Herein, we show that TNF exerts a pH-dependent increase in membrane conductance in primary lung microvascular endothelial cells and peritoneal macrophages. This effect was TNF receptor-independent, since it also occurred in cells isolated from mice deficient in both types of TNF receptors. A TNF mutant in which the three amino acids critical for the lectin-like activity were replaced by an alanine did not show any significant effect on membrane conductance. Moreover, a synthetic 17-amino acid peptide of TNF, which was previously shown to exert lectin-like activity, also increased the ion permeability in these cells. The amiloride sensitivity of the observed activity suggests a binding of TNF to an endogenous ion channel rather than channel formation by TNF itself. This may have important implications in mechanisms of TNF-mediated vascular pathology.