Conformational changes occurring upon membrane binding and subsequent insertion of staphylococcal alpha-toxin were studied using complementary spectroscopic techniques. Experimental conditions were established where binding could be uncoupled from membrane insertion but insertion and channel formation seemed to be concomitant. Binding led to changes in tertiary structure as witnessed by an increase in tryptophan fluorescence, a red shift of the tryptophan maximum emission wavelength, and a change in the near UV CD spectrum. In contrast to what was observed for the soluble form of the toxin, 78% of the tryptophan residues in the membrane-bound form were accessible to the hydrophilic quencher KI. At this stage, the tryptophan residues were not in the immediate vicinity of the lipid bilayer. Upon membrane insertion, a second conformational change occurred resulting in a dramatic drop of the near UV CD signal but an increase of the far UV signal. Tryptophan residues were no longer accessible to KI but could be quenched by brominated lipids. In the light of the available data on channel formation by alpha-toxin, our results suggest that the tryptophan residues might be dipping into the membrane in order to anchor the extramembranous part of the channel to the lipid bilayer.