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We examine the effect of natural differences in soil temperature at two locations distant by approximately
500 m in the frozen scree of La Plagne en Chartreuse (Savoy, France). We determined humus properties, soil
organisms and biologically mediated soil-forming processes in screes from a low part dominated by an open
pine forest (OF, 1100 m asl) and in a top part covered by a dense pine forest (DF, 1200 m asl). Our results show
a soil temperature increase of about 3.8 °C in the DF plot during June to October, but similar humus
morphology at both plots. Soil pH was lower, and C/N ratio higher in the DF plot. Soil faunal composition
differed between DF and OF plots for some taxa. While the abundance of the Oribatid mites was higher,
abundance of Collembola was significantly lower in the DF plot. As earthworm activity was scarce at the site,
Oribatid mites and Collembola presumably play an important role in the humus microstructure which was
confirmed by the analysis of the humus micro-aggregation. To date, changes in the pedofaunal communities
did not alter the humus form which may be explained by the complexity of biotic soil interactions and the
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high functional redundancy of the soil fauna.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

According to the fourth assessment report of the Intergovern-
mental Panel on Climate Change, the Earth's climate has warmed by
about 0.74 °C over the past century (http://www.ipcc.ch). Climate
scenarios for the 21st century predict further warming, with a best
estimate temperature rise of 4.0 °C (likely range is 2.4 °C to 6.4 °C) for
the high scenario A1F1 (IPCC, 2007). It has been suggested that these
trends will be particularly pronounced at high latitudes altering snow
cover, permafrost stability, growing season length, and productivity in
arctic and boreal environments. Recent warming has already caused
expansion of shrubs in vascular plant communities in many cold
regions of the world (e.g. Theurillat and Guisan, 2001; Tape et al.,
2006). In the European Alps, evidence of climatic change in the 20th
century was observed through glacier retreat, decrease in snow-cover
extent and earlier snowmelt (Beniston, 2006). Moreover, under the
influence of climate warming (Post et al., 1982) cold biomes with high
soil organic matter accumulation are of primary importance as
possible sources of carbon emissions.
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Microclimatological studies have identified small alpine enclaves of
screes with permafrost in many European mountains. Despite their
distribution at much lower altitudes, they present distinctive features
that would allow them to be classified into the alpine zone. The cold
microclimatic conditions of these sites provide exceptional microhabi-
tats with very thick raw humus (Gude et al., 2003) colonized by many
cold living plants (Bertinelli et al., 1993) and periglacial relict species of
non-vascular plants (Asta et al., 2001), beetles (Molenda, 1996), spiders
(Ruzicka and Zacharda, 1994), and mites (Zacharda et al., 2005). These
small-scale habitats, which are older than the surrounding biological
matrix, act as refuge by supporting communities unable to survive
elsewhere in the landscape. Such paleorefugia are expected to be
particularly vulnerable to changes in their environmental conditions
(e.g. global warming, but see Nekola, 1999 and Noss, 2001), and may
therefore provide a sensitive indicator of climate change processes.

The presence of low-elevation permafrost sites is explained by a
complex system of air circulation also called Balch ventilation
(Thompson, 1962). Scree slopes formed of broken rocks have an
intensive air circulation; with warm air outflow in the upper scree
sections during winter, and cold air outflow in the lower sections
during summer (Harris and Pedersen, 1998; Kneisel et al., 2000). This
air-conditioning system creates a small-scaled spatial heterogeneity
with temperatures (throughout the year) near freezing point at the
lower part of the scree, which could form perennial ground ice.
Furthermore, these severe thermal conditions are a major limitation of
invertebrate distribution, which strongly influence the decomposition
processes under such environmental constraints (Petersen and
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Luxton, 1982; Sjursen et al., 2005a). The distribution, abundance, and
life cycles of soil decomposing animals, are all affected by soil
temperature directly (e.g. through desiccation) and indirectly, through
modifications in food resources and microhabitat (Setdld et al., 1995;
Sulkava and Huhta, 2003; Huhta and Hanninen, 2001; Pflug and
Wolters, 2001). These enclaves with alpine features therefore provide
an appropriate environment in which to test the relationships
between soil arthropods, plants and soil temperature.

In the present study, differences in soil temperature at the top and
at the bottom of an alpine frozen scree is used to investigate changes
in global warming on biological soil processes. The scree is used as a
field laboratory to study long-term effects of soil temperature in-
crease under natural conditions. Other variables such as precipita-
tions, slope, exposure and bedrock are highly homogenous due to the
short distance between the top and the bottom of the study area.
Through field observations we examine the influence of variable soil
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temperature (like those predicted by IPCC global warming scenarios)
on humus properties, soil organisms and biologically mediated soil-
forming processes. Our work addresses in particular two questions:
1) How do variations in temperature influence humus forms and soil
arthropod distribution involved in organic matter decomposition?
2) Can pedofaunal changes alter humus form?

2. Material and methods
2.1. The study site

The study site of La Plagne (45°27’ N, 5°55’ E) is situated in the
Northern French Alps within the Réserve des Hauts de Chartreuse (Fig. 1).
It is located on a limestone scree composed of crushed rocks from the
Urgonian period (circa 130-125 million of years ago) with a sporadic
permafrost caused by Balch ventilation. The scree has a slope of about 40°
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Fig. 1. Geographical location of the study site of La Plagne in the Northern French Alps.
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and is exposed to the North-Northwest. The climate of the region is
characterized by a mean annual temperature of 7 °C, abundant pre-
cipitations of 2000 mm/year and a long period of snow cover lasting
from November to April. The site can be described as a cold alpine en-
clave in a montane ecosystem dominated by Mountain pine (Pinus
uncinata Mill. ex Mirb.) forest and surrounded by climacic vegetation
comprising of spruce and beech-fir forests. The soil can be considered a
histosol, according to the USDA Soil Taxonomy (USDA, 1999), with a thick
raw humus. The ground flora is a typical association of plants
characteristic of raw humus (Rhododendron ferrugineum L., Vaccinium
vitis-idaea L., V. myrtillus L.) with an important cover of mosses
(Hylocomium splendens (Hedw.) B.S.&G., Rhytidiadelphus squarrosus
(Hedw.) Warnst., Pleurozium schreberi (Brid.) Mitt., Dicranum scoparium
Hedw., Polytricum formosum Hedw.) and lichens (Cladonia rangiferina (L.)
Web., C. gracilis (L) Willd., Cetraria islandica (L.) Ach.) accompanied by
alpine calciphilic species (Dryas octopetala L., Saxifraga oppositifolia L.,
Carex sempervirens Villars or Arctostaphylos uva-ursi (L.) Spreng.).

2.2. Experimental design

Two experimental plots of approximately 150 m? were set up at
the top and at the bottom of the alpine part of the scree. The lower
plot was situated at 1100 m asl in an open forest (OF), while at the
higher plot (1200 m asl) a dense forest (DF) is present. The OF plot is
characterized by dwarf Pinus uncinata with a maximal height of
adult trees being 2-5 m. Crushed rocks are numerous and partly
covered by alpine heliophilous species such as Carex sempervirens
(15% of cover) and Dryas octopetala (30% of cover). Forest mosses
(especially Hylocomium splendens) form an important layer between
shrubs of Arctostaphylos uva-ursi, Salix retusa, Vaccinium myrtillus
and the dominant Rhododendron ferrugineum and Vaccinium vitis
idaea (both 20% of cover). The DF plot is characterized by a dense
cover of Mountain pine trees reaching a height of 10 to 20 m. Mosses
form a quasi continuous layer and Rhododendron ferrugineum and
Vaccinium vitis idaea are the principal shrubs with a cover of 25%.
Dryas octopetala is dominant (20% of cover) where the tree cover
is scarce.

Within these two plots, three subplots (circa 3x6 m) dominated
by different vegetation (Dryas octopetala, Vaccinium vitis-idea, Rho-
dodendron ferrugineum) were selected. In order to keep the pristine
aspect of the scree labelled “Natura 2000”, three random sample
points were used in each subplot, at which humus forms were
described along soil profiles (also used for monitoring of soil
temperature). Soil and faunal samples were also collected. Sample
points were distant from each other by at least 2 m, resulting in a
total of 18 sample points (2 altitudesx3 vegetation typesx3 sample
points).

2.3. Sampling of humus forms and chemical analysis

In July 2005 we described in situ the humus forms of each sample by
identifying the L, Fand H horizons through macro-morphological analysis
of their structure, composition and other relevant properties using the
Canadian classification (Green et al., 1993). Humus samples of a constant
volume (250 cm?®) were taken below 10 cm depth, brought back to the
laboratory where they were sieved (mesh size 2 mm) before being sent
for soil analysis at INRA Arras. Soil pH was measured in H,0, respecting a
soil:solution ratio equal to 1:2.5. The cation exchange capacity (CEC) was
determined by the Metson method (Metson, 1956). Exchangeable cations
(Ca, Mg, K, Na) were measured by atomic absorption spectroscopy after
ammonium acetate extraction (Thomas and Marshall, 1999). Organic
carbon (ISO 10694, 1999), total nitrogen (ISO 13878,1999) and total CaCO5
(ISO 10693, 1999) was analysed. Soil temperature was manually
monitored once a month from June to November 2005 along the soil
profiles at 0, 5, 10, 15, 20, and 25 cm depth using a 10 cm long probe
(Hi765PWL, HANNA Instruments, Tanneries, France).

2.4. Soil fauna investigation

At the same time as humus was sampled, one humus core (5.5 cm
diameter and 10.5 cm deep) was taken next to each soil profile for
faunal extraction in Berlese-Tullgren funnels (Schaller, 1968). From
21st June-5th September 2005, one pitfall trap (6 cm diameter and
8 cm deep) was placed in the vicinity of each soil profile and was
emptied once every two weeks. Soil animals were classified into
faunal taxa. In August 2005 a survey on earthworm abundance, similar
to Callaham's and Hendrix's (1997) surveys, was performed on twelve
0.5x0.5 m-squares randomly chosen in the two plots. Squares were
approximately 5 m apart from each other and the soil from each pit
was separated into four fractions (litter, 0-5 cm, 5-15 c¢cm, and 15-
25 c¢cm) and hand-sorted for earthworms. Adult earthworms were
identified to species, juveniles to genus.

2.5. Study of biological aggregation by image analysis

One humus block (Kubiena boxes of 8x5x3 cm) was taken in all
subplots dominated by Dryas at a depth of 10 cm at the transition
between the F and H humus layers. Under Vaccinium and Rhododendron
stands, humus blocks were taken at a depth of 10 cm in the F layer and
at 20 cm in the H layer. The 30 samples (6 subplots under Dryas,
6 subplotsx2 depths for Vaccinium and for Rhododendron) were stored
at 5 °C until sent to the soil laboratory of Savoy University where thin
sections of 25 um were performed. Thin sections were prepared from
undisturbed blocks used in the standard procedure of drying samples
by acetone exchange before resin impregnation (see FitzPatrick, 1980;
Kooistra, 1991; Grieve et al., 2005).

Some difficulties have been encountered during the process of
inclusion of the humus blocks and nearly half of the thin sections were
unusable. We considered only 10 thin sections to respect a homo-
genization of the data between the two plots which allowed one
description in each subplot. Image acquisition was carried out with a
Sony Camera DXC-930P and aggregate structures (size and shape of
particles) quantified by National Instruments Vision Assistant 8.0
software. For each thin section, 12 windows of 10x 10 mm (grid of 3
horizontal and 4 vertical windows) with a spatial resolution of 18 um/
pixel were surveyed and digitized in a square grid of 768 x576 pixels,
with a spectral resolution of 256 grey levels. A morphological
classification of the aggregation was established from the two
measured parameters on each aggregate: its size, estimated from
the diameter of its section in the binary image, and its form, estimated
from the shape index (Pawluk, 1987; Bruneau et al., 2004). Special
attention was given to faecal pellets of macrofaunal origin (>250 pm;
thereon macroaggregates) and faecal pellets considered to be
associated with meso- and micro-fauna (<250 pm; thereon micro-
aggregates) on the basis of their rounded shape with a shape index
ranging from 0.67 to 0.95 according to Pawluk (1987). These two
classes have been further subdivided into 8 size classes, relating to soil

Table 1
Size classes of biological aggregates with their shape index (4m area/perimeter?)
according to Pawluk (1987)

Soil fauna organisms Size Shape index,
(Pawluk, 1987)
Microagregates (<250 um) Acari or Collembola 30-50 pm 0.87+0.06
Collemba 50-90 pm 0.88+0.04
Collemba or Enchytreids 90-125um 0.86+0.05

Enchytreids
Macroaggregates (>250 pm) Insecta larvae
(Coleoptera,Diptera)
Diplopoda, Isopoda
Small Earthworm or
Diptera larvae
Earthworm

125-250+pum 0.88+0.05
250-300+um 0,87+0,05

300-600+um 0.91+0.05
600-940+um 0.84+0.06

>1000+pm




242 N. Cassagne et al. / Geoderma 146 (2008) 239-247

14,00

12,00+
10,00+
8,00+
6,00
4,004
2,004

Soil temperature (°C)

0,004
-2,00

—o—Open Forest - 10cm
——o—Open Forest - 15¢cm
——Open Forest - 20cm
—s—Open Forest - 25cm
--Dense Forest - 10cm

---s---Dense Forest - 15cm
---a---Dense Forest - 20cm

--Dense Forest - 25cm

June July

August September October November

Fig. 2. Soil temperature variations (mean values with standard deviation) into soil profiles during the growing season (June to October) and November 2005 in the Open pine Forest

(OF) and Dense pine Forest (DF) plots.

fauna organisms that have been referred to in several studies on
humus features (Rusek, 1985; Pawluk, 1987) (Table 1). The results of
biological aggregation were expressed as the area of the aggregate
relative to the total image area.

2.6. Statistical analysis

Auto-correlation between the soil chemical variables was tested by
Pearson correlation test. Differences in soil chemical properties, faunal
groups and soil temperature between the two plots were analyzed
using ANOVA models. Plot, vegetation in the subplot and its
interactions were tested against the variation among random samples.
For the analysis of the soil temperature, air temperature was
introduced as a covariable and depth of the soil samples and its
interaction with plot and vegetation was tested against the variation
of the temperature per depth and sample, and time (month) and its
interactions with the other factors against the error term. For
earthworm analysis, ANOVAs were replaced by the non parametric
Mann-Whitney U-test. Relationships between soil aggregation and
biological activity were analysed by t-test to compare the plot effect,
the humus horizon effect and the size of aggregates (macro- and
micro-aggregation). Tukey or Fisher post-hoc test was used to
discriminate between significant results within factors. We checked
the normality of the data and applied log (n+1) or an arcsin vn
transformation when the normality was not respected. All statistical
analyses were conducted using Statistica 7.1 software.

3. Results
3.1. Soil temperature variations from —10 to =25 cm

Soil temperature varied significantly between months (p<0.001)
and plots (p<0.001) until November. In November, soil temperatures
were similar at the DF and OF plots (p>0.1) and reached values near the
freezing point in both plots (Fig. 2). Soil temperature was different at all
depth except for the OF plots where soil temperature at -20 cm and
-25 cm did not differ significantly (p=0.20) during the study period.
During the growing season from June to October, soil temperature was
between 2.7 °C (September) and 4.6 °C (June) higher in the DF-plot.

3.2. Morphological description of humus forms

Despite the differences in temperature from June to October, the
soil profiles were similar at both plots (DF and OF). Both plots were
composed of three horizons (L, Fm, Hh) which classify them among
the Humimor humus according to the Canadian classification. The
litter (L), which is composed of a mixture of pine needles and birch

Table 2
Relative abundance of the soil faunal groups per plot for pitfall traps

Pitfall traps Two-way ANOVA

Open Dense  Plot Effect Vegetation Interactions

Forest  Forest effect

Plot Plot F(1,84) P F(2,84) P F2.84) P
Mollusca
Gasteropoda 0.04 0.21 ns ns ns
Nematoda 0.00 0.00 ns ns ns
Oligocheta
Enchytraeidae 0.00 0.00 ns ns ns
Arthropoda crustacean
Isopoda 0.08 0.90 ns ns ns
Arthropoda myriapoda
Diplopoda 0.15 036 40 0.049 ns 45 0.014
Chilopoda 0.00 0.04 ns ns ns
Symphyla 0.00 0.00 ns ns ns
Arthropoda chelicerata
Opiliones 0.08 0.11 ns ns ns
Aranea 0.92 146 404 0.047 ns ns
Acari 112 1.38 ns ns ns
Gamasida
Acari 16.78 43.07 35.63 <0.001 2.81 0.066 ns
Oribatida
Acari 0.54 0.54 ns ns ns
Prostigmata
Arthropoda hexapoda
Collembola 11.06 13.19 ns ns ns
Diplura 0.00 0.02 ns ns ns
Protura 0.00 0.00 ns ns ns
Coleoptera 0.15 0.66 747 0.008 3.67 0.029 ns
Coleopteralarvae  0.00 0.21 ns ns ns
Dermaptera 0.02 0.02 ns ns ns
Dictyoptera 0.13 0.02 ns ns ns
Diptera 0.47 1.53 315 0.079 ns ns
Diptera larvae 0.13 0.28 ns ns ns
Heteroptera 0.00 0.02 ns ns ns
Homoptera 0.21 0.24 ns 4.4 0.015 ns
Hymenoptera 1.38 1.87 ns ns ns
(formicidae)
Other 0.21 0.26 ns ns ns
Hymenoptera
Hymenoptera 0.02 0.00 ns ns ns
larvae
Total relative 335 66.4
abundance
Total 1558 3087
abundance

Significant results from two-way ANOVAs of plot, vegetation and their interactions
(PxV) are shown. ns; p>0.1.
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Table 3
Relative abundance of the soil faunal groups per plot for soil core samples

soil core Two-way ANOVA *

Open Forest Dense Forest Plot Effect

Plot Plot F(1,12) P
Mollusca
Gasteropoda 0.00 0.00 ns
Nematoda 0.03 0.06 ns
Oligocheta
Enchytraeidae 0.03 0.06 ns
Arthropoda crustacean
Isopoda 0.00 0.03 ns
Arthropoda myriapoda
Diplopoda 0.00 0.00 ns
Chilopoda 0.00 0.00 ns
Symphyla 0.03 0.09 ns
Arthropoda chelicerata
Opiliones 0.00 0.00 ns
Aranea 0.15 0.12 ns
Acari Gamasida 4.28 6.57 ns
Acari Oribatida 22.14 36.48 4.68 0.051
Acari Prostigmata 0.74 241 ns
Arthropoda hexapoda
Collembola 15.44 10.03 5.06 0.044
Diplura 0.06 0.00 ns
Protura 0.00 0.03 ns
Coleoptera 0.03 0.06 ns
Coleoptera larvae 0.00 0.09 ns
Dermaptera 0.00 0.00 ns
Dictyoptera 0.00 0.00 ns
Diptera 0.03 0.29 21.24 <0.001
Diptera larvae 0.15 0.18 ns
Heteroptera 0.03 0.00 ns
Homoptera 0.33 0.03 ns
Hymenoptera (formicidae) 0.00 0.00 ns
Other Hymenoptera 0.00 0.00 ns
Hymenoptera larvae 0.00 0.00 ns
Total relative abundance 43.5 56.4
Total abundance 1461 1900

*Neither vegetation effect nor interactions were significant.

leaves, is accompanied by Dryas, Vaccinium or Rhododendron leaves.
Below, we observed a Fm horizon of compact matted structure. This
Fm horizon was characterized by plant fragments of the litter
intermixed by skeletons of the mosses Hylocomium splendens and
Rhytidiadelphus squarrosus with abundant fine roots of the living
vegetation. Living roots were abundant in the underlying Hh horizon
characterised by its dark-brown colour and its massive structure with
a greasy character. The Hh horizon consisted of dominant micro- and
meso-aggregated fine organic matter ranging from 7 to 33 cm in
thickness (Appendix A). The humus profile ranging from 20 cm under
Dryas to 40 cm under Vaccinium and Rhododendron was directly
developed on the calcareous parent rock.

3.3. Chemical description of humus forms

C/N ratio was highly correlated with N, C and Organic Matter
content (Pearson correlation, r>0.92, p<0.001). Soil pH was highly
correlated to CEC, Ca®" and base saturation (Pearson correlation,
r>0.84, p<0.001; mean values of chemical variables are presented in
Appendix B). We therefore only described results of C/N ratio and pH
as they explained most of the variation observed.

The C/N ratio was significantly higher in the DF plot (p<0.01), but
not affected by the vegetation nor their interaction. Both, plot
(p<0.001) and vegetation (p<0.001) significantly influenced the pH
but also their interaction (p<0.05). The mean pH was significantly

higher on Dryas and Rhododendron subplots of the OF plot. Plot,
vegetation and their interaction were not significantly different for the
CaC05, Mg?*, K* and Na".

3.4. Community structure of soil fauna

Twenty soil faunal groups were identified from the 90 samples
taken from pitfall traps and from the 18 soil cores. Plot location
influenced the number of soil animals but not taxonomic richness.
Significantly more (about 50%) individuals were captured by pitfall
traps in the warmer DF plot (p<0.001), and about 25% more
individuals (p=0.403) for soil cores. For both methods, Oribatid
mites and Collembola dominated the soil fauna and represented about
60% and 25% respectively of the total diversity.

For pitfall traps, relative abundance of Oribatid mites (+17%),
Diplopoda (+0.5%), Aranea (+0.5%) and Coleoptera (+0.5%) was
significantly and of Diptera (+1%) marginally higher in the warmer
DF plot (Table 2). Relative abundance of Coleoptea and Homoptera
were significantly influenced by the vegetation while Oribatida were
only marginally influenced. Soil fauna extracted from soil cores was
not affected by vegetation type (Table 3). In soil core samples from the
warmer DF plots, abundance of Collembola significantly decreased by
about 5%, while Diptera increased about 10-fold. Relative Oribatida
abundance was about 13% higher, but only marginally significant.

A total of 6 specimens representing 3 genera of earthworms in OF
plot, and 21 specimens representing 4 genera and 6 species in DF plot
were extracted from the 24 sampling points (Table 4). Diversity of
earthworm was very low on OF plots (average 2 ind./m?) and
significantly higher on DF plots (7 ind./m?; U-test, p<0.05), which
suggests that earthworms play a limited role in building up the humus
structure.

3.5. Relationships between aggregation and biological activity

At a micromorphological scale, faunal droppings were observed in
the F and H horizons. Microaggregates dominated the F horizon, in
which the round excrements of oribatid mites were recognizable,
especially those included in skeletons of needles or leaves, together
with small irregular faecal pellets of Collembola (Appendix C).
Mixtures of micro- and macro-aggregates belonging to several faunal
groups such as Diplopoda or Isopoda were clearly observed in the H

Table 4
Relative abundance and relative biomass of earthworms in the plots studied
Relative Relative
abundance biomasse
Functional Open Dense Open Dense
group Forest Forest Forest Forest
Dendrobaena octaedra epigeic 0.00 417 0.00 1.51
(Sevigny. 1826
Dendrobaena sp. epigeic 0.00 4.17 0.00 0.92
Dendrodrilus rubidus epigeic 417 0.00 133 0.00
(Savigny, 1826)
Lumbricus friendi Cognetti, epianecic 417 4.17 14.38 9.83
1904
Lumbricus meliboeus Rosa, epianecic 0.00 417 0.00 11.90
1884
Lumbricus sp. epianecic 8.33 29.17 6.47 23.30
Nicodrilus caliginosus endogeic 0.00 833 0.00 7.52
caliginosus (Savigny, 1826)
Nicodrilus caliginosus endogeic 0.00 417 0.00 5.06
tuberculatus (Eisen, 1875)
Nicodrilus sp. endogeic 0.00 417 0.00 227
Octodrilus juvyi Zicsi, 2005 epigeic 0.00 16.67 0.00 14.84
Octodrilus sp. epigeic 417 0.00 0.67 0.00
Total 20.8 79.2 22.8 772

U-test (n=12) shows significant difference between the two plot for abundance
(p=0.022) and for biomass (p=0.024).
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horizon. A part of the macroaggregates (>1 mm) could be assigned to
earthworm activity whereas others, with a more angular shape, were
assigned to physical processes.

Using round particle shape as an index of biological aggregation in
the image analysis, we compared the evolution of soil fauna
aggregates in the humus profile. Our results showed that neither
plot nor Fm and Hh horizons had an effect on the distribution of
biological aggregates in the site. Differences were observed when
aggregates were classified into macroaggregates and microaggregates.
The mean area occupied by microaggregates was significantly higher
than the area occupied by macroaggregates with a proportion of 2/3
and 1/3 respectively (t-test, p<0.01). When separating the aggregates
into size class, three classes (50-90um, 90-125 pm and 125-250 pm)
were significantly higher for the OF plot than the others (ANOVA;
p<0.001; Fig. 3). These biological microaggregates are mostly related
to faecal pellets of Collembola (cf. Table 1). Enchytraeids also
contribute to these aggregations but it could not be confirmed in
our study as no specimens were collected by the extraction method
(O'Connor, 1955).

4. Discussions

The experiment at the La Plagne scree offers a unique opportunity
to assess the long-term effect of a temperature rise similar to the
predictions of the IPCC climate scenario A1F1 (IPCC, 2007) on the
humus form and the soil fauna. In contrast to most other field studies
where the effects of global warming are simulated over a limited
number of years (Ineson et al.,, 1998; Sinclair, 2002; Lindberg and
Persson, 2004; Sjursen et al., 2005b), climatic conditions have been
similar at La Plagne scree for many centuries. A higher soil
temperature (of about 3.8 °C) in the DF plots, led to a remarkable
change in the soil faunal composition over time, favouring in
particular Oribatid mites. However, this altered soil faunal community
did not induce a change in the humus structure.

Soil temperature can affect humus form at various levels. The
humus form is the result of functional relationships between primary
producers and decomposers of the food web, which is affected by
changes in environmental conditions. Given the sensitivity of humus
forms to temperature, we hypothesize a hierarchical control as
described by Aerts (2006) for litter decomposition, with both direct
and indirect temperature effects on productivity and soil fauna.

Temperature, particularly in cold biomes, is a limiting factor for
biological activities and organic matter decomposition (Berg, 2000;
Prescott et al., 2000; Berg and Laskowski, 2005; Kirschbaum, 2006).
Based on our observations, we suggest that persistence of tempera-
tures (averaging 4 °C from June to October and presumably near the
freezing point the rest of the year in the OF plot) is the major cause of
incomplete decomposition thus limiting soil fauna activity, which
leads to humimor formation.

Secondly, soil temperature indirectly affects plant growth which
ceases below species specific thresholds. In the OF plot, low soil
temperature may constraint the growth of Mountain pine by inhibiting
root or shoot meristem activity as observed on dwarf red spruces in a
similar ecosystem (Kérner and Hoch, 2006). However, mean tempera-
ture above 7 °C (as in the DF plot) favours plant growth and may
increase the input of recalcitrant leaf litter of acidophilic plants. This
may explain the increase in soil acidity and the higher C/N ratio in the
DF plot. Our results may be seen as the long-term response to soil
warming on the boreo-alpine vegetation of the scree and confirms
results of short-term experiments which showed shifts in plant growth
with increasing soil temperature (Chapin et al., 1995; Jarvis and Linder,
2000; Brooker and Van Der Wal, 2003). We consider that the effect of
temperature on humus form operates indirectly on the organic matter
decomposition rates through the change in plant community structure.

Moreover, temperature may induce changes in the species
composition and structure of decomposer and detritivore commu-
nities in the long-term. At our site, the soil faunal group (Oribatid
mites and Collembola) that reacted to higher temperature is small in
size and has low dispersal power. Nevertheless, changes in those two
dominant communities have to date not induced a change in the
humus structure. This may be explained by the extraordinary
complexity of biotic interactions between components of soil food
webs (Berg et al., 2001; Bardgett, 2002; Moore et al., 2004).

In the scarcity of earthworms, Collembola and Acari are significant
contributors to decomposition processes, presumably in addition to
Enchytraeids and Nematodes, as shown in arctic and alpine regions
(Sjursen et al., 2005a). These decomposer organisms are commonly
favoured in humus with important organic matter accumulation.
However, no Enchytraeids have been found in our study. On the other
hand, the humus thin sections which indicate a high Collembola and
Enchytraeid activity, underline the importance of the micro- and
meso-fauna. Moreover, results of the soil cores and pitfall traps
indicate an important contribution by Acari which is not reflected by
the analysis of the humus thin sections. The systematic analysis used
to separate plant debris from biological aggregates on the basis of the
shape index does not take into account faecal pellets of Acari produced
in the skeleton of leaves (cf. App 3) because irregular and elongated
shapes of plant debris are excluded. This creates a bias relating to Acari
activity in the size class 30-50 pum, for which the mean area occupied
may be underestimated. The Collembola abundance in the pitfalls was
also similar for both plots whereas the number of Collembola
specimens significantly decreased in the soil cores. This may be
explained by the different information on invertebrate community
given by these two methods. Pitfall traps tended to catch the large
surface-active species while soil core samples give a quantitative
estimate of soil dwelling species more susceptible to react to soil
temperature variations which is strongly reflected by the Collembola
(Dollery et al., 2006). Our results are therefore similar to those found
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by several other authors in soil warming experiments of boreal and
arctic ecosystems where warming led to decreases in Collembola and
increases in Oribatida (Lindberg et al., 2002; Haimi et al., 2005;
Sjursen et al., 2005b; Dollery et al., 2006; McGeoch et al., 2006).

5. Conclusion

Our work is among the first that details the ecological components
of the alpine ecosystems developed on frozen screes and confirms the
importance of spatial and temporal scales in measuring an ecosystem
response to environmental change.

In our natural ecosystem, higher soil temperature led to a different
soil faunal composition over time. Nevertheless, soil faunal variations
do not affect the humus form which remains similar on the entire
scree. This suggests the need of further investigations on soil species
response to changing climate and the impact on soil nutrient
dynamics. Several studies have been focused on polar or alpine
ecosystems (Marion et al., 1997; Hodkinson and Wookey, 1999; Sjursen
et al., 2005b), whereas fewer studies looked at the temperate fauna.

Alpine ecosystems of frozen screes appear to be well adapted for such
investigations allowing comparisons to be made with previous works
on similar communities in high latitudinal and altitudinal regions.

In conclusion, works on these alpine enclaves could help to predict
the effects of changes in soil temperature on the alpine belt and to
measure the magnitude of induced process shifts, such as faunal response.
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Appendix A. Morphological features of humus forms developed on La Plagne's frozen scree.
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Meanztstandard error, minimum and maximum value for soil chemical parameters significantly different between the Open Forest (OF) plot and

the Dense Forest (DF) plot

OF (n=9) DF (n=9) Two-way ANOVA
Mean +SE Min Max Mean +SE Min Max Plot Vegetation PxV
F(1,12) p F(2,12) p F(2,12) p

N (g/kg) 15.28+0.18 14.7 16.6 13.42+0.42 15.5 16.25 0.0016
C/N 24.11+0.57 221 28.1 31.39+1.78 ! 413 14.80 0.0023
C (g/kg) 368.78+8.93 340.0 424.0 415.44+11.70 364.0 463,0 11.09 0.0059
Organic matter (g/kg) 637.89+15.59 587.0 734.0 718.44+20.23 630.0 801,0 10.95 0.0062
pH H20 6.23+0.22 5.2 71 4.87+0.17 431 5.85 75.91 0.0000 15.03 0.0005 5.20 0.0236
CEC (cmol+/kg) 107.45+3.26 95.1 121.0 89.34+1.41 95.5 50.68 0.0000 442 0.0364 5.19 0.0237
Ca (cmol+/kg) 92.43+5.93 63.6 113.0 45.48+8.83 89.3 36.43 0.0000 740 0.0080
Base saturation (%) 90.99+3.49 724 103.6 55.84+10.03 1.96 107.2 17.29 0.0013 5.53 0.0198
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Appendix C. Round faecal pellets of Oribatida (a) in a leaf of Dryas
and irregular faecal pellets of Collembola (size<90 pm) (b) observed
in the Humimor from La Plagne's scree.
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