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On the Bandwidth of the Plenoptic Function
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Abstract—The plenoptic function (POF) provides a pow-
erful conceptual tool for describing a number of problems in
image/video processing, vision, and graphics. For example,
image-based rendering is shown as sampling and interpolation
of the POF. In such applications, it is important to characterize
the bandwidth of the POF. We study a simple but representative
model of the scene where band-limited signals (e.g., texture im-
ages) are “painted” on smooth surfaces (e.g., of objects or walls).
We show that, in general, the POF is not band limited unless
the surfaces are flat. We then derive simple rules to estimate the
essential bandwidth of the POF for this model. Our analysis re-
veals that, in addition to the maximum and minimum depths and
the maximum frequency of painted signals, the bandwidth of the
POF also depends on the maximum surface slope. With a unifying
formalism based on multidimensional signal processing, we can
verify several key results in POF processing, such as induced
filtering in space and depth-corrected interpolation, and quantify
the necessary sampling rates.

Index Terms—Bandwidth, image-based rendering (IBR),
plenoptic function (POF), sampling, spectral analysis.

I. INTRODUCTION

XISTING visual recording systems use a single camera
E and thus provide viewers with a limited and passive
viewing experience. The continuing improvement in digital
technology has offered low-cost sensors and massive com-
puting power. This has led to the development of new systems
employing multiple cameras together with sophisticated
processing algorithms to deliver unprecedented immersive
recording and viewing capabilities. Practical systems, which
are called image-based rendering (IBR) [1], that synthesize
arbitrary virtual viewpoints from several fixed sensors have
already emerged; see [2]-[4] for surveys of this area.
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A natural framework for studying multiview acquisition and
rendering is the concept of the plenoptic! function (POF) [5] that
describes the light intensity passing through every viewpoint, in
every direction, for all time, and for every wavelength. The IBR
problem can be treated as an application of the sampling theory
to the POF. In this setting, acquired views from the cameras
provide discrete samples of the POF, and the synthesized view
is reconstructed from the continuous POF at a given point. The
question of the minimum rate for sampling the POF can be ad-
dressed by spectral analysis and estimating the bandwidth of the
POF.

Some of the first sampling analyses for IBR were done by
Lin and Shum [6] and Chai et al. [7]. In particular, the work
in [7] analyzes the spectral support of the POF to find an op-
timal uniform sampling rate for the POF. Zhang and Chen [8§]
extended the spectral analysis of IBR for more general cases,
including non-Lambertian and occluded scenes. IBR sampling
analysis has been also reviewed in detail in a recent book [4]. In
these previous studies, as for any spectral-based technique, the
POF is assumed to be band limited.

In this paper, we would like to more precisely examine the
spectral analysis and band-limited assumption of the POF.
To facilitate this, we study a simple but representative model
where band-limited signals (e.g., texture images) are painted
on smooth surfaces (e.g., of objects or walls). Using related
mathematical results on domain-warped band-limited signals,
we show that, in general, the POF is not band limited, unless
the surface is flat. We then provide simple rules to estimate the
essential bandwidth of the POF for this model. Unlike previous
studies [6]—[8] that approximate surface by piecewise constant
depth function and thus ignore the surface slope, our analysis
reveals the significant role of the surface slope and is shown to
provide a much more accurate estimate of the bandwidth of the
POF.

It is important to note that the POF is a powerful conceptual
tool for describing a number of problems in image/video pro-
cessing, vision, and graphics. Most acquired and synthesized
forms of visual information, including images and videos, can
be treated as low-dimensional “slices” (e.g., by fixing certain
variables) of the POF. Hence, the spectral analysis of the POF
has applications beyond IBR. For example, see [9] for an ap-
plication in light transport and [10] and [11] for applications in
computational photography.

The outline of this paper is as follows: In Section II, we set up
the scene and camera models and characterize the spectral sup-
port of the POF. In Section III, we start focusing on the model
in which band-limited signals are “painted” on object surfaces.
In Section IV, we discuss the condition for the POF to be band
limited. In Section V, we derive a simple rule to estimate the
essential bandwidth of time-warped functions. In Section VI,

Plenus in Latin means complete or full.

1057-7149/$26.00 © 2011 IEEE



DO et al.: ON THE BANDWIDTH OF THE PLENOPTIC FUNCTION

object

camera plane
P surface

image plane

~a ~a

Fig. 1. Two-plane parameterization of the POF. Each light ray is specified by
a 4-D coordinate (¢, u, v, w), where (¢, u) corresponds to the camera location
in the camera plane and (v, w) corresponds to the image point (or pixel) in
the image plane. Effectively, (¢, «) specifies the viewing position, and (u, w)
specifies the viewing angle.

we apply this rule to derive estimates the essential bandwidths
of the POF and illustrate with an example where the proposed
method provides much more accurate estimates, compared with
previous studies. In Section VII, we show that multidimensional
spectral analysis of the sheared POF leads to a new interpreta-
tion of the effectiveness of depth-corrected interpolation in IBR.
Some preliminary results of this paper were presented at a con-
ference [12].

II. SCENE AND CAMERA MODELS

A convenient way to parameterize the POF is to use the two-
plane parameterization, also known as light field or lumigraph
[13], [14], as shown in Fig. 1. By restricting the scene in a
bounding box, each light ray can be specified by a pair of co-
ordinates (¢, ) and (v, w) corresponding to the locations of the
camera and the image pixel within a camera, respectively. Note
that image coordinate (v, w) is relatively defined with respect to
camera position (¢, u). Hence, equivalently, (¢, u) specifies the
viewing position, and (u, w) specifies the viewing angle.

The two-plane parameterization fits the pinhole camera
model [15], in which all pixels in a camera correspond to light
rays that are emitted from one point—the camera position. The
value of POF p(t,u,v,w) is the light intensity captured by a
camera at location (¢,v) and at pixel location (v, w) within
that camera. In general, p(¢, u, v, w) is the light intensity at the
intersection of the ray specified by (¢, w, v, w) with the nearest
object surface to camera position (¢, v).

For simplicity of exposition, and as in [7] and [8], we con-
sider a 2-D version of the POF, i.e., p(t, v), by fixing v and w.
This corresponds to the situation where the cameras are placed
on a straight line, and we consider the same image scan line
from each camera. Alternatively, we could view this as a flat-
land model where the 3-D world is “flattened” into a 2-D plane.
Function p(t,v) is also known as epipolar-plane image (EPI)
[16] and plays an important role in computer vision [15], [17].

We consider the scene model, as shown in Fig. 2, that consists
of an object surface (in the 2-D setting of the POF, this is a slice
of the surface) specified by its varying depth z(¢). Without loss
of generality, we rescale depth value z so that the focal length
or distance between the camera and image planes is equal to 1.
This scene model represents a microscale analysis of the POF,
where, locally, only one object surface is visible.

Suppose that light ray (¢, v) specified by camera (or viewing)
position ¢ and pixel position (or viewing angle) v intersects with
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Fig. 2. Scene model with functional surface ;(1:) Coordinates ¢, v, and z
specify the camera position, pixel position, and depth, respectively. The depth
axis is rescaled so that the focal length or the distance between  and v axes is
1, and thus, pixel position v is related to viewing angle § by v = tan(6).

the object surface at a point with coordinate (z, z(z)), as shown
in Fig. 2. Then, simple geometric relations lead to

t =2z —z(z) tan(f) = z — z(z)v. (1)

Equation (1) defines a fundamental geometric mapping that
links light ray (¢, v) to position s specified by 2 on the object
surface that is “seen” by this light ray.

‘We assume that there is no self-occlusion on the object surface
in the field-of-view of the cameras. This means that each light
ray (t,v) within the field-of-view can intersect with at most one
point on object surface z (). This is equivalent to requiring that ¢
given in (1) is a strictly monotonic function of «, which amounts
to

12/ (2)] < —

(@)

Umax

where the field-of-view is limited by |v| < Umax. In other
words, the slope of object surface z(x) is bounded by the
maximum viewing angle. For POF spectral analysis and IBR
sampling analysis methods that consider occluded scenes, we
refer readers to [8] and [18].

Let [(x, v) be the light intensity emitted from object surface
position x and viewing angle v (see Fig. 2). Function {(z, v) is
also known as the surface light field [19] or surface POF [8].
Then, using (1) and under the no self-occlusion assumption, we
have

p(t,v) =l(z,v), where t=uz—z(z)v. 3)
Taking the Fourier transform of POF p(¢,v) using (3), we
obtain

P(w,w,) défft,v {p(t,v)}

8
8

p(t,v) e I @ittent) gy,

I(z,v) e~I@il@=2@)rwn) () _ o/ (2)0) dado

g —3g 88—

1
g —3y 8 T—3 88—

(9]

—Jwi / (1—2'(2)v) I(z,v) eI @ =2@)20)v gydy
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Fig. 3. Spectral supports of POF p(t,v). (a) The original support is contained between two lines corresponding to the minimum and maximum depths, plus an
extended region accounting for non-Lambertian surfaces. (b) Low-pass filtering in pixel dimension v induces low-pass filtering in spatial dimension ¢. (c) Sampling

in space along t leads to periodization in frequency along w;.

oo

= / eI H (1, w,—2(7)w,;) dx

— 00

“4)

def

where we denote h(z,v (1 — Z/(x)v) l(z,v) and

)
H(z,w,) = Fo{h(z,v)} = [7_ h(z,v) e7*¥ dv. Sim-
def

ilarly, we denote L(z,w,) = F,{l(z,v)}, and then Fourier
transform properties lead to

OL(z,w,)
Ow,

H(z,w,) = L(z,w,) — j2' () )
Typically, except for rare cases of highly specular surfaces,
at fixed surface position z, emitted light intensity [(z,v) very
slowly changes with respect to viewing angle v. In the extreme
case, the surface is often assumed to be Lambertian [17], which
means [(x,v) = [(z) for all v. Thus, it is reasonable to assume
that {(z, v) is a band-limited function in variable v. Using (4)
and (5), we immediately obtain the following result.
Proposition 1: Given the no-self-occlusion condition (2) and
suppose that
L(z,w,) =0,

iflw,| > Br, 6)

then

P(wi,wy) =0,  if|w, — z(z)w| > By forallz.  (7)

Therefore, as shown in Fig. 3(a), the spectral support of POF
p(t,v) is contained between two lines corresponding to min-
imum and maximum depths, plus an extended region accounting
for non-Lambertian surfaces. This key finding was first discov-
ered by Chai et al. [7] for Lambertian surfaces and later ex-
tended by Zhang and Chen [8] for non-Lambertian surfaces.
However, in both of these previous studies, the derivations are
approximations based on “truncating windows,” in which the
scene is approximated by piecewise constant depth segments,
and the truncation effect in the spectral domain is ignored. Here,
we show that for no-self-occlusion surfaces with band-limited
light radiance, the resulting POF has spectral support exactly
contained in the region specified by (7).

This “bow-tie” shape spectral support of POF p(t, v) makes it
possible to induce continuous-domain low-pass filtering in spa-
tial dimension ¢ via induced filtering in pixel dimension v. Gen-
erally, it is physically impossible to realize continuous-domain
filtering in the spatial dimension since we do not have access
to the POF in the continuous domain of ¢ but rather only at
discrete locations where we have actual cameras. On the other
hand, continuous-domain low-pass filtering in pixel dimension
v is possible by the optical system in the cameras. Because of
the “bow-tie” shape spectral support of the POF, Fig. 3(b) il-
lustrates that low-pass filtering in v induces low-pass filtering
in ¢t as well. As a result, Fig. 3(c) shows that we can sample
the POF in space (i.e., by placing cameras at discrete location
along t) without alias. This induced filtering property also holds
for sound signals, as was shown in a study of the plenacoustic
function [20].

Typically, POF p(t, v) is captured by cameras with finite pixel
resolution A, along pixel dimension v. Thus, previous analyses
[71, [8] assume that P(w;,w,) is band limited in the w, di-
mension to |w,| < /A, . Based on this assumption and using
Proposition 1 and Fig. 3(b), it follows that the bandwidth of
the POF depends only on the range of depths and the pixel
resolution.

However, actual continuous-domain POF p(t, v) might not be
band limited according to the camera resolution. In some appli-
cations, it might be of interest to study the intrinsic bandwidth of
the POF according to the underlying scene rather than the cap-
turing devices. In this paper, we want to characterize the band-
width of POF p(t,v) according to a simple but representative
scene model that will be described in the next section.

III. SURFACE MODEL: SIGNALS PAINTED ON SURFACES

First, we restrict to Lambertian surfaces, i.e., [(z,v) = I(z).
Second, we assume that light radiance {(z) is a result of band-
limited signal f(s) (e.g., texture image) “painted” on the object
surface, where s = s(z) is the curvilinear coordinate (i.e., s
corresponds to the arc length) on the surface. That is
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Fig. 4. Mapping from f(t) to (f o s)(¢) = f(s(t)) due to the pinhole camera
projection.

Surface coordinate z is determined by light ray coordinate
(t,v) as ¢ = x(t,v) according to the geometric mapping equa-
tion (1) as

t=2x(t,v) —v z(x(t,v)). (8)

With a slight abuse of notation, we write s(t,v) = s(z(t, v))
for the composite mapping from light ray coordinate (¢,v) to
curvilinear coordinate s on the surface. With these mappings,
we can relate POF p(t, v) to “painted” signal f(s) on the object
surface as

p(t,v) = L(z(t,v)) = f (s (x(t,0))) = f (s(,0)) . 9)

We study the bandwidth of POF p(t, v) by fixing either ¢ or v.
Note that fixing ¢ in POF p(t, v) corresponds to considering an
image captured by a fixed camera, whereas fixing v corresponds
to considering a signal recorded at a fixed pixel location by a
moving camera. In both cases, we obtain a time-warped function
of band-limited function f(s(t)), where ¢ and s denote a generic
variable and warping function, respectively. Fig. 4 depicts this
generic case study of the POF.

Fixing either v or ¢ and taking the derivative of (8) with re-
spect to the other variable, we get

dx(t,v) 1
o 1—wvz(x) (19)
dz(t,v)  z(x) (11

v 1—vz(z)

Hereafter, for brevity, in the right-hand sides, we write = for
x(t,v). The no-self-occlusion condition (2) implies that both
of these partial derivatives are positive for v € [—Vmax, Umax|
or within the field-of-view. This means that x(¢,v) is a strictly
monotonic function in each coordinate ¢ and v. Using differen-
tial relation ds = v/dz? + dz% = /1 + (#/(z))2dz, we obtain
the partial derivatives of s with respect to ¢ and v as

9s(t,v) _ ds dx(t,v) 1+ (())*

ot dz ot  1-w 2!(x) 12)
9s(t,v) _ ds dux(t,v) _ 2(@)\/1+ (2 (2))? 13
v dv v 1—v2(x) (13)

From (12), we see that if the surface is flat, i.e., z’(x) is a
constant, then Js(¢,v)/0t is a constant, or s(¢,v) is a linear
function in ¢ for each fixed v. Conversely, under the no-self-
occlusion condition (2), if s(¢, v) is linear for fixed v, then it is
easy to see that z’(z) must be a constant, and thus, the surface
must be flat.
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Finally, we note that both partial derivatives of s given in (12)
and (13) are greater than 1.

IV. BAND-LIMITED POFs

As noted in the introduction, to address the sampling problem
of the POF, we need to study its spectral support. Here, we ex-
amine the band limitedness of the POF given in (9). In plenoptic
sampling for IBR, the main variable of interest is ¢, which is the
camera position, as it leads to conditions on how to place the
cameras. Thus, let us consider the situation where pixel posi-
tion v is fixed, and for brevity, we drop variable v in functions
in this section.

Again, suppose that painted signal f(s) is band limited. From
the discussion at the end of the last section, we note that if
the surface in our scene is flat, then s(¢) is linear and POF
p(t) = f(s(t)) is a uniformly stretched version of f(¢). Thus,
it immediately follows from the shifting and scaling properties
of Fourier transform that f(s(t)) is also band limited. We are
interested to know if there are any other surfaces that result in
band-limited POFs.

Time-warped band-limited functions have been studied in the
signal processing literature. In [21], Clark conjectured that when
band-limited function f is warped by monotonic function s, the
resulting function (f o s)(¢) = f(s(¢)) is also band limited if
and only if s(t) is linear. In [22], this conjecture was proved for
alarge class of s(t), in particular, for s(¢) that on certain interval
is a restriction of an entire function.? Later, in [23], Clark’s con-
jecture was shown to be false by a peculiar counterexample con-
structed by Y. Meyer. However, that paper also noted that it is
not possible for a nonlinear warping function to preserve band
limitedness in general. Unaware of this line of work, in [24], we
made the same conjecture on the preservation of band limited-
ness under warping.

The implication of the above result is that, in general, the POF
is not band limited unless the surface is flat. In the next sections,
we will study the essential bandwidth, defined as the bandwidth
where most of the signal energy resides, of the POF for general
smooth surfaces.

V. BANDWIDTH OF TIME-WARPED FUNCTIONS

Let g(t) = (f o s)(t) denote a time-warped function that
models the POF, as was described in Section III. Its Fourier
transform is

Gl = [ F st et (149
Let F'(ws) be the Fourier transform of f(s). Then
1T ,
1) = 5 [ Floe o, 1s)
27

2An entire function is a function of complex variable that has derivative at
each point in the entire finite plane. In particular, band-limited functions are
entire functions.
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Substituting (15) into (14), we obtain

1 by . .
=— / F(ws) </ e]“’ss(t)e_w”dt> dw,
2T

— 00

G(wy)

1 o0
= — F(wS)KS(wt,ws)dws
2T

— 00

(16)

where K(wy,w) = Fi{e#+5()} is the Fourier transform of
eiws5(t) Kernel function K, (w¢, ws ) characterizes how warping
function s broadens the spectrum of f in warped function g =
f os. To see this effect, first consider the case when s is a linear

function, i.e., s(t) = a + bt. In this case, we have
K (w,ws) = F {ej“’s(“ert)} = 2mel* §(wy — bwy) (17)

which is concentrated along line ws = w;/b. Substituting (17)
into (16), we get

Thus, for linear warping s(t) = a + bt, we can relate the band-
width of warped function g = f o s to the bandwidth of f as

BW{g} = [b| BW{f} = [s'| BW{f}. (18)

Next, consider a more general situation in which warping
function s deviates from a linear function as

s(t) = a+ bt + 5(t). (19)

Then, kernel K(w;,w;) becomes
K, (wp,ws) =F {ejws<a+bt> : ejws§<t>}

= 27T §(wy — bwy) *u, Fi {emg(t)} (20)
where *,,, denotes the convolution in variable w;.

Consider a simple case where deviation §(t) is an oscillation
function with single frequency p > 0, i.e., 5(t) = csin(ut).
Using the following expansion:

oo

Z T (z)ed™™

n=—0oo

ejm sin(a) _

where .J,,(z) is the nth-order Bessel function of the first kind,
we have

oo

Fi {ej%“in(”t)} =2 Z In(cw) 6(wy — np).

n=—oo

Bessel functions J,,(z) exponentially decay for sufficiently
large n and are negligible for |n| > |z| + 1. Thus, for §(¢) =
csin(yut), Fourier transform 7 {e/+3(1)} is essentially zero for
frequency |wi| > |cuws| + p. Based on this approximation,
substituting back in (20) and then (16), we see that the essential
bandwidth of g is

essBW{g} = (b + [enl) BW{f} +p. D)
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Note that in this case s(t) = a + bt + csin(ut), we can
write |b| 4+ |cu| = max|s’|. Moreover, for the POF, typically,
the oscillation of surface s is much smaller than the oscillation
of painted texture f; therefore, p < BW{ f}. Furthermore, as
noted at the end of Section III, for POF, |s’| > 1. Thus, from
(21), we can write

essBW{g} = (max|s’|) BW{f}. (22)
In words, the essential bandwidth of time-warped function
g(t) = f(s(t)) can be approximated by the product of the max-
imum derivative of s with the bandwidth of f.
Rule (22) can be approximated for general warping function s
as follows. Since, typically, s is smooth, it can be approximated
by a piecewise linear function, i.e.,

5(6) () + 5 (&) (t — 1)

with appropriately chosen &, € [t, tx+1] and sufficiently small
segments [t tx+1]. Then, time-warped function g(t) = f(s(t))
can be approximated by

a(t) = £ (3(1)
(

= f(s(tr) + 8 (&)(t — tx)) fort € [ty test1)

D F(slt) + (&)t — 1) bi(t)

fort € [tk, tk+1] (23)

(24)

where by (t) is the indicator function of interval [¢g, tg41], i.€.,
bi(t) is equal to 1 for ¢ € [tg,tx+1] and O otherwise. Denote
fre(t) = f(s(te) + s’ (&) (¢ — tr)), which is a linear warping.
Then, we can relate the bandwidth of fj, to the bandwidth of f
as

BW{fi} = Is'(&x)| BW{/}.

Since by (t) is a rectangular function of length (¢541 — t), its
Fourier transform By (w) is a sinc function with the following
essential bandwidth:

1
tiy1 — b

= > i Fr(w) * Bi(w), and

1
— . (25
) e

For the POF, typically, the oscillation of s is much smaller
than the oscillation of f. Therefore, a good approximation of
f(s(t)) can be obtained from f(5(¢)) using a piecewise linear
approximation of s(t), as in (23), with maxy, 1/(tr41 — tr) <
BW/{ f}. Thus, we can discard the second term on the right-hand
side of (25) and obtain

essBW{b;.} =

From (24), it follows that G(w)
hence:

essBW{j} = max <|S (k)| BW{f}+

essBW{g} ~ essBW{g} ~ (max|s’|) BW{f}. (26)
Note that this approximation is exact for linear warping s, as
shown in (18).

The bandwidth analysis of time-warped functions in this sec-
tion follows the bandwidth analysis of frequency-modulation
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signals in communication systems [25]. A similar rule like (26)
is called Carson’s rule in the communication systems literature.
We note that both Carson’s rule and (26) are difficult to pre-
cisely prove, except for some particular cases, and thus, they
should only be viewed as “rules of thumb.” In the next sections,
we will show that rule (26) is quite accurate and provides an ef-
fective mean to estimate the bandwidth of the POFs.

VI. BANDWIDTH OF THE POFS

The result from the last section reveals the role of the max-
imum absolute value of the derivatives of curvilinear coordinate
s on the bandwidth of the POF. These maximum derivatives rep-
resent the worst cases of the multiplicative term in the band-
width expansion of the POF, as given in (26).

More precisely, denote again BWy the bandwidth of
“painted” signal f on the object surface. Then, applying (12)
and (13) to rule (26), we obtain the following estimates of
the essential bandwidth of POF p(t,v) in dimensions ¢ and v,
denoted by essBW;{p} and essBW,{p}, respectively:

essBW {p} = (max %) BW{f}

/14 max|Z/|?

T 1-— Vmax Max |Z’| BW{f} Q27)
essBW, ) = (max 25 00) B )

0 BW{f}.

1 — Vpax max |z

The above results (27) and (28) imply that when varying
camera position ¢, the worst case of bandwidth expansion
for the POF comes from the steepest slope (with respect to
the camera axis) on the object surface. When varying pixel
position v, the worst case happens when the surface is at the
steepest point and furthest, and the pixel is at the boundary of
the field-of-view. These findings are also noted in the literature
on texture mapping and image warping [26].

Note that (27) is an equality, whereas (28) is an inequality be-
cause |z(z)| and |2'(x)| might not be maximum at the same .
One way to characterize the spectral support of the POF is to use
(27) to estimate the spectral support along the ¢ dimension and
then use Proposition 1 to estimate the multidimensional spec-
trum support in the joint {—v space.

Recall that previous POF spectral analyses [7], [8] were
based on piecewise constant depth approximation. In formula-
tions (27) and (28), this means assuming that z’(z) = 0, and
thus, essBW;{p} = BW{f}. Consequently, previous studies
show that the multidimensional spectral support of the POF
depends only on the bandwidth of the painted texture and the
minimum and maximum depths. Our analysis reveals that, in
addition, surface slope z'(z) also influences the bandwidth
of the POF, namely, bigger surface slope leads to larger POF
bandwidth. Estimates (27) and (28) precisely quantify this
influence.

To illustrate and validate these rules for estimating the band-
width of the POF, we consider a synthetic scene, as shown in
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Fig. 5. Scene with a curved wall that is used in numerical experiments.

Fig. 5. Note that, as before, all length measures are normalized
so that the focal length (i.e., the distance between ¢ and v axes)
is equal to 1. In the scene, there is a curved wall as an arc of a
circle with radius R and center at distance C' from the origin on
the z-axis. Texture signal f(s) = sin(2wks) of frequency & is
painted on the wall. For convenience, we also specify a point on
the object surface by angle a between the corresponding radial
line with the z-axis (see Fig. 5). Then

% = sin(a)
C_};(x) = cos(a)
s =aR.

It follows that:
Z'(x) = tan(a).

Substituting (29) into the geometric mapping equation (1) and
using 6 to specify the pixel position, i.e., v = tan(f), we get

t = Rsin(a) — (C — Rcos(a)) tan(f).

From this, we can express curvilinear coordinate s on the
object surface through light ray coordinates (¢,v) as [noting
f = tan=1(v)]

s=R (sin—l (t‘m(e) ;om(a)) - 9) . (30)

Fig. 6(b) shows the resulting POF of a curved wall with C' =
20, R = 10, and k = 2. The examined ranges of ¢ and v are
t € [-3,43] and v € [—0.35,+0.35] (with the focal length
normalized to 1, this is equivalent to using 50-mm lens on a
35-mm camera). With these parameters, the surface depth is
in range z(z) € [10,13.76] and the surface slope is in range
Z'(x) € [—1.25,1.25]. Plugging these values into (27) and (28),
we obtain the following estimates for the essential maximum
frequencies of P(w;,w,) as:

wex [(2r) = 5.7TH z,
wiex [(271) = 78.6H 2.
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Fig. 6. Examples of POF p(t, v) and its Fourier transform P(w,,w,) for flat and curved walls. (a) Flat wall: p(t, v). (b) Curved wall: p(¢, v). (c) Flat wall:

P(w;,w,). (d) Curved wall: P(w;,w,).

These estimates agree well with the plot of P(w;,w,,) for the
curved wall in Fig. 6(d). Additionally, note in the plot that the
spectral support of the POF is sandwiched between lines w, =
Zminwt and w, = zZmaxwt, as illustrated in Fig. 3.

For comparison, Fig. 6(a) and (c) show the POF and its spec-
trum for the same camera configuration and painted texture, ex-
cept that the wall is flar at constant depth z(z) = 11.5. Com-
pared with the flat-wall case, the spectrum support of the POF of
the curved wall is significantly broader, both in the angle and the
radial length of the cone-shape region illustrated in Fig. 3. The
angular broadening of the POF spectrum is due to the varying
of surface depth z(x), as was previously noted in [7]. However,
the radial broadening of the POF spectrum, which is due to max-
imum surface slope z’(x), as indicated in (27) and (28), is only
revealed in this paper.

VII. BANDWIDTH OF SHEARED POFS

The results in the last section characterize the bandwidths of
POF p(t, v) in each dimension ¢ and v separately. For plenoptic
sampling, such bandwidths are relevant if we sample and re-
construct along each dimension ¢ and v separately while fixing
the other dimension. However, the typical shapes of POF spec-
tral supports, as shown in Figs. 3 and 6(c) and (d), indicate that
we can compact the POF spectrum more (and hence have less
aliasing in sampling) by nonseparably processing the two di-
mensions ¢ and v. In particular, using the knowledge of min-
imum and maximum depths, i.e., Zmin and zmax, and the prop-
erty of POF spectral support, as shown in Fig. 3, optimal non-
separable reconstruction filters for IBR were derived in [7] and

[8].

An alternative approach to explore this property of the POF
spectrum support in IBR using only 1-D reconstruction filter is
as follows. Since the POF spectral support is slanted according
to the depth range, shearing the POF spectrum, as shown in
Fig. 7(c) and (d), would make it more compact along the w;
axis. Fig. 7(a) and (b) illustrate the spatial supports of the cor-
responding functions with the spectra given in Fig. 7(c) and (d),
namely, the POF and its sheared version. More precisely, the de-
sired shearing operator is obtained by the following change of
variable in the frequency domain:

Wy = w — wy/ 20,
Wy = Wy -

The corresponding change of variable in the space domain is

t'=t,
v =v+t/z.

Geometrically, this shearing operator maps, in the fre-
quency domain, line w, = zpw; into the w, axis [i.e.,
from Fig. 7(c) and (d)], or equivalently, in the space do-
main, it maps the ¢ axis into line v = t'/zy [i.e., from
Fig. 7(a) and (b)]. Therefore, with a suitable choice of zg such
that Zmin < 20 < Zmax, the spectrum of sheared POF is more
compact along the wy axis. Optimal depth zg suggested in [7]

satisfies
1 1 ( 1 1 >
— = +
20 2 Zmin Zmax

which can be obtained through Fig. 3.
With the compact spectrum along the wy: axis, we can achieve
high-quality reconstruction (i.e., less aliasing) for the sheared
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Fig. 7. Sheared spectrum of the POF by a change of variable, i.e., w,s = w; — (1/z¢)w, and w! = w,. With appropriate choice of zo, the sheared spectrum is
most compacted near the w, axis. (a) The POF. (b) The sheared POF. (c) Spectrum of the POF. (d) Spectrum of the sheared POF.

POF by simply reconstructing along " axis for each fixed v’. In
other words, we interpolate the sheared POF along lines v =
vg. It is easy to see that corresponding to line v/ = v in the
sheared domain is the following line in the original domain [see
Fig. 7(a) and (b)]:

v+ t/z0 = v + to/2o0. 3D

Therefore, equivalently, we can obtain high-quality recon-
struction of the original POF p(t, v) at location (o, vo) by inter-
polating along line (31). From (1), we see that all corresponding
light rays (¢,v) that satisfy line (31) intersect with light ray
(to,vo) at the same point of depth z.

The lumigraph [14] system employs the same reconstruction
strategy, which they call depth-corrected interpolation. Gortler
et al. [14] refer to line (31) as an optical low line (where the
object surface “seen” by the light ray (¢, vo) is assumed to be
at depth zj), and they expect the POF to be smooth along the
optical flow lines. Their experiments show that reconstruction
by depth-corrected interpolation along the optical flow lines has
significantly higher quality compared with uncorrected interpo-
lation (i.e., interpolate along same pixel lines v = vp).

We can characterize the smoothness of the POF along op-
tical flow line (31) by estimating the bandwidth of the 1-D slice

function of the POF along this line (which is also the 1-D func-
tion along line v’ = v}, of the sheared POF). The corresponding
derivative for the bandwidth expanding factor in (22) is the di-
rectional derivative of s along line (31), with unit vector u =
(1,—1/2p). Using (12) and (13), we obtain the derivative of s
in this direction as

Das(t, v) :ut% o, 83((;;11)
(1 - 2(2)/20) \/ L + (2'(x))”
B 1—wv2z(x) ’ (32)

Comparing D,s in (32) to 9s/0t in (12), we see that, with
a suitable choice of zg such as 2o = (Zmin + Zmax)/2, the ab-
solute value of the derivative of s in direction u = (1, —1/z)
is smaller than the one in direction (1, 0). Hence, according to
(22), the bandwidth of the POF along optical flow line (31) is
smaller than the bandwidth along the same pixel line v = vy.

Fig. 8 shows example slices of the POF for the curved-wall
scene described in Section VI along the same pixel line v = vg
and optical flow line (31) with {) = v9 = 0 and 2y = 11.5. We
see that the maximum frequency of the POF slice along the op-
tical flow is much smaller compared with the one along the same
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Fig. 8. Slices of the POF of the curved-wall scene along (a) the same pixel line
and (b) optical flow line with zog = 11.5.

pixel line, which confirms the advantage of depth-corrected in-
terpolation in IBR. Using (12) and (32), and the surface depth
and slope ranges for the curved-wall scene found in Section VI,
we obtain estimates for the maximum frequency for these two
slices of the POF as 3.2 and 0.6 Hz, respectively. These esti-
mates closely characterize the function plots in Fig. 8.

VIII. CONCLUSION

In this paper, we have studied the bandwidth of the POF of
a simple scene model where a band-limited signal is painted on
a smooth surface. We have shown that, in general, the POF for
this model is not band limited unless the surface is flat. We then
derive a simple rule to estimate the essential bandwidth, defined
as the bandwidth where most of the signal energy resides, of the
POF for this model. This essential bandwidth is estimated as the
product of the bandwidth of the painted signal times the max-
imum absolute derivative of the surface curvilinear coordinate
along a certain direction. Our analysis reveals that, in addition to
the maximum and minimum surface depths and the maximum
frequency of the painted signal, the bandwidths of the POF also
depend on the maximum surface slope. By treating the POF
with a unifying formalism based on multidimensional signal
processing, we can verify several important results, including
induced filtering along the camera dimensions, depth-corrected
interpolation in lumigraph, and quantifying the necessary sam-
pling rates. Numerical results show that the resulting estimated
bandwidths of the POFs are accurate and effectively charac-
terize the performance of image-based rendering algorithms.
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