we first describe a code for the case whetgre active, we need,,,;,, = n + 1 and we can select w.l.0.g.

each sensor either communicates a single bit of informatidime full rankn x n parity matrixH to be the identity matrix. In

(to indicate that a certain event occurred) or remains silethis case, sourcé generates a vector with at positioni and

(to indicate that it didn’t). We later generalize to an amdny 0 elsewhere, which corresponds to the simple codélleB.

message-set size. The scalability of our code depends on héwthe size of
Single-bit MessagesOur construction proceeds as followsthe vector generated by each source) scales withe size
select a linear code of length, minimum distancel,.;, = of the network) andn (the maximum number of vectors that

min{2m + 1,n + 1}, and redundancy, with ¢ as small as can get combined). This is related to a well studied problem
possible; consider théx n parity check matrixt [22]; assign in coding theory, namely, for a given code length and a

to each source a different column Hf, which corresponds to given minimum distanc&m + 1, what are upper and lower

a one-dimensional subspace of thdimensional space. This bounds on the number of codewordsn,m) this code can
code results in each active source generating a single rvediave [22]. Using the Gilbert-Varshamov lower bound and the
of length /. sphere packing upper bound [22], for < % we get that

dmin -1
Identifiable Codes for Single-bit Messages: ¢ < nHo( n ), and ()
e Let H be the/ x n parity check matrix of a binary 0> an(M) — }logq <4(dmin —1)(1— dmm_l))
code with minimum distancé,y,;,, = min{2m + 1,n + 1} 2n 2 2n
o Sourcei usesC; = {< h; >}, whereh; is a column ofEI | Where Hy(-) is the g-ary entropy function, namelyiZ, (p) =
plog,(q—1) —plog,p— (1 —p)log,(1—p). Itis easy to see
that for fixed values ofn the upper and lower bounds behave
as O(mlogn) asn grows. Fig. 3 plots the bounds from (4)
as a function ofn, for m = 2 andm = 20. We can see that
the vector length resulting from our code is a fraction of the
network sizen that goes to zero as the ratigrin=1 = 2m
goes to zero; we conclude that our code is scalable, in the
sense that the vector length does not increase propotional
to the network size, but, instead, more slowly, as a function
of the maximum number of combined packets.
] Example 2:Using a table of the best known codes [22], we
800 1000 can see that there exist binary linear codes of lemgth 512
with redundancy! = 18 and minimum distancém + 1 = 5.
Fig. 3. Bounds on the lengtli of generated b'inary vectorg &_2) This means that, in a sensor network with= 512 nodes, if
mgegurg; FQO?Q?E:]Z o r?gd;g“rces get combined, as a function ofy g1, — 9 source vectors get combined, we need to use
vectors of length? = 18. |
This code is identifiable because of a well known property General Case:We now consider the general case, where
of the matrixH: given a linear code with minimum distanceeach source communicates one |6f messages. The only
dmin, @any set ofd,,;,, — 1 columns of the parity check matrixdifference from the single-bit-message case is that, austd

10001

='=Lower bound|
800 = = =Upper bound|

—n

Length of transmitted packet
@
S
=]




allocating a single column of the matrild to sourcei, we The difference can be interpreted as follows: With coding,
allocate to itA columns that span a subspddg sourcei can to each set ofn sources corresponds a specific coded packet
use any sub-subspace witHily as a codeword. For simplicity, that is received by the sink. With aggregation, thesource

we only consider the case where souicases each of the packets may be aggregated in an arbitrary order, anaréll

¢ — 1 one-dimensional subspaces withiy to communicate possible permutations convey the same message to the sink;
one of |C;| = ¢® — 1 different messages. In this particulabecause this ordering conveys no information, we logg m!
case, the code results in each active source generatingla sibits, which equals the gap between the coding lower bdund
vector of length. In principle, however, we can also use multiand aggregation in the plot. O
dimensional subspaces as codewords—for instance, any code

design method from [13], using; as our original space. B. Error Resilience

— In real networks, packets get lost due to congestion, cerrup

Identifiable Codes: tion, or failures. One method to deal with such scenarios is t
e Let H be the/ x nA parity check matrix of a binary  rely on MAC-layer retransmissions to provide error resitie.
code with minimum distancenin{2mA + 1,nA + 1} Alternatively, our code construction can be naturally exied
« Assign to source the subspacél; spanned by the to prowd_e f(_)rward error correct_lon (which, unlike MAC-lay

) , , retransmissions, does not require feedback). Such an agipro
(i =1)A+1104A columns ofH, i =1,...,n is well matched to the cases where feedback cannot be readily
e Sensori usesC; = {m; | m; C II;,dimm; = 1} used or sensors fail (and could not retransmit anyway).

Our general code construction allocated dxneimensional

Each active source now generates one vector of lefgthsubspacell; to each sourcei. Instead, we now usel-
which is a linear combination of at mosgt columns of the dimensional subspaces withid; and, moreover, construct
matrix H. Since at mostn vectors can get combined, the sinkeach codebook; to no longer contain allg, (A, d) distinct
will receive vectors that are linear combinations of at magt  d-dimensional subspaces withifi;, but only a set ofd-
columns ofH. Thus, provided the minimum distance of thelimensional subspaces that are “far apart.” The idea is to
code is greater tha@mA + 1, two received vectors will be introduce redundancy into the transmitted information, by
equal if and only if the set of active users and their messagssparating the subspaces chosen as codewords by a certain
are the same, so our code is identifiable. As before, givegistance.* We define the minimum distance of the codebook

the total number of sources equals we can never have aC; as the closest two subspaces from this codebook can get.
combination of more thamA columns ofH, leading to the More formally,

second upper limit in the required minimum distance.
Example 3:We now illustrate the theoretical benefits of D(G;) = o, i d(ma, ), (5)

joint identity-message coding over packet aggregatiorh wi rpEere

respect to the maximum amount of energy consumed pehered(m,,ns) was defined in (2).

sensor. Consider a tree, similar to the example in Fig. 2r&vhe

n sources connect to a sink through a single linkBA. Identifiable Codes for Error Protection:

Assume that at most sources are active, each communicat- e Same steps 1 and 2 as in identifiable codes

ing a single-bit message. Packet aggregation requirkss, n . _ . _

identity bits to traverse the linlBA, while coding requirizs a * Sensor; usesC; = {m; | m C IL;, dim; = d}

number of bits/ bounded according to (4). Fig. 4 shows that, with D(C;) > 2r
with aggregation, the load on linBA is significantly larger ) ] ]
in the case of packet aggregation than with coding. We provide without proof the following theorem, and refer

the interested reader to the extended version of this p&3@r [
for a detailed discussion of the proof and the general scheme

Theorem 1:Consider a set of codebooky used over a
channel that erases vectors from sourcé moreover, assume
thatt corrupted vectors are injected in the network. If

©
=]
S

@
=1
=]

—— Aggregation
700r |- Coding Upper Bound
600 Coding Lower Bound

500

(2r; +t) < D(C;), (6)

400

where D(C;), defined in (5), is the minimum distance of the
codeboolC;, then the sink can successfully determine whether
sourcei was active and recover its message. O

Length of transmitted packet

0 éO 4‘0 éO éO 160 1éO 14‘10

Maximum number of active users, m
Fig. 4. Comparison of the maximum transmission load for aggrega-°The currently best found codes closely follow the lower kihun
tion and coding as a function of. and forn = 128. 4Note that traditional erasure correcting codes (like thedR8olomon code
[22]) would not work in our case, since they wouldt be oblivious to linearly
mixing packets generated by tlsamesource.



TABLE Il

CODE THAT CHECKS CONSISTENCY connect the sources to the sink. However, networks can have
G/ T | 72 | 7 more than one sinks or employ multi-path routing for incezhs
4 a | B | v error resilience. Our codes are oblivious to network streect
Uss 2 fg 9 and the number of sinks—indeed, this is one of the strengths
6 o

of our design.

IV. SIMULATIONS

C. Adaptability Setup: We used our joint identity-message coding scheme to
Different sensor-network applications impose differeat r implement a data-collection protocol that operates in dsun
quirements on our code design; we now illustrate through exhe nodes first use the collection tree protocol (CTP) [24] to
amples how we can adapt our codes to suit such requiremeniifid a spanning tree rooted at the sink. In each round, each

in an end-to-end fashior,e., without changing the relaying node produces a message, jointly encodes it with its identit
operation at intermediate nodes. Such flexible and netword sends the resulting vector(s) to its parent; each node
transparent operation is not possible with packet aggi@gatwaits to collect vectors from all its children, linearly cbimes
and is a distinct advantage of our architecture. We discugs., XORs) them with its own vector(s), and propagates them
two specific applications, data-dependent identifiabibtyd further upstream. Hence, in each round, each node produces a
sensor clustering, and refer the reader to [23] for addifionset of fixed-size vectors, whose size depends on the paticul
applications. code used. We will refer to this protocol as “coding-based
Data-dependent IdentifiabilitySuppose that we are inter-collection.”
ested in sensor identities only when certain combinatidns o As a baseline for comparison, we implemented a similar
measurement data occerg, we care to know the sensor iden4ree-based data-collection protocol that uses aggregaitie
tities only when there are discrepancies in their obsesmati stead of linearly combining the data sent by its childrerhea
Example 4:Consider two sources, each observing one ofode packs that data into a sequence{identity, message
three possible values in the sat = {0,1,2}. SourceS; pairs. Hence, in each round, each node produces a variable-
employs codeboolC; = {m, m, w3}, while sourceS;, length sequence, whose size depends on the node’s position
codebookCy = {my, w5, ms}. We are interested in their on the tree—nodes that are closer to the sink produce longer
identities, only when their observations do not match. Hencsequences.
we need to implement the function specified in Table Il, We implemented both protocols as TinyOs [25] modules
according to which, when the two sources observe the samed tested them with the TOSSIM simulator [2]. We present
value, the sink receives the same subspace, no matter vehatsiime preliminary results regarding the energy-efficierfayne
observed value is. two protocols in the context of a simple application, where
To implement this function we use vectors of size- 2d, sensors produce single-bit messages, all sensors are attiv
and d-dimensional subspaces Bf, as codewords. Given anyevery round, and vectors from all sensors may be combined;
d-dimensional subspace C 4, by definition, its complement we should note that this is the worst-case scenario for our
7 is also ad-dimensional subspace that satisfiest # = coding scheme, which was designed assuming that vectors
5. We select the codeboo®; to contain threedistinct d- from only a subset of the sensors can be combined. For this
dimensional subspacesr;, m, 73} of F5; we constructC, application, coding-based collection uses the identiéi@bldes
by usingmy = 71, m5 = T, andmwg = 73. Note that the sink for single-bit messages defined in Ill-A; in aanode network,
receives a vector in the spaeg; = m; + 7;, wheni, j are this results in each node transmitting onebit vector per
respectively the observations of sourcgg S;. Our code is round. We are currently working on extending our simulasion
identifiable, because;; = F5 and, by constructions; + 7; to cover more applications, as well as demonstrate the error
is distinct fori # j. Note that each individual source does natesilience of the two protocols.
need to know what the other source has observed. O Preliminary Results:Fig. 5(a) shows the average per-node,
Sensor Clustering:Consider a densely deployed sensqgper-round transmissions for the two protocol®.( we count
network that measures a certain spatial field; suppose wé wtre total number of bytes transmitted during the experiment
only care to coarsely divide this field into regions of ingre and divide them by the number of rounds and nodes); this
In this case, it makes sense to cluster sensors into groyps;id useful in determining the overall energy consumed by the
assigning to all the sensors in each group the same codebaaktwork. Fig. 5(b) shows the average per-round transnmissio
the sink can distinguish whether any sensor in a given gropprformed by the most burdened nodge. we count the
observed a given value, but not the number of nodes observengrage per-round bytes transmitted by each node and report
that value. Once this coarse characterization of the dpatiae highest number); this is useful in determining the pkrio
field is complete, we can explore areas of interest at a bettér maintenance of the network (how often a battery needs
granularity by asking the sensors in this area to switch to be changed) or the minimum per-sensor energy required
identifiable codebooks. in networks periodically recharged through natural resesr
Other Adaptationsin this paper, we only considered sensoFigs. 6(a) and 6(b) show a detailed breakdown for the same
networks with a single sink, which create a tree topology taumbers. We show our results in terms of bytes, not frames,
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Fig. 5. Average and maximum per-node transmissions excludingy. 6. Fig. 5 breakdown. “Data” corresponds to packets that were
MAC headers. The nodes are placed on a square grigeters from properly aggregated or combined. “Delayed data” corresponds to
one another. We chose this density, because it allows the CTP protgsatkets that were not aggregated or combined with other packets,
to operate without end-to-end loss. We stoprat= 100 nodes, because they reached the corresponding nafter it sent out
because connecting more nodes to a single sink introduced contenfignsequence/vector; such delays are a result of topology changes.
and end-to-end loss independently from the chosen density. Simulaétransmissions” corresponds to packets retransmitted due to link-
parameters are set according to an outdoors environment. For eggfer errors.

n we ran our protocols foi 000 rounds.

as the two protocols lead to similar frame transmissiors,al the most datau,e.., the nodes located clo§est to the sink; these
grodes are most important for the operation of the network, ye

in Figs. 5 and 6, we do not take into account MAC-head Id be the fi fail b deoleti
and acknowledgment overhead, as they are the same for btg'[%y .wou e the |rst. to fal r9m attery dep etlon..
It is also worth noting that, in the case of coding-based

protocols—we discuss these overheads later. ) )
As expected, aggregation-based collection performs met@llection, the values for the average and maximum per-node

in terms of the total number of bytes transmitted by thEansmissions would be exactly the same, if it weren't for

network. On the other hand, coding-based collection persor retransmissions and topology changes that introduce eelay

significantly better in terms of the maximum number of byte§ansmissions (Fig. 6). Stil, they are significantly clogean
transmitted by any single node. For instance, according fbthe case of aggregation-based collection, suggestirigram
Figs. 6(a) and 6(b), in #4-node network that is recharged€Nerdy consumption across the network.
through natural resources, aggregation-based colleatisn  Link-layer OverheadsFig. 6(b) shows that coding signif-
quires more sophisticated recharging equipment than gediricantly outperforms aggregation in terms of maximum per-
based collection: the former imposés% more byte transmis- node data transmissions. However, with our current imple-
sions than the latter on the most burdened node—ignoring, foentations, the gap is reduced by retransmissions and MAC
the moment, the MAC-layer overhead. headers—7 bytes for data frames antdl bytes for acknowl-

A closer look (Fig. 6(b)) reveals that, for coding-base@dgments. Figs. 7(a) and 7(b) show the performance of the
collection, maximum per-node transmissions are dominatto protocols when taking into account these headers.
by link-layer retransmissiond,e., the more burdened nodes We should note that these overheads are not fundamental
are the ones that have to retransmit more frequently duetto our joint identity-message coding and can be removed:
weak connectivity—which are often located on the periphewcknowledgments and retransmissions are due to our CTP-
of the network. In contrast, for aggregation-based cdbect based implementation, which relies on the link layer for
the most burdened nodes are the ones that need to comadiable communication; we plan to replace them with multi-
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100 Delayed-data overhead ©XXX3 work operation; (3) graceful incorporation of error resiice
Retransmissions EX22R

80 | ACKs 5559 1 and flexible adaptation to specific application needs that is
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Bytes

REFERENCES

[1] Jiang, J. Polastre, and D. Culler. Perpetual EnvironagnPowered
Sensor Networks. Iinternational Symposium on Information Process-
ing in Sensor Networks (IPSN2005.

[2] P. Levis, N. Lee, M. Welsh, and D. Culler. Tossim: Accurated
scalable simulation of entire tinyos applications. AGM Conference

Number of sensors on Embedded Networked Sensor Systems (Ser2Bgs.
(a) Breakdown of the total number of transmitted bytes divitigdhe [3] Y. Wu, P. A. Chou, and S. Y. Kung. Minimum-Energy Multicast i
number of rounds and nodes Mobile Ad-hoc Networks Using Network CodingEEE Transaction on
Communications53(11):1906-1918, November 2005.
Maximum Per-Sensor Transmissions (including MAC headers) [4] S. Katti, S. Gollakota, and D. Katabi. Embracing Wireléserference:
350 —— — Analog Network Coding. IPMACM SIGCOMM 2007.
Data  mu—— [5] C. Fragouli, J. Widmer, and J.-Y. L. Boudec. A Network Caogli
300 | Delayeg;‘f:‘;g;’{;f;ggi‘: e Approach to Energy Efficient Broadcasting: From Theory tad®ice.
In IEEE INFOCOM 2006.

[6] S. Zhang, S. Liew, and P. Lam. Physical Layer Network Cgdirin
ACM MOBICOM 2006.

[7] S. Sengupta, S. Rayanchu, and S. Banerjee. An AnalysWicdless
Network Coding for Unicast Sessions: The Case for Codingwéw
Routing. InIEEE INFOCOM 2007.

[8] A. Kamra, V. Misra, J. Feldman, and D. Rubenstein. Growtld€&o
Maximizing Sensor Network Data Persistence. AGM SIGCOMM

16 25 36 49 64 81 100 16 25 36 49 64 81 100 2006. _ _ _ _
Aggregation Coding [9] Z. Guo, P. Xie, J.-H. Cui, and B. Wang. On Applying NetwdCloding
to Underwater Sensor Networks. KCM International Workshop on
(b) Breakdown of the maximum number of average per-round bytes Underwater Networks2006.
transmitted by any node [10] M. Ghaderi, D. Towsley, and J. Kurose. Network Codingf@enance
for Reliable Multicast. InMilitary Communication Conference (MIL-

Fig. 7. Average and maximum per-node transmissions including COM), 2007.

MAC headers. These numbers correspond to the same experim@hts F. Oggier, N. J. A. Sloane, S. N. Diggavi, and A. R. Calserk. Non-

depicted in Figs. 5 and 6, but take into account tebyte MAC- Intersect_ing Subspaces with Finite AlphabelEEE Transactions on

layer header for data packets ahttbyte acknowledgments. Information Theory 51(12):4320-4325, December 2005.

[12] A. R. Calderbank, E. M. Rains, P. M. Shor, and N. J. A. 8ka
path communication+e., send each piece of information Quantum Error Correction via Codes over GF(4EEE Transactions

. : . on Information Theory44(4):1369-1387, July 1998.
through multiple paths, such that, even if a path fails, t ?3] R. Koetter and F. Kschischang. Coding for Errors andshres in

message reaches the sink with a high probability. Unlike = Network Coding. InIEEE International Symposium on Information
aggregatiop, coding-based collection can use multi-path com-  Theory (ISIT) 2007.

L ) . ] S. Pradhan, J. Kusuma, and K. Ramchandran. Distributedp@gssion
munication and still be energy efficient, as each node alwa[f/‘s1 in a Dense Sensor Network. I[EEE Signal Processing Magazine

transmits the same number of fixed-size vectors indepelydent  19(2):51-60, March 2002.

from the number of paths. Moreover, for networks where tH&5] A. Scaglione and S. D. Servetto. On the Interdependeh&euting and

: Data Compression in Multi-Hop Sensor Networl#&/ireless Networks
measurement reported by each sensor consists of a few bytes, 11(1-2):149-160, 2005,

the 17-byte header dictated by the IEEE 802.15.4 frame formg'e] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TAdTiny Ag-
becomes inappropriate as it dominates transmission omst; f  gregation Service for Ad-Hoc Sensor Networks. UBENIX Symposium

P . . il On Operating Systems Design and Implementation (QSIDQ2.
such appllcatlons, it makes sense to develop a Ilghter l 7] G. Pottie and W. KaiserPrinciples of Embedded Networked Systems

layer protocol. Addressing these issues is part of our &tur ~ cambridge University Press, 2005.
work. [18] A. Deshpande, C. Guestrin, S. Madden, J. Hellersteid, . Hong.
V. CONCLUSIONS Model Driven Data Acquisition in Sensor Networks. @onference on
Very Large Data Bases (VLDB2004.
We have formulated the paradigm of identity-aware sensfg] D. Tulone and S. Madden. PAQ: Time Series ForecastingAfgproxi-
networks to capture applications where, as iIIustrate@ liA, mate Query Answering in Sensor Networks. Baropean Workshop on

. - . Wireless Sensor Network8006.
the identities of the sensors form the bulk of the Commumd:at[ZO] T. Cover and J. Thomagklements of Information ThearyViley, 1991.

data. We have proposed a communication protocol for sugh] Hom and JohnsorMatrix Analysis Cambridge University Press, 1990.

networks, where sensor identities and measurements atb/joi [22] F. J. MacWilliams and N. J. A. Sloan&he Theory of Error-Correcting
L . Codes North-Holland Mathematical Library, 1977.
encoded in fixed-size vectors. To the best of our knowledqgg] L. Keller, M. Jafari, K. Argyraki, C. Fragouli, and S. @javi. Identity

this is the first such approach. Its benefits consist of (1) Aware Sensor Networks. Technical report, Ecole PolyteghaiFederale
equally balancing the transmission load across all nodéssin de Lausanne, 2008.
q y 9 [24] R. Fonseca, O. Gnawali, K. Jamieson, S. Kim, P. Levis, andVao.

5Using aggregation with multi-path communication results in tipld gggﬁg:ﬁggig;ﬁgl.PrOtOCOI (CTP). http://www.tinyostitieyos-2.x/

copies of the same data in different parts of the network, iogmtly [25] Tinyos. http://www.tinyos.net/
increasing traffic load. ' ' ’ R

16 25 36 49 64 81 100 16 25 36,49 64 81 100
Aggregation Coding

Bytes

Number of Sensors



