
A Leader-free Byzantine Consensus Algorithm ?

Fatemeh Borran and André Schiper

Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract. The paper considers the consensus problem in a partially
synchronous system with Byzantine faults. It turns out that, in the par-
tially synchronous system, all deterministic algorithms that solve con-
sensus with Byzantine faults are leader-based. This is not the case of be-
nign faults, which raises the following fundamental question: is it possible
to design a deterministic Byzantine consensus algorithm for a partially
synchronous system that is not leader-based? The paper gives a posi-
tive answer to this question, and presents a leader-free algorithm that is
resilient-optimal and signature-free.

1 Introduction

In a distributed system of n processes, where each process has an initial value,
Byzantine consensus is the problem of agreeing on a common value, even though
some of the processes may fail in arbitrary, even malicious, ways. Consensus is
related to the implementation of state machine replication, atomic broadcast,
etc. It was first identified by Pease, Shostak and Lamport [1], formalized as
the interactive consistency problem and solved in a synchronous system. An
algorithm achieves interactive consistency if it allows the nonfaulty processes
to come to a consistent view of the initial values of all the processes, including
the faulty ones. Once interactive consistency has been achieved, the nonfaulty
processes can reach consensus by applying a deterministic averaging or filtering
function on the values of their view. It is shown in [1] that in a synchronous
system 3t + 1 processes are needed to solve the Byzantine consensus problem
without signatures, where t is the maximum number of Byzantine processes.

Later, Fischer, Lynch and Peterson [2] proved that in an asynchronous sys-
tem, no deterministic asynchronous consensus protocol can tolerate even a single
crash failure. The problem can however be solved using randomization even with
Byzantine faults, with at least 5t+ 1 processes, as shown by BenOr [3] and Ra-
bin [4]. Later, Bracha [5] increased the resiliency of the randomized algorithm
to 3t+ 1 using a “reliable broadcast” primitive.

In 1988, Dwork, Lynch and Stockmeyer [6], considered an asynchronous sys-
tem that eventually becomes synchronous (called partially synchronous system).
The consensus algorithms proposed in [6], for benign and for Byzantine faults,
achieve safety in all executions, while guaranteeing liveness only if there exists

? Research funded by the Swiss National Science Foundation under grant number
200021-111701.

2 F. Borran, A. Schiper

a period of synchrony. Recently, several papers have considered the partially
synchronous system model for Byzantine consensus [7–10].

However, [10] points out a potential weakness of these Byzantine consensus
algorithms, namely that they can suffer from “performance failure”. According
to [10], a performance failure occurs when messages are sent slowly by a Byzan-
tine leader, but without triggering protocol timeouts, and the paper points out
that the PBFT leader-based algorithm [7] is vulnerable to such an attack. Simi-
lar arguments are mentioned in [11] and in [12], where Lamport suggests the use
of a virtual leader.

Interestingly, all deterministic Byzantine algorithms for non-synchronous sys-
tems are leader-based, e.g., [6–9]. Even the protocol in [10] is leader-based. How-
ever, the authors of [10] managed to make the leader-based protocol less vulner-
able to performance failure attacks than PBFT [7] through a complicated mech-
anism that enables non-leader processes to (i) aggressively monitor the leader’s
performance, and (ii) compute a threshold level of acceptable performance. Note
that randomized consensus algorithms such as [3, 4] are not leader-based. This
raises the following fundamental question: is it possible to design a determin-
istic Byzantine consensus algorithm for a partially synchronous system that is
not leader-based? With such an algorithm, performance failure of Byzantine
processes might be harmless.

One may imagine that leader-free (non-leader-based) algorithms for benign
faults might be extended for Byzantine faults. A leader-free algorithm typically
consists of a sequence of rounds, where in each round all processes send messages
to all, and a correct process updates its value based on the values received. It
is not difficult to design an algorithm based on this all-to-all communication
pattern that does not violate the validity and agreement properties of consensus,
even with Byzantine faults. However, termination requires that in some round r
all correct processes receive exactly the same set of messages (from correct and
from faulty processes). Let us denote this property for round r by uniform(r).
Indeed, if uniform(r) holds and each correct process applies a deterministic
function to the received values, the configuration becomes univalent. Can we
ensure the existence of a round r in which uniform(r) holds?

For benign faults, it is easy to guarantee that during the synchronous period
of the partially synchronous system, in every round r, all correct processes receive
messages from the same set of processes. This is not the case for Byzantine faults.
In round r, a Byzantine process could send a message to some correct process,
and no message to some other correct process. If this happens, uniform(r) does
not hold. Therefore one may think that with Byzantine faults the leader is needed
to ensure termination, and conclude that no deterministic leader-free Byzantine
consensus algorithm could exist in a partially synchronous system. In this paper,
we show that this intuition is wrong.

Our new idea is the following. We started from the observation that leader-
free consensus algorithms exist for the synchronous system, both for benign
faults (e.g., the FloodSet algorithm [13]) and for Byzantine faults (e.g., the al-
gorithm based on interactive consistency [1]). However, these algorithms violate

A Leader-free Byzantine Consensus Algorithm 3

agreement if executed during the asynchronous period of a partially synchronous
system. Therefore we tried to combine these algorithms with a second algorithm
that never violates agreement in an asynchronous system. This methodology
turned out to be successful, and the resulting leader-free Byzantine consensus
algorithm, is presented here. The algorithm requires 3t + 1 processes and does
not rely on digital signatures.

The following approaches differ from ours. Several papers have considered
some primitives to transform authenticated algorithms into non-authenticated
algorithms, e.g., [5, 14, 6]. These papers either consider synchronous systems,
or asynchronous systems with randomized algorithms. Note that although the
“broadcast” primitive in [6] is leader-free, the consensus algorithm itself is based
on a rotating coordinator, hence, it is not leader-free. Some existing papers have
proposed different approaches to transform protocols resilient to crash faults into
protocols resilient to Byzantine faults, e.g., [15–17]. Although the first two pa-
pers propose leader-free algorithms, the first one considers synchronous systems
and the second one considers approximate agreement problem in asynchronous
systems. The last paper considers asynchronous systems with failure detectors
and the algorithm is leader-based.

The rest of the paper is structured as follows. We define the consensus prob-
lem and our system model in Section 2. Our methodology to derive a leader-free
consensus algorithm for Byzantine faults is presented in Section 3.1 Future work
is discussed in Section 5. Finally, we conclude the paper in Section 6.

2 Definitions and System Model

2.1 Byzantine Consensus

We consider a set Π of n processes, among which at most t can be Byzantine
faulty. Nonfaulty processes are called correct processes. Each process has an
initial value. We formally define consensus by the following properties:

– Strong validity: If all correct processes have the same initial value, this is the
only possible decision value.

– Agreement: No two correct processes decide differently.
– Termination: All correct processes eventually decide.

With Byzantine faults, a weaker validity property is sometimes defined. We
consider here the strong validity property.

2.2 System Model

We consider a partially synchronous system as defined in [6] in which processes
communicate through message passing. As in [6], we consider an abstraction on
top of the system model, namely a round model, defined next. Using this abstrac-
tion, rather than the raw system model, improves the clarity of the algorithms
and simplifies the proofs.
1 A simpler algorithm that uses digital signatures is proposed in Section 4.

4 F. Borran, A. Schiper

There are two fault models considered with Byzantine processes: “authen-
ticated Byzantine” faults, and “Byzantine” faults [6]. In both models a faulty
process behaves arbitrarily, but in the authenticated Byzantine model messages
can be signed by the sender, and it is assumed that the signature cannot be
forged by any other process. No signatures are used with Byzantine faults, but
the receiver of a message knows the identity of the sender.

2.3 Basic Round Model

In the round model, processing is divided into rounds of message exchange. Each
round r consists of a sending step denoted by Srp (sending step of p for round
r), and of a state transition step denoted by T rp . In a sending step, each process
sends a message to all. A subset of the messages sent is received at the beginning
of the state transition step: messages can get lost, and a message sent in round
r can only be received in round r. We denote by σrp the message sent by p in
round r, and by µrp the messages received by process p in round r (µrp is a vector
of size n, where µrp[q] is the message received from q). Based on µrp, process p
updates its state in the state transition step.

Let GSR (Global Stabilization Round) be the smallest round, such that for
all rounds r ≥ GSR, the message sent in round r by a correct process q to a
correct process p is received by p in round r. This is formally expressed by the
following predicate (where C denotes the set of correct processes):

∀r ≥ GSR : Pgood(r), where Pgood(r) ≡ ∀p, q ∈ C : µrp[q] = σrq .

An algorithm that ensures — in a partially synchronous system — the ex-
istence of GSR such that ∀r ≥ GSR : Pgood(r), is given in [6]. Note that
“∀r ≥ GSR : Pgood(r)” is sufficient for the termination of our algorithms, but
not necessary. If the system is synchronous, the following stronger property can
be ensured: ∀r : Pgood(r).

3 Byzantine Faults: From Synchrony to Partial
Synchrony

In this section we explain our methodology to design a leader-free consensus
algorithm that tolerates Byzantine faults without signatures. We start with a
leader-free consensus algorithm for Byzantine faults in a synchronous system
model, and then extend it to a leader-free consensus algorithm in a partially
synchronous system.

3.1 Leader-free Consensus Algorithm for a Synchronous System

One of the first consensus algorithms that tolerates Byzantine faults in syn-
chronous systems was proposed by Pease, Shostak and Lamport [1]. It is based
on an algorithm that solves the interactive consistency problem, which consists
for each correct process p to compute a vector of values, with an element for
each of the n processes, such that

A Leader-free Byzantine Consensus Algorithm 5

Algorithm 1 EIGByz with n > 3t (code of process p)
1: Initialization:
2: Wp := {〈λ, vp〉} /* vp is the initial value of process p; valp(λ) = vp */

3: Round r : /* 1 ≤ r ≤ t+ 1 */
4: Sr

p :

5: send {〈α, v〉 ∈ Wp : |α| = r − 1 ∧ p /∈ α ∧ v 6= ⊥} to all processes
6: T r

p :

7: for all {q | 〈α, v〉 ∈ Wp ∧ |α| = r − 1 ∧ q ∈ Π ∧ q /∈ α} do
8: if 〈β, v〉 is received from process q then
9: Wp := Wp ∪ {〈βq, v〉} /* valp(βq) = v */
10: else
11: Wp := Wp ∪ {〈βq,⊥〉} /* valp(βq) = ⊥ */
12: if r = t+ 1 then
13: for all 〈α, v〉 ∈ Wp from |α| = t to |α| = 1 do
14: Wp := Wp \ 〈α, v〉 /* replace valp(α) . . . */
15: if ∃v′ s.t. |〈αq, v′〉 ∈ Wp| ≥ n− |α| − t then
16: Wp := Wp ∪ 〈α, v′〉 /* . . . with newvalp(α) */
17: else
18: Wp := Wp ∪ 〈α,⊥〉 /* . . . with newvalp(α) */
19: for all q ∈ Π do /* level 1 of the tree */
20: Mp[q] := v s.t. 〈q, v〉 ∈ Wp

– The correct processes compute exactly the same vector;
– The element of the vector corresponding to a given correct process is the

initial value of that process.

The algorithm presented in [1] is not leader-based, does not require signatures,
tolerates t < n/3 Byzantine faults, and consists of t + 1 rounds of exchange of
messages. We briefly recall the principle of this algorithm (see Algorithm 1).

The information maintained by each process during the algorithm can be rep-
resented as a tree (called Exponential Information Gathering (EIG) tree in [13,
18]), in which each path from the root to a leaf contains t + 2 nodes. Thus the
height of the tree is t + 1. The nodes are labeled with sequences of processes’
identities in the following manner. The root is labeled with the empty sequence
λ (|λ| = 0). Let i be an internal node in the tree with label α = p1p2 . . . pr; for
every q ∈ Π such that q /∈ α, node i has one child labeled αq. Node i with label
α will be simply called “node α”.

Intuitively, valp(p1p2 . . . pr) (which denotes the value of node p1p2 . . . pr in p’s
tree) represents the value v that pr told p at round r that pr−1 told pr at round
r− 1 that . . . that p1 told p2 at round 1 that p1’s initial value is v. Each correct
process p maintains the tree using a set Wp of pairs 〈node label , node value〉. At
the beginning of round r, each process p sends the (r−1)th level of its tree to all
processes (line 5). When p receives a message from q in format 〈p1p2...pr, v〉, it
adds 〈p1p2...prq, v〉 to its set Wp (line 9). If p fails to receive a message it expects
from process q, p simply adds 〈p1p2 . . . prq,⊥〉 to its set Wp (line 11).

Information gathering as described above continues for t+1 rounds, until the
entire tree has been filled in. At this point the second stage of local computation
starts. Every process p applies to each subtree a recursive data reduction function
to compute a new value (lines 13 to 18). The value of the reduction function on
p’s subtree rooted at a node labeled α is denoted newvalp(α). The reduction
function is defined for a node α as follows.

6 F. Borran, A. Schiper

– If α is a leaf, its value does not change (newval(α) = val(α));
– Otherwise, if there exists v such that n− |α| − t children have value v, then
newval(α) = v, else newval(α) = ⊥ (lines 16 and 18).

The reason for a quorum of size n − |α| − t can be explained as follows.2 Each
correct process, at the end of round t + 1, has constructed a tree with t + 2
levels. Any node in level 0 < k < t+1 has n−k children and a label α such that
|α| = k. If α is a label with only correct processes, then all its children except t
(i.e., n− k − t children) have the same value.

At the end of round t+ 1, every correct process p constructs a vector Mp of
size n (corresponding to the level 1 of its tree), where Mp[q] is the new value of
process q (line 20). EIGByz ensures that:

– The correct processes compute exactly the same vector, i.e., ∀p, q ∈ C :
Mp = M q, and

– The element of the vector corresponding to a given correct process q is the
initial value of that process, i.e., ∀p, q ∈ C : Mp[q] = vq.

Therefore, a correct process can decide by applying a deterministic function on
its vector Mp. The EIGByz algorithm ensures the following property:

(∀r, 1 ≤ r ≤ t+1 : Pgood(r))⇒ ∀p, q ∈ C : (Mp = M q) ∧ (|Mp| ≥ |C|) (1)

where |Mp| denotes the number of non-⊥ elements in vectorMp, and |C| denotes
number of correct processes. The premise holds if the system is synchronous.

3.2 Extending EIGByz for a Partially Synchronous Model

If Algorithm 1 is executed in a partially synchronous system, it does not ensure
∀p, q ∈ C : (Mp = M q)∧(|Mp| ≥ |C|). Therefore, it cannot ensure the agreement
property of Byzantine consensus. However, following two properties hold for
Algorithm 1 in synchronous as well as in asynchronous periods:

∀p, q ∈ C : Mp[q] ∈ {vq,⊥} (2)

∀q ∈ Π\ C,∃v s.t. ∀p ∈ C : Mp[q] ∈ {v,⊥} (3)

where vq is the initial value of process q. The proofs are in Appendix A.
To ensure agreement in a partially synchronous system, we need to com-

bine Algorithm 1 with another algorithm. We show below two such algorithms:
(i) a simple algorithm (Algorithm 2), which requires n > 5t, and (ii) a more
complex algorithm with optimal resilience n > 3t (Algorithm 3). In both cases,
Algorithm 2 and Algorithm 3 ensure agreement, while Algorithm 1 ensures ter-
mination.

Consensus Algorithm with n > 5t. We start with a simple parameterized
consensus algorithm (see Algorithm 2). Parametrization allows us to easily adjust
the algorithm to ensure agreement for different fault models. The algorithm was
first presented in [19] as OneThirdRule algorithm (T = E = 2n/3) to tolerate

2 Since n > 3t, this quorum can be replaced by n+t
2
− |α| (see [1]).

A Leader-free Byzantine Consensus Algorithm 7

t < n/3 benign faults. The parameterized version was given in [20] to tolerate
“corrupted communication”. Here, since we consider “Byzantine process faults”
we need different values for the parameters. Note that in the context of Byzantine
faults, Algorithm 2 alone does not ensure termination.

Algorithm 2 Byzantine algorithm with n > 5t (code of process p)
1: Initialization:
2: xp := vp ∈ V /* vp is the initial value of p */

3: Round r = 2φ− 1 : /* round simulated by t+ 1 micro-rounds of Algorithm 1 */
4: Sr

p :

5: send 〈xp〉 to all processes
6: T r

p :

7: if number of non-⊥ elements in µr
p > T then

8: xp := smallest most frequent non-⊥ element in µr
p

9: Round r = 2φ :
10: Sr

p :

11: send 〈xp〉 to all processes
12: T r

p :

13: if more than E elements in µr
p are equal to v 6=⊥ then

14: Decide(v)

The algorithm consists of a sequence of phases φ, where each phase has two
rounds 2φ−1 and 2φ. Round 2φ is a normal round; to ensure termination, round
2φ − 1 will have to be simulated by Algorithm 1. Each process p has a single
variable xp, and in every round p sends xp to all processes. Parameter T (line 7)
refers to a “threshold” for updating xp, and parameter E (line 13) refers to
“enough” same values to decide.3

With Byzantine faults, Algorithm 2 ensures agreement with E ≥ (n + t)/2
and T ≥ 2n− 2E + 2t. Strong validity requires T ≥ 2t and E ≥ t. Termination,
together with Algorithm 1, requires n − t > T and n − t > E. Putting all
together, for the case E = T , we get T = E = 2(n+ t)/3 and n > 5t. The proofs
of agreement and strong validity are in Appendix B. We discuss now termination.
For termination, it is sufficient for Algorithm 2 to have one round r = 2φ− 1 in
which the following holds (where |µrp| denotes the number of non-⊥ elements in
vector µrp):

∀p, q ∈ C : (µrp = µrq) ∧ (|µrp| > T) (4)

and one round r + 1 = 2φ in which we have:

∀p ∈ C : |µr+1
p | > E. (5)

If (4) holds, all correct processes set xp to the some common value v0 in round r
(line 8), and if (5) holds all correct processes decide v0 in round r + 1 (line 14).

By comparing (1) with (4) and (5), it is easy to see that Algorithm 1 ensures
(4) and (5) if it is executed after GSR, and we have |C| > T and |C| > E
(where |C| = n − t). Therefore, the idea is to replace the send/receive of round

3 The notation µr
p is introduced in Section 2.3.

8 F. Borran, A. Schiper

2φ− 1 of Algorithm 2 by the t+ 1 micro-rounds of Algorithm 1. In other words,
we simulate round r = 2φ − 1 of Algorithm 2 using the t + 1 micro-rounds of
Algorithm 1:

– Each instance of Algorithm 1 is started with Wp = {〈p, xp〉}, where xp is
defined in Algorithm 2;

– At the end of these t + 1 micro-rounds, the vector Mp computed by Al-
gorithm 1 is the vector µp of messages received by p in round r (Mp[q] =
µp[q] = ⊥ means that p did not receive any message from q in round r).

Note that, the OneThirdRule algorithm (Algorithm 2 with T = E = 2n/3)
cannot be used with Byzantine faults because of the agreement problem. Using
EIGByz, a Byzantine process cannot send different values to different processes
in a single round, however, it can send different values to different processes in
different rounds which violates agreement.

Consensus Algorithm with n > 3t. As Algorithm 2 requires n > 5t, its re-
silience is not optimal. Here we show a new algorithm, which uses mechanisms
from several consensus algorithms, e.g., Ben-Or [3], and PBFT [7] with strong va-
lidity, and requires only n > 3t (see Algorithm 3). Note that, as for Algorithm 2,
Algorithm 3 ensures strong validity and agreement, but not termination. As for
Algorithm 2, termination is ensured by simulating the first round of each phase
φ of Algorithm 3 by t+ 1 micro-round of Algorithm 1.

Algorithm 3 consists of a sequence of phases φ, where each phase has three
rounds (3φ−2, 3φ−1, 3φ). Each process p has an estimate xp, a vote value votep
(initially ?), a timestamp tsp attached to votep (initially 0), and a set pre-votep
of valid pairs 〈vote, ts〉 (initially ∅). The structure of the algorithm is as follows:

– If a correct process p receives the same estimate v in round 3φ−2 from n− t
processes, then it accepts v as a valid vote and puts 〈v, φ〉 in pre-votep set.
The pre-vote set is used later to detect an invalid vote.

– If a correct process p receives the same pre-vote 〈v, φ〉 in round 3φ− 1 from
n − t processes, then it votes v (i.e., votep = v) and updates its timestamp
to φ (i.e., tsp = φ).

– If a correct process p receives the same vote v with the same timestamp φ
in round 3φ from 2t+ 1 processes, it decides v.

The algorithm guarantees that (i) two correct processes do not vote for different
values in the same phase φ; and (ii) once t+1 correct processes have the same vote
v and the same timestamp φ, no other value can be voted in the following phases.
We discuss now agreement and termination. The full proofs are in Appendix C.
Agreement: A configuration is v-valent if (i) ∃φ such that at least t+ 1 correct
processes p have (votep, tsp) = (v, ts) with ts ≥ φ, and (ii) the other correct
processes q have (voteq, tsq) = (v′ 6= v, ts′) with ts′ < φ.

Let φ0 be the smallest round in which some correct process decides v (line 26).
By line 25 at least t+1 correct processes p have votep = v, tsp = φ0, and xp = v
from line 20; the other correct processes q with voteq 6= v have tsq < φ0 from
line 19. Therefore the v-valent definition holds. We denote the former set by

A Leader-free Byzantine Consensus Algorithm 9

Algorithm 3 Byzantine algorithm with n > 3t (code of process p)
1: Initialization:
2: xp := vp ∈ V /* vp is the initial value of p */
3: pre-votep := ∅
4: votep ∈ V ∪ {?}, initially ?
5: tsp := 0

6: Round r = 3φ− 2 : /* round simulated by t+ 1 micro-rounds of Algorithm 1 */
7: Sr

p :

8: send 〈xp, votep〉 to all processes
9: T r

p :

10: if at least n− t elements in µr
p are equal to 〈−, ?〉 then

11: xp := smallest most frequent element 〈x,−〉 in µr
p

12: pre-votep := pre-votep ∪ {〈xp, φ〉}
13: if at least n− t elements in µr

p are equal to 〈v,−〉 then

14: pre-votep := pre-votep ∪ {〈v, φ〉}

15: Round r = 3φ− 1 :
16: Sr

p :

17: send 〈v | 〈v, φ〉 ∈ pre-votep〉 to all processes
18: T r

p :

19: if at least n− t elements in µr
p are equal to 〈v〉 then

20: votep := v; tsp := φ; xp := v

21: Round r = 3φ :
22: Sr

p :

23: send 〈votep, tsp, pre-votep〉 to all processes
24: T r

p :

25: if at least 2t+ 1 elements in µr
p are equal to 〈v 6= ?, φ,−〉 then

26: Decide(v)
27: if exists 〈v 6= ?, ts,−〉 in µr

p s.t. votep 6= v and ts > tsp then

28: if exists t+ 1 elements 〈−,−, pre-vote〉 in µr
p s.t. 〈v, ts′〉 ∈ pre-vote and ts′ ≥ ts then

29: votep := ?; tsp := 0; xp := v
30: if votep 6= ? then xp := votep

Π=φ0 , and the latter by Π<φ0 . Processes in Π=φ0 keep xp = votep = v from
phase φ0 onward, and processes in Π<φ0 can only update votep to ? or v, as we
explain now. This ensures agreement.

First, by lines 10 and 13, it is impossible for a correct process to have two
different values with the same timestamp in its pre-vote set. By lines 27-30, in
phase φ0, processes in Π<φ0 can only update votep to ?; processes in Π=φ0 do
not update neither votep, nor xp to some value 6= v. By lines 10-14, in phase
φ0 + 1, correct processes can only update xp to v and can only add (v, φ0 + 1) to
pre-votep. Therefore in round 3(φ0 + 1) − 1, correct processes can only update
votep to v, i.e., only v can be decided in phase φ0 + 1. The same reasoning can
be repeated for all phases after phase φ0 + 1.

Termination: We explain intuitively termination by considering the smallest
phase φ such that 3φ− 2 ≥ GSR. We distinguish two cases: (i) at the beginning
of round 3φ − 2, all correct processes have votep = ?, and (ii) at the beginning
of round 3φ− 2 at least one correct process has votep 6= ?.

Case (i): Consider round 3φ−2. Since we are after GSR, Algorithm 1 ensures
that all correct processes p receive the same set µ3φ−2

p of messages with |µ3φ−2
p | ≥

|C| (see formula (1)), i.e., all correct processes p set xp to the same common value
v (line 11), and add the pair 〈v, φ〉 to pre-votep (line 12). It follows that, in round

10 F. Borran, A. Schiper

3φ− 1, all correct processes p set votep to v (line 20), and all correct processes
decide v in round 3φ (line 26).

Case (ii): This case is more complex to expose. Consider round 3φ, and let
q be a correct process with the highest timestamp tsq and voteq = v 6= ? at
the beginning of round 3φ. Line 19 ensures that for any other correct process q′

with tsq′ = tsq, we have voteq = voteq′ . Since 3φ > GSR, all correct processes p
with votep 6= v execute lines 27-29. Therefore, at the end of round 3φ all correct
processes p have xp = v and votep ∈ {v, ?}, i.e., all correct processes p start
round 3φ+ 1 = 3(φ+ 1)− 2 with xp = v. If the condition of line 10 holds, then
the most frequent pair received is 〈v,−〉, i.e., 〈v, φ + 1〉 is added to pre-votep
(line 12). The condition of line 13 necessary holds at each correct process, i.e.,
〈v, φ+ 1〉 is added to pre-votep (line 14). Therefore, at the end of round 3φ+ 1,
all correct processes p only have 〈y, φ + 1〉 with y = v in pre-votep. It follows
that, in round 3φ + 2, all correct processes p set votep to v (line 20), and all
correct processes decide v in round 3φ+ 3 (line 26).

Note that in Algorithm 3, the set pre-votep can be bounded, based on the
following observation. For instance, if 〈v, φ〉 ∈ pre-votep and p wants to add
〈v, φ′〉 into its pre-vote with φ′ > φ, then 〈v, φ〉 becomes obsolete.

3.3 Summary

The following table summarizes our results. The second column shows the small-
est number of processes needed for each algorithm. The third and forth columns
give an upper bound on number of rounds needed for a single consensus in both
best and worst cases. The best case is when the system is synchronous form the
beginning, i.e., GSR = 0. Both algorithms require n2 messages per round.

processes # rounds (best case) # rounds (worst case)

Algorithm 2 5t+ 1 t+ 2 GSR + 2(t+ 2)− 1
Algorithm 3 3t+ 1 t+ 3 GSR + 2(t+ 3)− 1

3.4 Optimizations

We describe two possible optimizations that can be applied to our leader-free
Byzantine consensus algorithm.
Early termination: The “early termination” optimization can be applied to
Algorithm 1 (EIGByz). Algorithm 1 always requires t + 1 rounds, even in ex-
ecutions in which no process is faulty. With early termination, the number of
rounds can be reduced in such cases.

Let f denote the actual number of faulty processes in a given execution.
Moses and Waarts in [21] present an early termination version of the exponential
information gathering protocol for Byzantine consensus that requires n > 4t and
terminates in min{t+ 1, f + 2} rounds. The idea is the following. Consider some
node α in p’s tree. Process p may know that a quorum (i.e., n − |α| − t) of
correct children of node α store the same value. When this happens, process
p can already determine the value of newvalp(α), and can stop at the end of

A Leader-free Byzantine Consensus Algorithm 11

the next round. The paper presents another early termination protocol with
optimal resiliency (n > 3t) that terminates in min{t + 1, f + 3} rounds. These
two optimizations can be applied to Algorithm 1.

One round decision: The “one round decision” optimization is relevant to
Algorithm 2. One round decision means that if all correct processes start with
the same initial value, and the system is synchronous from the beginning, then
correct processes decide in one single round. Algorithm 2 does not achieve one
round decision, because the simulation of Algorithm 1 (EIGByz) appears in each
phase, including phase 1. To achieve one round decision, we simply skip round 1,
and start Algorithm 2 with round 2. If all correct processes start with the same
initial value, and GSR = 0, then correct processes decide in one round.

The fact that our one round decision algorithm requires “only” n > 5t is
not in contradiction with the result in [22], which establishes the lower bound
n = 7t + 1 for one-step decision. The reason is that we assume for fast deci-
sion a partially synchronous system with GSR = 0, i.e., the system is initially
synchronous, while [22] considers a system that is initially asynchronous.

4 Authenticated Byzantine Faults

In this section we show that leader-free Byzantine consensus is even simpler if
signatures are used (a fault model called authenticated Byzantine faults, see
Section 2.2). In this model, a faulty process who cheats about its value can
be detected by the correct processes. Therefore, the EIGByz algorithm is not
needed here. It can be replaced by a leader-free synchronous algorithm that uses
digital signatures (to simulate rounds of Algorithm 2).

We consider here a variant of the FloodSet algorithm [13] (see also [23])
called Authenticated FloodSet, see Algorithm 4. With similar arguments as in
Section 3, the combination of Algorithm 2 (or Algorithm 3) and Algorithm 4
ensures strong validity and agreement. Termination holds from Algorithm 4 in
a partially synchronous system (after GSR).

In Algorithm 4 we denote by v : p the value v signed by process p, and by
v : p1 : p2 : ... : pk the value v signed by k processes, initially by p1, then v : p1

signed by p2, etc. In round r processes send values signed exactly by r distinct
processes, and accept only values signed exactly by r distinct processes.

At line 5 of round r, process p sends Wp : p, which denotes the set obtained
by having p signing all elements in set Wp not yet signed by itself. In round
r, a process keeps only values received that are signed by r different processes
(line 9 and 10). In round t+ 1, a correct process eliminates inconsistent values,
i.e., two different initial values signed by the same process (line 13 and 14). At
the end, every correct process constructs a vector Mp of size n, where Mp[q] is
the initial value of process q (or ⊥ if q is faulty).

12 F. Borran, A. Schiper

Algorithm 4 Authenticated FloodSet with n > t (code of process p)
1: Initialization:
2: Wp := {vp} /* vp is the initial value of process p */

3: Round r : /* 1 ≤ r ≤ t+ 1 */
4: Sr

p :

5: send 〈Wp : p〉 to all processes
6: T r

p :
7: for all q from which the set Wq is received do
8: for all e ∈ Wq do
9: if e is signed by r different processes then
10: Wp := Wp ∪ {e}
11: if r = t+ 1 then
12: for all q ∈ Π do
13: if (v : q : ... ∈ Wp) and (v′ : q : ... ∈ Wp) and v 6= v′ then
14: remove all elements (− : q : ...) from Wp /* eliminate inconsistent values of q */
15: if ∃v such that (v : q : ...) ∈ Wp then Mp[q] := v
16: else Mp[q] := ⊥

5 Discussion and Future Work

In a partially synchronous system the predicate Pgood(r) can be ensured using
the implementations given in [6]. Actually, [6] distinguishes two variant of partial
synchrony: (a) one in which the communication bound ∆ and the process bound
Φ are unknown, and (b) one in which these bounds are known but hold only
eventually.The implementation of the round model slightly differs depending on
the partial synchrony variant that is considered. We consider here model (a),
which is also the model considered in the leader-based Castro-Liskov PBFT
protocol [7]. In this model a standard technique, used for example in PBFT, is
to have exponentially growing timeouts. For example, in PBFT whenever the
leader changes (i.e., the recovery protocol has to be executed), the timeout for
the next leader is doubled. Taking this leader-based protocol as a case study,
Amir et al. [10] pointed its vulnerability to performance degradation under an
attack. Indeed in PBFT, f consecutive Byzantine leaders, say l1, l2, ..., lf could
do construct the following attack. The first leader l1 is mute, the timeout expires,
the recovery protocol is activated, and the algorithm switches to the next leader
(rotating coordinator) while doubling the timeout. The same happens for leaders
l2 to lf−1 until lf becomes leader. The last leader lf sends its message as late
as possible, but not too late to remain leader. If lf remains leader forever, then
the time required for any request (instance of consensus) is high.

Although PBFT does not assume a round-based model as we do in this paper,
the performance failure attack is possible in the case of a leader-based protocol
implemented in the round-based model, in the case the round-based model is
constructed on top of a partially synchronous model of type (a). However, we
believe that this is not the case for leader-free algorithms, i.e., performance
failure attacks are not effective in this case. The intuition is that, once the
timeout of a correct process becomes large enough to receive all messages from
correct processes, Byzantine processes cannot introduce an attack that forces the
correct process to double its timeout. Our future work is to validate this intuition

A Leader-free Byzantine Consensus Algorithm 13

analytically and/or experimentally, and to understand under which conditions
leader-free algorithms outperform leader-based algorithms.

6 Conclusion

All previously known deterministic consensus algorithms for partially synchronous
systems and Byzantine faults are leader-based. However, leader-based algorithms
are vulnerable to performance degradation, which occurs when the Byzantine
leader sends messages slowly, but without triggering timeouts. In the paper we
have proposed a deterministic (no randomization), leader-free Byzantine con-
sensus algorithm in a partially synchronous system. Our algorithm is resilient-
optimal (it requires 3t+1 processes) and signature-free (it doesn’t rely on digital
signatures). To the best of our knowledge this is the first Byzantine algorithm
that satisfies all these characteristics. We have also presented optimizations for
the Byzantine consensus algorithm, including one-round decision. Finally, a sim-
pler leader-free consensus algorithm that uses digital signatures is proposed.

We have designed our algorithms using a new methodology. It consists of ex-
tending a synchronous consensus algorithm to a partially synchronous consensus
algorithm using an asynchronous algorithm.The asynchronous protocol ensures
safety (i.e., agreement and strong validity), while the synchronous algorithm
provides liveness (i.e., termination) during periods of synchrony.
Acknowledgments: We would like to thank Martin Hutle, Nuno Santos and
Olivier Rütti for their comments on an earlier version of the paper.

References

1. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
J. ACM 27(2) (1980) 228–234

2. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. JACM 32(2) (apr 1985) 374–382

3. Ben-Or, M.: Another advantage of free choice (extended abstract): Completely
asynchronous agreement protocols. In: PODC’83, NY, USA, ACM (1983) 27–30

4. Rabin, M.: Randomized Byzantine generals. In: Proc. Symposium on Foundations
of Computer Science. (1983) 403–409

5. Bracha, G.: An asynchronous [(n - 1)/3]-resilient consensus protocol. In: PODC’84,
New York, NY, USA, ACM (1984) 154–162

6. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. JACM 35(2) (apr 1988) 288–323

7. Castro, M., Liskov, B.: Practical Byzantine fault tolerance and proactive recovery.
ACM Transactions on Computer Systems (TOCS) 20(4) (November 2002) 398–461

8. Martin, J.P., Alvisi, L.: Fast Byzantine consensus. IEEE Transactions on Depend-
able and Secure Computing 3(3) (jul 2006) 202–215

9. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: speculative
byzantine fault tolerance. SIGOPS Oper. Syst. Rev. 41(6) (2007) 45–58

10. Amir, Y., Coan, B., Kirsch, J., Lane, J.: Byzantine replication under attack. In:
DSN’08. (2008) 197–206

14 F. Borran, A. Schiper

11. Clement, A., Wong, E., Alvisi, L., Dahlin, M., Marchetti, M.: Making Byzantine
fault tolerant systems tolerate Byzantine faults. In: NSDI’09, Berkeley, CA, USA,
USENIX Association (2009) 153–168

12. Lamport, L.: State-Machine Reconfiguration: Past, Present, and the Cloudy Fu-
ture. DISC Workshop on Theoretical Aspects of Dynamic Distributed Systems
(September 2009)

13. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann (1996)
14. Srikanth, T.K., Toueg, S.: Simulating authenticated broadcasts to derive simple

fault-tolerant algorithms. Distributed Computing 2(2) (1987) 80–94
15. Neiger, G., Toueg, S.: Automatically increasing the fault-tolerance of distributed

algorithms. J. Algorithms 11(3) (1990) 374–419
16. Coan, B.A.: A compiler that increases the fault tolerance of asynchronous proto-

cols. IEEE Trans. Comput. 37(12) (1988) 1541–1553
17. Baldoni, R., Hélary, J.M., Raynal, M.: From crash fault-tolerance to arbitrary-

fault tolerance: Towards a modular approach. In: DSN’00, Washington, DC, USA,
IEEE Computer Society (2000) 273–282

18. Attiya, H., Welch, J.: Distributed Computing: fundamentals, simulations, and
advanced topics. John Wiley & Sons (2004)

19. Charron-Bost, B., Schiper, A.: The Heard-Of model: computing in distributed
systems with benign faults. Distributed Computing 22(1) (2009) 49–71

20. Biely, M., Widder, J., Charron-Bost, B., Gaillard, A., Hutle, M., Schiper, A.: Tol-
erating corrupted communication. In: PODC’07, NY, USA, ACM (2007) 244–253

21. Moses, Y., Waarts, O.: Coordinated traversal: (t + 1)-round byzantine agreement
in polynomial time. In: FOCS. (1988) 246–255

22. Song, Y.J., van Renesse, R.: Bosco: One-step Byzantine asynchronous consensus.
In: DISC. (2008) 438–450

23. Dolev, D., Strong, H.: Authenticated algorithms for byzantine agreement. SIAM
J. Comput. 12(4) (1983) 656–666

A Leader-free Byzantine Consensus Algorithm 15

APPENDIX

A Proof of Formulas (2) and (3) – page 6

We first show two lemmas (adapted from [13] for a synchronous system) that
hold in any execution of Algorithm 1, both in synchronous and asynchronous
periods.

Lemma A.1. Let q be a correct process, and p some other correct process such
that valp(αq) 6= ⊥. Then, after t+ 1 rounds, for all correct processes p′ we have
valp′(αq) = valp(αq) or valp′(αq) = ⊥.

Proof. If q /∈ {p, p′}, then the result follows from the fact that, since q is correct,
it sends the same message to p and p′ at round |α|+ 1. If the message sent by q
to p′ gets lost, then valp′(αq) = ⊥. If q ∈ {p, p′}, then the result follows similarly
from the convention by which each process relays values to itself. ut

Lemma A.2. Let q be a correct process, and p some other correct process such
that valp(αq) 6= ⊥. Then, after t + 1 rounds we have newvalp(αq) = valp(αq)
or newvalp(αq) = ⊥.

Proof. By induction on the tree labels, working from the leaves up - that is, from
those of length t+ 1 down to those of length 1.

Basis: Suppose, αq is a leaf, that is, |αq| = t + 1. Then Lemma A.1 implies
that all correct processes p have the same valp(αq) or⊥. Then also newvalp(αq) =
valp(αq) or newvalp(αq) = ⊥ for every correct process p, by the definition of
newval for leaves.

Inductive step: Suppose |αq| = r, 1 ≤ r ≤ t. Then Lemma A.1 implies that
for all correct processes p, have the same valp(αq), call this v, or ⊥. Therefore,
every correct process q′ send the same value v for αq to all processes at round
r + 1, so valp(αqq′) = v or valp(αqq′) = ⊥ for all correct p and q′. Then the
inductive hypothesis implies that also newvalp(αqq′) = v or newvalp(αqq′) = ⊥
for all correct processes p and q′.

We now claim that newvalp(αq) = v or newvalp(αq) = ⊥. The number of
children of αq is exactly n − r which is ≥ n − t (i). At most t of the children
have labels ending with faulty processes. Since n > 3t we have n − r − t > t
(ii). From (i), (ii) and the definition of newval we have newvalp(αq) = v or
newvalp(αq) = ⊥. ut

Based on these two lemmas we prove the following lemmas. Lemma A.3
proves (2), while Lemma A.4 proves (3).

Lemma A.3. Let q be a correct process with initial value vq, and p some other
correct process. Then, after t+ 1 rounds, we have Mp[q] = vq or Mp[q] = ⊥.

16 F. Borran, A. Schiper

Proof. Assume that q is a correct process with initial value vq. We have to show
that for any correct process p, Mp[q] ∈ {vq,⊥} or newvalp(q) ∈ {vq,⊥}. First
note that from Lemma A.1 when |α| = 0, and for some process p, valp(q) = vq,
then for all correct process p′, valp′(q) ∈ {vq,⊥}. Then from Lemma A.2 when
|α| = 0, for some correct process p, valp(q) = vq, then newvalp(q) ∈ {vq,⊥} or
Mp[q] ∈ {vq,⊥}. ut

Lemma A.4. Let q be a faulty process. There exists v such that after t + 1
rounds, for all correct processes p, we have Mp[q] = v or Mp[q] = ⊥.

Proof. Assume that q is a faulty process. And some correct process p hasMp[q] =
v or newvalp(q) = v 6= ⊥. We have to show that for all correct processes p′,
newvalp′(q) ∈ {v,⊥}. newvalp(q) = v means that the node labeled q in the tree
constructed by correct process p has at least n− 1− t children labeled qx with
newvalp(qx) = v because of the newval definition (i). However, since node q is
a faulty process, among its children, only t− 1 of them have a label ending with
faulty process (ii). We denote Q = {q′ | newvalp(qq′) = v ∧ q′is correct}. From
(i) and (ii) we have |Q| ≥ n−1−t−t+1 = n−2t. And ∀q′ ∈ Q : newvalp(qq′) = v.
From Lemma A.2 we have ∀q′ ∈ Q : valp(qq′) = v. From Lemma A.1, for any
correct process p′ we have ∀q′ ∈ Q : valp′(qq′) ∈ {v,⊥}. Again from Lemma A.2
we have ∀q′ ∈ Q : newvalp′(qq′) ∈ {v,⊥}. This holds for at least n− 2t of node
q’s children in tree constructed by p′. So at most 2t−1 of node q’s children might
have newvalp′(qq′) = v′ /∈ {v,⊥}. Since n > 3t, we have n− 1− t (the required
quorum) > 2t − 1 which means that v′ cannot be a newval and for all correct
processes p′ we have Mp′ [q] ∈ {v,⊥}. ut

B Proof of Algorithm 2 – page 7

Lemma B.1. Consider Algorithm 2 with Byzantine faults and E ≥ n+t
2 . If

some correct process decides v in phase φ, then some other correct process can
only decide v in phase φ.

Proof. Assume that some correct process p decides v in round r = 2φ. From
condition at line 13, p has received more than E values v in round r, i.e., more
than n+t

2 − t correct processes have sent v in round r. This means that at most
n − n+t

2 + t = n+t
2 processes could have sent a value v′ 6= v in round r. Since

E ≥ n+t
2 , value v′ cannot be decided in round r. ut

Lemma B.2. With Byzantine faults and T ≥ 2n − 2E + 2t, if some correct
process decides v in round r = 2φ of Algorithm 2, every correct process q that
updates xq in round r′ > r, sets it to v.

Proof. Assume that some correct process p decides v in round r = 2φ. First we
prove by induction on r that more than E − t correct processes q have xq = v
in round r′ ≥ r.

Base step (r′ = r): Since p decides v in round r (line 14), from condition at
line 13, p receives more than E values v in round r, i.e., more than E− t correct
processes q have xq = v in round r.

A Leader-free Byzantine Consensus Algorithm 17

Induction step (from r′ = 2φ′ to r′+ 1): By induction hypothesis, more than
E−t correct processes q have xq = v in round r′ > r. Therefore, at most n−E+t
processes q′ might send xq′ = v′ 6= v in round r′+1. A correct process q updates
xq only in line 8, and if it receives messages from k > T processes. From the
assumption we have T ≥ 2n− 2E+ 2t or k > 2(n−E+ t). Therefore, no correct
process q updates xq to v′ in round r′ + 1. This implies that more than E − t
correct processes q have xq = v in round r′ + 1.

Let q′ be some correct process that updates xq′ in some round r′ = 2φ′−1 >
r. Since more than E − t correct processes q have xq = v in round r′, and
T ≥ 2n − 2E + 2t, by same arguments as in induction step, q′ sets xq′ to v in
round r′. ut

Lemma B.3. With Byzantine faults, T ≥ 2t and E ≥ t, if all correct processes
p have xp = v in round r = 2φ − 1 of Algorithm 2, every correct process q that
updates xq in round r′ ≥ r, sets it to v.

Proof. Assume that all correct processes have the same initial value v. Consider
some correct process p so that the condition at line 7 holds. This means that p
has received more than T non-⊥ messages. From T ≥ 2t, p has received at least
2t+1 non-⊥ messages. Among these messages at most t can have a value v′ 6= v,
and at least t + 1 messages have v. Therefore, if p updates xp at line 8, it sets
xp to v. ut

Therefore we have following proposition.

Proposition B.1. With Byzantine faults, n > 5t and T = E = 2(n + t)/3, if
round 2φ−1 of Algorithm 2 is simulated by the t+1 micro-rounds of Algorithm 1,
then Algorithm 2 ensures strong validity, agreement and termination.

Proof. Agreement follows directly from Lemmas B.1, B.2 and Lemmas A.3, A.4.
Strong validity follows from Lemmas A.3, A.4 and B.3. For termination, if (4)
holds, all correct processes set xp to the some common value v0 in round r
(line 8), and if (5) holds all correct processes decide v0 in round r + 1. By
comparing (1) with (4) and (5) it is easy to see that Algorithm 1 ensures (4)
and (5) if |C| ≥ n − t, n − t > T , n − t > E, and Algorithm 1 is executed after
GSR. ut

C Proof of Algorithm 3 – page 9

Proof of agreement:

Lemma C.1. Assume n > 2t. For all phases φ, and all correct processes p,
there is at most one pair 〈−, φ〉 in pre-votep.

Proof. Consider round 3φ − 2. Assume that some correct process p adds 〈v, φ〉
to pre-votep at line 14. By line 13, p received n − t messages equal to 〈v,−〉.
Assume for a contradiction that p has added 〈v′, φ〉, with v′ 6= v, to pre-votep at

18 F. Borran, A. Schiper

line 12. By line 11, this is only possible if p has received n − t messages 〈v′, ?〉.
In this case, p has received (n− t) + (n− t) messages in round 3φ− 2. However,
if n > 2t, then (n− t) + (n− t) > n, a contradiction. ut

We define Pagree(3φ−1, v) as the following predicate: ∃ts such that at the end
of round 3φ− 1, (i) for at least t+ 1 correct processes p we have xp = votep = v
and tsp ≥ ts, and (ii) for other correct processes q, if 〈v′, ts′〉 ∈ pre-voteq s.t.
v′ 6= v, then ts′ ≤ ts.

Lemma C.2. Assume n > 2t. If ∃φ, v such that Pagree(3φ − 1, v) holds, then
for all φ′ ≥ φ, Pagree(3φ′ − 1, v) also holds.

Proof. The proof is by induction on φ.
Base step (φ′ = φ): Pagree(3φ− 1, v) holds trivially from the assumption.
Induction step (from φ′ to φ′+1): By induction hypothesis, Pagree(3φ′−1, v)

holds. By the definition of Pagree(3φ′− 1, v), at the end of round 3φ′− 1, (i) for
at least t+ 1 correct processes p we have xp = votep = v and tsp ≥ ts, and (ii)
for all other correct processes q, if 〈v′, ts′〉 ∈ pre-voteq s.t. v′ 6= v, then ts′ ≤ ts.
From (i) and (ii), no correct process p with xp = votep = v executes line 29 in
round 3φ′.

Therefore Pagree(3φ, v) holds, i.e., at least t+1 correct processes start round
3φ′+1 with xp = votep = v. As a consequence, in round 3φ′+1 = 3(φ′+1)−2, for
correct processes, (i) the condition of line 10 cannot hold and (ii) the condition
of line 13 can only hold for value v. It follows that no correct process p adds
〈v′, φ′ + 1〉 (v′ 6= v) to pre-votep, and Pagree(3φ+ 1, v) holds.

In round 3φ′+2 = 3(φ′+1)−1, since no correct process sends v′ and n− t > t
(since n > 2t), no correct process sets votep to v′ 6= v. Therefore, Pagree(3φ′ +
2, v) holds. ut

Lemma C.3. If some correct process p decides v in round 3φ, then Pagree(3φ−
1, v) holds.

Proof. From line 25, at the end of round 3φ−1, at least t+1 correct processes q
have voteq = v, tsq = φ, and thus xq = v (from line 20). From lines 12 and 14, in
round 3φ−2, no correct process adds 〈−, x〉, with x > φ, to pre-votep. Therefore
Pagree(3φ− 1, v) holds. ut

Proposition C.1 (Agreement). Assume n > 2t. If some correct process p
decides v in phase φ, then no correct process decides v′ 6= v in phase φ′ ≥ φ.

Proof. From Lemma C.3, if some correct process p decides v in phase φ, then
Pagree(3φ − 1, v) holds. By Lemma C.2, Pagree(3φ′ − 1, v) holds for all φ′ ≥ φ.
This means that, for all φ′ ≥ φ, at the end of round 3φ′ − 1, for at least t + 1
correct processes p we have xp = votep = v. Therefore, at least t + 1 correct
processes p have 〈v,−〉 ∈ pre-votep in round 3φ′−1. From this and Lemma C.1,
at most n− t− 1 processes q may have xq = v′ and 〈v′,−〉 ∈ pre-voteq in round
3φ′ − 1. This means that no correct process q sets voteq to v′ in round 3φ′ − 1.
Therefore, in round 3φ′ the condition of line 25 cannot hold for v′ 6= v. ut

A Leader-free Byzantine Consensus Algorithm 19

Proof of termination:

Lemma C.4. Assume n > 3t. In all rounds r = 3φ− 1, if some correct process
p sets votep to v 6= ?, and some other correct process q sets voteq to v′ 6= ?, then
v = v′.

Proof. Assume by contradiction that v 6= v′. By line 19, p receives n−t messages
v in round r and q receives n− t messages v′ in round r. From n > 3t, we have
(n− t) + (n− t) = 2n− 2t > n+ t, or (n− t) + (n− t) ≥ n+ t+ 1. Therefore,
t + 1 processes have sent v to p and v′ to q, i.e., one correct process has sent v
to p and v′ to q. A contradiction with Lemma C.1. ut

Lemma C.5. Assume n > 3t. Let φ be the smallest phase such that round
r = 3φ is after GSR. Let q be a correct process with the highest timestamp tsq
and voteq = v 6= ? at the beginning of round r. Then at the end of round r all
correct processes p have xp = v and votep ∈ {v, ?}.

Proof. At the beginning of round r, for any correct process p three cases are
possible: (i) votep = v, or (ii) votep = v′ 6= v, or (iii) votep = ?.

In case (i), process p does not execute line 29 in round r, but executes line 30,
and sets xp to v.

In case (ii), from Lemma C.4, since votep 6= voteq, tsp 6= tsq. By assumption
tsq is the highest timestamp, and so we have tsp < tsq. By line 19, at least n−2t
correct processes have 〈v, tsq〉 in their pre-vote. If n > 3t, then n − 2t ≥ t + 1.
Since round r is executed after GSR, all messages sent in round r are received
by all correct processes. Therefore, p executes line 29 in round r, and sets votep
to ?, xp to v.

In case (iii), process p has tsp = 0 < tsq and for the same reason as case (ii)
executes line 29 in round r, and sets xp to v, votep to ?.

Therefore, at the end of round r, all correct processes p have xp = v and
votep ∈ {v, ?}. ut

Proposition C.2 (Termination). Assume n > 3t. If round 3φ − 2 of Algo-
rithm 3 is simulated by t + 1 micro-rounds of Algorithm 1, then Algorithm 3
ensures termination.

Proof. Consider round r = 3φ − 2 > GSR simulated by t + 1 micro-rounds
of Alogrithm 1. This implies that all correct processes receive the same set of
messages in round r. Two cases are possible at the beginning of round r: (i) all
correct processes p have votep = ?, or (ii) some correct process p has votep 6= ?.

In case (i), all correct processes p choose the same value v by line 11. and
add 〈v, φ〉 to pre-votep in round r. By Lemma C.1 no other pair is added to
pre-votep in round r. In round r + 1 = 3φ − 1, all correct processes send v,
receive at least n − t messages v and set votep = v, tsp = φ. Finally in round
r + 2 = 3φ, all correct processes send 〈v, φ,−〉, receive at least n − t messages
〈v, φ,−〉 and decide v.

In case (ii), from Lemma C.5, all correct processes p have xp = v and votep ∈
{v, ?} at the end of round r + 2 = 3φ. All correct processes start round r + 3 =

20 F. Borran, A. Schiper

3φ+1 with xp = v. In round 3φ+1, for any correct process p, if the condition of
line 10 becomes true, xp is updated to v because n− 2t > t. And the condition
of line 13 cannot be true for 〈v′ 6= v,−〉 since n − t > t. Therefore, no correct
process p adds 〈v′ 6= v, φ + 1〉 to pre-votep. By arguments similar to those of
case (i), all correct processes decide v by round r + 5 = 3(φ+ 1). ut

Proof of strong validity: We define Pval(3φ− 1, v) as the following predicate:
at the end of round 3φ−1, (i) all correct processes p have xp = v, votep ∈ {v, ?},
and (ii) @v′ 6= v s.t. 〈v′,−〉 ∈ pre-votep.

Lemma C.6. Assume n > 3t. If ∃φ, v such that Pval(3φ− 1, v) holds, then for
all φ′ ≥ φ, Pval(3φ′ − 1, v) also holds.

Proof. The proof is by induction on φ.
Base step (φ′ = φ): Pval(3φ− 1, v) holds trivially from the assumption.
Induction step (from φ′ to φ′ + 1): By induction hypothesis, Pval(3φ′ − 1, v)

holds. By the definition of Pval(3φ′−1, v), at the end of round 3φ′−1, all correct
processes p have xp = v, votep ∈ {v, ?}, and @v′ 6= v s.t. 〈v′,−〉 ∈ pre-votep.
This means that in round 3φ′ no correct process executes line 29, and Pval(3φ′, v)
holds. Therefore all correct processes p start round 3φ′ + 1 = 3(φ′ + 1)− 2 with
xp = v and votep ∈ {v, ?}.

Assume that the condition of line 10 holds at some correct process q. In this
case, q has received at least n− 2t messages from correct processes, and at most
t messages from Byzantine processes. However, n > 3t ensures n− 2t > t, which
means that q can only add v to pre-voteq in line 12. Assume that the condition
of line 13 holds at some correct process q. From n > 2t, we have n − t > t.
Since all correct processes send 〈v,−〉, the condition of line 13 can only hold
for v, which means that q can only add v to pre-voteq in line 14. Therefore
part (ii) of Pval(3φ′ + 1, v) holds, and since pre-vote is not updated in round
3φ′ + 2 = 3(φ′ + 1)− 1, part (ii) of Pval(3φ′ + 2, v) also holds.

Form this it follows that, in round 3φ′+2 = 3(φ′+1)−1, all correct processes
send only v. From n > 2t, we have n− t > t. Therefore, the condition of line 19
can only hold for v. It follows that part (i) of Pval(3φ′ + 2, v) holds. ut

Lemma C.7. Assume n > 3t. If all correct processes p have the same initial
value v, then Pval(2, v) holds.

Proof. Since all correct processes have xp = v and votep =? at the beginning
of round 1, and n − 2t > t no correct process p adds 〈v′, 1〉 into pre-votep by
lines 12 and 14. In round 2, since no correct process sends v′ and n− t > t, no
correct process votes v′. Therefore, at the end of round 2 all correct processes
p have xp = v, votep ∈ {v, ?}, and @v′ 6= v s.t. 〈v′, 1〉 ∈ pre-votep. This means
that Pval(2, v) holds. ut

Proposition C.3 (Strong validity). Assume n > 3t. If all correct processes
have the same initial value v, then no correct process decides v′ 6= v.

A Leader-free Byzantine Consensus Algorithm 21

Proof. By Lemma C.7, Pval(2, v) holds. By Lemma C.6, Pval(3φ − 1, v) holds
for all φ ≥ 1. This means that, for all φ > 1, at the end of round 3φ − 1, all
correct processes p have xp = v, and votep ∈ {v, ?}. Therefore, in round 3φ the
condition of line 25 cannot hold for v′ 6= v. ut

Therefore we have following proposition.

Proposition C.4. With Byzantine faults and n > 3t, if round 3φ− 2 of Algo-
rithm 3 is simulated by the t+ 1 micro-rounds of Algorithm 1, then Algorithm 3
ensures strong validity, agreement and termination.

Proof. This follows from Propositions C.1, C.2, and C.3.

