Redistribution of velocity and bed-shear stress in straight and curved open channels by means of a bubble screen: Laboratory experiments

Open-channel beds show variations in the transverse direction due to the interaction between downstream flow, cross-stream flow, and bed topography, which may reduce the navigable width or endanger the foundations of structures. The reported preliminary laboratory study shows that a bubble screen can generate cross-stream circulation that redistributes velocities and hence, would modify the topography. In straight flow, the bubble-generated cross-stream circulation cell covers a spanwise extent of about four times the water depth and has maximum transverse velocities of about 0.2 ms(-1). In sharply curved flow, it is slightly weaker and narrower with a spanwise extent of about three times the flow depth. It shifts the counter-rotating curvature-induced cross-stream circulation cell in the inwards direction. Maximum bubble-generated cross-stream circulation velocities are of a similar order of magnitude to typical curvature-induced cross-stream circulation velocities in natural open-channel bends. The bubble screen technique is adjustable, reversible, and ecologically favorable. Detailed data on the 3D flow field in open-channel bends is provided, which can be useful for validation of numerical models.


Published in:
Journal Of Hydraulic Engineering-Asce, 134, 184-195
Year:
2008
Keywords:
Note:
[640]
Laboratories:




 Record created 2009-02-02, last modified 2018-09-13


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)