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Abstract

The modeling of a system composed by a gas phase and organic aerosol particles, and its
numerical resolution are studied. The gas-aerosol system is modeled by ordinary differential
equations coupled with a mixed-constrained optimization problem. This coupling induces
discontinuities when inequality constraints are activated or deactivated.

Two approaches for the solution of the optimization-constrained differential equations
are presented. The first approach is a time splitting scheme together with a fixed-point
method that alternates between the differential and optimization parts. The ordinary
differential equations are approximated by the Crank-Nicolson scheme and a primal-dual
interior-point method combined with a warm-start strategy is used to solve the minimiza-
tion problem. The second approach considers the set of equations as a system of differential
algebraic equations after replacing the minimization problem by its first order optimality
conditions. An implicit 5th-order Runge-Kutta method (RADAU5) is then used. Both
approaches are completed by numerical techniques for the detection and computation of
the events (activation and deactivation of inequality constraints) when the system evolves
in time. The computation of the events is based on continuation techniques and geometric
arguments. Moreover the first approach completes the computation with extrapolation
polynomials and sensitivity analysis, whereas the second approach uses dense output for-
mulas.

Numerical results for gas-aerosol system made of several chemical species are proposed
for both approaches. These examples show the efficiency and accuracy of each method.
They also indicate that the second approach is more efficient than the first one. Further-
more theoretical examples show that the method for the computation of the activation is
of second order for the first approach and exact for the second one.

Keywords: Initial value problems, differential algebraic equations, constrained optimiza-
tion, event detection, discontinuity points, computational chemistry.
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Version abrégée

Cette thèse s’intéresse à la modélisation d’un système composé de gaz et de particules
aérosols organiques ainsi qu’à sa résolution numérique. Le système gaz-aérosol est modélisé
par des équations différentielles ordinaires auxquelles on couple un problème d’optimisation
avec des contraintes d’égalité et d’inégalité. De ce couplage naissent des discontinuités.
Elles apparaissent dans le système lorsque les constraintes d’inégalité s’activent ou se
désactivent.

Deux approches sont présentées pour résoudre ce système d’équations. La première
approche suit un schéma de splitting en séparant la résolution des équations différentielles
de celle du problème d’optimisation. Concernant la résolution des équations différentielles,
la méthode de Crank-Nicolson est utilisée. Le problème d’optimisation est quant à lui
résolu à l’aide d’une méthode de point intérieur à laquelle on ajoute une stratégie warm-
start pour son initialisation. La seconde approche considère le modèle comme un système
d’équations différentielles algébriques après avoir substitué le problème d’optimisation par
ses conditions d’optimalité du premier ordre. Elle utilise ensuite une méthode de Runge-
Kutta implicite d’ordre 5 (RADAU5) pour résoudre ce nouveau système. Chacune des
approches est complétée par des techniques qui détectent l’activation et la désactivation des
contraintes d’inégalité, et qui calculent l’instant auquel ces événements se produisent. Ces
techniques font appel à des méthodes de continuation et aux caractéristiques géométriques
du modèle. Pour la première approche une extrapolation polynomiale et des analyses de
sensiblité viennent compléter le calcul des événements, alors que dans la seconde approche
des formules de dense output sont utilisées.

Des exemples numériques sont présentés pour chacune des approches sur différents
systèmes gaz-aérosol. Ces résultats illustrent la rapidité et la précision de chaque méthode
ainsi qu’une plus grande efficacité de la part de la seconde. Finalement des exemples
théoriques montrent que le calcul des temps d’activation est d’ordre deux pour la première
méthode et exacte pour la seconde.

Mots clés: Problèmes de Cauchy, équations différentielles algébriques, optimisation sous
contraintes, détection d’événements, points de discontinuité, chimie computationnelle.
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Introduction

Climate change and air pollution are among the main environmental preoccupations of this
century. Both problems are very closely related while they both depend on the composition
of the atmosphere.

The Earth’s climate changes when the global energy balance between incoming energy
from the Sun and outgoing from the Earth is upset. There are a number of natural
mechanisms that can upset this balance, for example fluctuations in the Earth’s orbit,
variations in ocean circulation and changes in the composition of the Earth’s atmosphere
[96, 102]. In recent times, the latter has been evident as a consequence of the increasing
emissions of greenhouse gases in the atmosphere [78]. Moreover atmospheric physicists
now recognize aerosol particles as a new agent in the climate change [92]. Atmospheric
aerosols influence the transfer of energy in the atmosphere in two ways referred to as direct
forcing and indirect forcing. In the direct forcing mechanism, aerosols reflect sunlight back
to space and cool the planet. The indirect forcing modifies the optical properties and
lifetimes of clouds. Aerosol particles act as additional cloud condensation nuclei, spreading
the cloud’s liquid water over more, smaller droplets. This makes clouds more reflective and
longer lasting [53, 90, 96, 99, 102].

Air pollution may be defined as the presence of substances in the atmosphere causing
adverse effects to man and the environment. Natural air pollution has occurred on Earth
since the planet’s formation. Fires, volcanic eruptions, meteorite impacts and high winds
all cause natural air pollution [53, 96]. Anthropogenic air pollution problems have existed
on urban scales for centuries and have resulted from burning of wood, vegetation, coal,
oil, natural gas, waste and chemicals. In the nineteenth and early twentieth centuries,
most air pollution was due to chimney and smokestack emission of coal and chemical-
factory combustion products [102]. In the early twentieth century, the widespread use of
automobiles and the increase in industrial activity increased the prevalence of air pollution.
Air pollutants consist of either trace gases or aerosol particles [53, 96]. They can have
detrimental effects on human health such as asthma [13, 77, 111]. Aerosol particles may
be seen as the most critical of all pollutants, and some estimates have suggested that they
are responsible for up to 10,000 premature deaths in the UK each year. Air pollutants also
affect acid deposition [58, 76] and their high number reduces the visibility in urban and
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Introduction

regional areas [63, 65].
In conclusion, atmospheric aerosol particles have impacts on both air pollution and cli-

mate change. Their impacts do not only depend on their concentration in the atmosphere,
but also on their physical state and chemical composition [95]. Since their amount in the
atmosphere is still growing, a better prediction of their behaviour is essential. A better
understanding leads to develop tools that can be used for policy making. With accurate
models, policy makers can try to mitigate pollution and climate problems [78].

Atmospheric particles undergo physical and chemical transformations in the atmosphere
that alter their number, size, composition and physical state. These transformations are
due to the following processes: condensation, evaporation, coagulation, gravitational set-
tling, nucleation, advection, turbulent transport, emission, deposition and chemical reac-
tions [53, 96, 111]. Gelbard and Seinfeld in [43] introduced the General Dynamic Equa-
tion (GDE) for aerosol particles. This equation describes mathematically all the above-
mentioned processes and is the reference equation for the dynamics of aerosols. The vari-
ables are only the particle size and composition. Several resolution methods are proposed
[85, 86, 106, 111] and aerosol dynamics models exist (MADM [83], MOSAIC [110] and
MAM [94, 98]). In these models, significant simplifications are employed. The first reason
is that little experimental data are available [106]. The measurement of aerosol particles
and their properties is still an ongoing challenge in atmospheric sciences [59, 67]. This lack
of data are sources of uncertainty in models. The second reason is that the simulation of
aerosol dynamics is the slowest part in air quality models [54, 74, 84]. In order to keep
reasonable computational time, simplifications in the modeling of the aerosol dynamics
have to be considered.

A first simplification is to suppose that the aerosol particles are internally mixed, that
is all the particles of a given size have the same composition, even if a few investigators
have shown that ambient aerosol particles are not internally mixed [26, 70]. With this
assumption, it remains only one independent variable in the GDE: the size of the particles.
In early aerosol models another simplification was assumed: the instantaneous thermo-
dynamic equilibrium for the condensation and evaporation processes. Then these two
processes are reduced to a set of stiff ordinary differential equations [85, 86, 106]. However,
Wexler and Seinfeld [107], and Meng and Seinfeld [71] show that this hypothesis is wrong.
Furthermore Allen et al. [1] and Wexler and Seinfeld [107] indicate that equilibrium alone
cannot uniquely determine the size, and both mass transport and thermodynamics must
be considered to accurately predict the size distribution of aerosol particles. Actual aerosol
models [83, 110] couple the thermodynamics with condensation and evaporation processes.
However all simplify or even neglect the part dedicated to the prediction of the physical
and chemical properties of atmospheric aerosols. Only the size distribution is modeled.

The purpose of this thesis is to develop a model and a numerical method for the
prediction of the dynamics of atmospheric aerosol particles. Since in the GDE the most
important part is due to condensation and evaporation [106], only these two processes are
considered. Although, unlike in the above-mentioned models, the aerosol particles are not
supposed internally mixed and the size of the aerosol particles is not the sole variable in
the model. We are also interested in the prediction of the composition and physical state of
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the aerosols, which is determined by the thermodynamic equilibrium. The final aim of this
work is to incorporate the model in 3D air quality models such as the U.S. Models3/CMAQ
[17] and the Harvard GEOS-CHEM model [80]. In order to be competitive the numerical
method has to be fast, accurate and must not consume too much memory.

The system under study is made of atmospheric aerosol particles and a surrounding
gas of same chemical composition. The system is supposed to be closed in the sense
that no matter is created nor destroyed. Gas and particles interact with each other in
order to reach the equilibrium in the system. These interactions lead to changes in the
gas-particle partitioning and in the thermodynamic equilibrium inside the particles. The
partitioning is mathematically represented by ordinary differential equations, whereas the
thermodynamic equilibrium inside the aerosols is obtained by solving a mixed-constrained
global optimization problem. Thus a mathematical model for this problem can be written
as follows [18, 19]: for p, q > 0, T > 0 and b0 given, find b : t → b(t) ∈ Rp and
x : t→ x(t) ∈ Rq satisfying

d

dt
b(t) = f(t,b(t),x(t)), b(0) = b0

x(t) = arg min
x̄

G(x̄)

s.t. cI(x̄,b(t)) ≥ 0, ∀I = 1, . . . , nI ,

cE(x̄,b(t)) = 0, ∀E = 1, . . . , nE ,

(0.0.1)

where t ∈ (0, T ). The vector b represents the composition of the aerosol particle and
x describes the thermodynamic equilibrium. The first equation in (0.0.1) is a stiff and
nonlinear ordinary differential equation where f is a continuous vector-valued function.
The second part of (0.0.1) corresponds to a global minimization problem subjected to nI
inequality constraints and nE equality constraints. The objective function G represents
the Gibbs free energy of the aerosol. This function is nonconvex, nonlinear and uniquely
depends on x. The equality constraints can be nonlinear functions while the inequality
constraints are supposed to be linear.

Note that problem (0.0.1) is not an optimal control problem. The main difference
between problems arising in control systems theory [104] and the present problem resides
in the fact that the function G is minimized for a.e. t ∈ (0, T ) along the trajectory, and
not only at the final time T for instance.

The purpose of this thesis is to present an efficient numerical method that solves
optimization-constrained differential equations like (0.0.1) in the framework of atmospheric
particles, together with the corresponding appropriate model. System (0.0.1) is such that
as soon as an inequality constraint is activated or deactivated, the variable x is ”truncated”
and loses regularity. The time at which the ”truncation” occurs is called a discontinuity
time and x evaluated at this time is a discontinuity point. The numerical method has to
accurately detect and compute the times of activation and deactivation of constraints in
order to (i) compute the discontinuity time and point and (ii) guarantee the correctness
and accuracy of the numerical solution of (0.0.1).
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The first part of this thesis concerns the origin and the mathematical formulation of
the model (Chapter 1). The variables and a set of notations are defined. The chemical and
physical laws that govern a system composed of organic aerosol particles are presented in
order to obtain the mathematical system of the form (0.0.1). The geometrical interpretation
of the problem is explained. The dynamics of the system are interpreted as the dynamic
computation of the convex envelope of the objective function G. A series of definitions and
notations is given.

Chapter 2 treats the resolution of the optimization problem. This problem is treated
separately for several reasons. The first one is because this thesis is the continuation of the
works of [4, 5] where Amundson et al. developed an efficient algorithm for the computation
of the thermodynamic equilibrium for a given organic aerosol particle. Their method is
based on primal-dual interior-point techniques [10, 72, 73, 75]. The second reason is that
its resolution appears at several times in the numerical method to solve (0.0.1).

Two different approaches for the resolution of (0.0.1) are presented. The first one fol-
lows the optimization techniques developed in Chapter 2 whereas the second one reads
the system (0.0.1) as a differential algebraic system. For both approaches the resolution
method without any tracking of discontinuities is first introduced. Then the strategy for
the detection and computation of a deactivation or activation is explained. The difficulty in
both cases resides in the impossibility of defining an explicit event function that character-
izes the activation or deactivation of a constraint. Finally numerical and some theoretical
results follow each method.

The first method is studied in Chapter 3. This method has the aim of keeping the op-
timization technique developed in Chapter 2. Therefore a time splitting idea is considered
to solve the system (0.0.1). The ordinary differential equations are discretized in time with
the Crank-Nicolson scheme and combined with the first order optimality conditions of the
minimization problem. The resulting system is then solved with a fixed point technique.
The detection of events is based on the behaviour of the resolution of the optimization prob-
lem. Classical event detection algorithms couple a discontinuity locking approach [23] with
interpolation techniques [35, 81, 97]. However, because of the truncation of the variable
x, the interpolation polynomials are inefficient. Extrapolation techniques are well-adapted
to compute the discontinuity points. Our computation of the discontinuity points follow
the works of Esposito and Kumar in [33]. The idea is to extrapolate an approximation of
the function that describes the activation or the deactivation. The order of convergence of
this first method is proved when inequality constraints are activated and several numerical
examples emphasize the efficiency of this first approach.

The second method is presented in Chapter 4. If the number of active inequality con-
straints is fixed, the considered system can be associated to a system of differential alge-
braic equations (DAE), by replacing the minimization problem by its first order optimality
conditions. The second method is based on this observation.

The strategy for solving (0.0.1) is similar to the first method in the sense that it splits
the resolution in two steps: (i) solve the DAE system when the number of active inequality
constraints is fixed, (ii) verify at each time step if an inequality constraint has to be
activated or deactivated. If it is the case, compute the discontinuity time and point, define
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the new DAE system and restart in (i).
Efficient techniques to solve DAE systems, relying on implicit Runge-Kutta methods,

have been developed in [7, 49, 50, 61]. The DAE system stemmed from (0.0.1) is solved
by using the implicit Runge-Kutta method of order 5, RADAU5, developed by Hairer and
Wanner in [50]. The detection of an activation or deactivation follows the idea developed
for the first method. Concerning the computation of the discontinuity time and point, the
strategies differ. Guglielmi and Hairer suggest in [47] an efficient technique to compute
breaking points when the system to solve is a DAE system and a Runge-Kutta method
is used. Once the time interval that contains the breaking point is defined, the insight of
this technique is to insert the step size needed to reach the breaking point as a variable
in the set of equations and to solve this new augmented system with a splitting idea in
order to keep the efficient resolution method for the DAE. This technique is applied for
the computation of the discontinuity time and point in (0.0.1).

Since the discontinuity corresponds either to the activation, or to the deactivation,
of an inequality constraint, the number of active inequality constraints changes at the
discontinuity time. Hence before restarting the resolution of the DAE system, one needs
to adapt the DAE system to the new number of active constraints. In particular the number
of unknowns and the size of the DAE system change after activation or deactivation.

As for the first method, several numerical results are presented to illustrate the efficiency
and accuracy of the algorithm.

The final chapter of this thesis summarizes each method with their advantages and
limits. Some perspectives of the work are also discussed.
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Chapter 1
Modeling

This first chapter presents the gas-aerosol system and the corresponding mathematical
model. The first part of this chapter proposes a presentation of the atmospheric aerosol
particles. Definition, characteristics and impacts of these particles are introduced which
also gives the motivations to model the existing interactions between the gas phase and the
aerosol particles. Then the transcription of these interactions into mathematical equations
is detailed. Since a minimization problem occurs in the mathematical formulation, some
insights in optimization theory are developed. Finally, once the model is mathematically
formulated, its geometric interpretation is proposed. This interpretation gives groundwork
to the techniques that detect the discontinuity points.

1.1 Atmospheric aerosol particles

An atmospheric aerosol is an ensemble of solid, liquid or mixed-phase particles suspended
in air [53, 96]. Each particle consists of an aggregate of atoms and/or molecules bonded
together. An aerosol particle is a single particle within an aerosol, but often loosely referred
to as simply aerosol.

Particle emission originates from natural and anthropogenic sources [96, 99, 102]. Nat-
ural sources include wind uplift of sea spray, soil dust, pollen, spores and bacteria, volcanic
outgassing, natural biomass fires, and lightning. Anthropogenic sources include fossil-fuel
combustion, biofuel burning, biomass burning, and wind uplift of soil dust over eroded
land. Globally, particle emission rates from natural sources exceed those from anthro-
pogenic sources. In urban areas, the reverse is true.

Aerosol particles have always been present on the Earth since its formation. However
their increasing amount, essentially due to human activities, leads to deep impacts on the
planet [78]. Aerosols affect health, air quality, cloud formation, meteorology and climate.
Submicrometer particles (those smaller than 1µm in diameter) affect human health by
penetrating to the deepest part of human lungs [13, 77]. Aerosol particles with a diameter of
0.2−1µm that contain sulfate, nitrate, and organic carbon scatter light efficiently. Aerosol
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CHAPTER 1. MODELING

particles smaller than 1µm that contain black carbon absorb light efficiently. Aerosol
absorption and scattering affect (1) radiative energy fluxes, which affect temperatures, and
(2) photolysis, which affects the composition of the atmosphere. Aerosol particles also
serve as nuclei for the formation of cloud drops [88]. In fact, without aerosol particles,
clouds would rarely form in the atmosphere. Actually, the large number of particles in
the atmosphere leads to clouds that are more reflective and last longer. Finally, aerosol
particles serve as sites on which chemical reactions take place and as sites for trace gases
to condense upon or dissolve with. Therefore the study of these particles is crucial in order
to regulate and decrease their impacts.

The atmospheric aerosols are divided into two categories: the organic aerosols, which
only contain atoms of carbon, hydrogen, oxygen and nitrogen; and the inorganic aerosols
which can be made of sulfate, nitrate, sodium, trace metals, carbonaceous material, etc. All
these aerosols may be composed of several liquid phases and the inorganic compounds can
react and lead to the formation of solid phases in addition [53, 96]. Phases are sometimes
confused with states of matter but there are significant differences. Gas, liquid and solid
are known as the states of matter, but each of solid and liquid states may exist in one or
more forms. The term phase is required to describe the various forms. A phase is a region
of matter with uniform chemical composition and physical properties. For example, salad
dressing may separate into an oil-phase and a water-rich phase; there exist then 2 phases in
the dressing, both of which are in the liquid state. The repartition of the aerosol between
different phases is called the phase equilibrium or phase repartition of the aerosol [5, 69].

Aerosols are subjected to an array of processes that modify their size, composition,
and phase repartition. The subject of this thesis is concerned by the time evolution of a
system composed by organic aerosol particles and gases when the processes of evaporation
and condensation are taken into consideration together with the phase equilibrium process
inside the particle. Evaporation occurs when a liquid molecule on a particle surface changes
state to a gas and diffuses away from the surface. Condensation occurs when a gas diffuses
to and sticks to the surface of a particle and changes state to a liquid.

In the next section a description of the gas-aerosol system is presented as well as
the governing equations that describe the evaporation and condensation. For realistic
and chemically interesting simulations let us consider N identical aerosol particles in the
system. These particles interact with the gas identically and at the same time. For this
reason only the time evolution of one particle is depicted on the forthcoming graphs and
numerical results.

1.2 The gas-aerosol system

The modeling of the evolution of identical organic aerosol particles embedded in a gas of
same chemical composition is studied. The particles are supposed to initially exist and do
not disappear. Let us assume on the one hand that the temperature and the pressure are
constant, and on the other hand that the system formed by the aerosols and gas is closed,
namely matter is neither created nor destroyed. Since the system is closed a mass transfer

8



1.2. THE GAS-AEROSOL SYSTEM

between the aerosol particles and gas takes place through evaporation or condensation until
the equilibrium between the concentrations of the gas far from the particles, and at the
particle surface is reached.

Schematically the system is represented in Figure 1.1 when only one particle is in
the system. The aerosol particles are supposed to be spherical and surrounded by gas
molecules. Any chemical component existing in the gas state is also assumed to be present
inside the particles. For example if the aerosols are composed of water (H2O) and hexa-
cosanol (C26H54O), then these two chemical components are in a liquid state in the particles
and there are molecules of water and molecules of hexacosanol in the gas state surrounding
the aerosols.

c∞g

csurf
g

aerosol

b

R

gas

Figure 1.1: Gas-aerosol system when N = 1.

Let us introduce some notations:

• s, the number of different chemical components existing in the system,

• b, the composition-vector of the s chemical components present in a particle [mol],

• N , the number of particles of composition b per unit of volume [m−3],

• c∞g , the vapor-phase concentration-vector of the s chemical components present in the
gas far from the particle, i.e. far enough from the particles in order to be considered
at equilibrium [mol/m3],

• csurf
g , the vapor-phase concentration-vector of the s chemical components present in

the gas at the particle surface [mol/m3],

• R, the radius of each aerosol particle [m].

The variables b, c∞g , csurf
g and R are functions of time, whereas s and N are constant.

The evaporation and condensation processes induce mass transfer between gas and
aerosols. The values of b, c∞g , csurf

g and R vary because of this mass flux. The modeling

9



CHAPTER 1. MODELING

of the flux is done through a system of ordinary differential equations (ODE). The other
point of interest is the determination of the phase equilibrium of each aerosol particle.
This equilibrium state is characterized by the global minimum of the Gibbs free energy of
each particle. In the next sections the coupling between these two problems is established.
The expression of the mass flux depends on the liquid phases computed by the phase
equilibrium problem, whereas the minimization problem is solved for a composition-vector
b that is solution of the ODE problem. Let us begin with the description of the mass flux.

1.3 Mass transfer

The mass transfer between the particles and the surrounding gas is modeled by the following
system of ordinary differential equations (ODE):

d

dt
c∞g (t) = −N j(c∞g (t), csurf

g (t), R(t)), (1.3.1a)

d

dt
b(t) = j(c∞g (t), csurf

g (t), R(t)), (1.3.1b)

R(t) =

(

3

4π

s
∑

i=1

mc,i bi(t)

ρi

)
1
3

, (1.3.1c)

where for i = 1, . . . , s, ρi is the density of the chemical components i, mc,i is the atomic
mass of the chemical component i, and j represents the molecular flux between the gas and
each aerosol particle.

The equation (1.3.1c) comes from the expression of the volume V of a particle. Since
the aerosol particle is supposed to be spherical, the volume is given by

V =
4

3
πR3.

On the other hand the volume V can be considered as the addition of the volume Vi of
each component present in the aerosol, i.e.

V =

s
∑

i=1

Vi.

This volume Vi can be expressed by the density ρi of the chemical component i

Vi =
mc,ibi
ρi

, i = 1, . . . , s.

Combining these last 3 equations the relation (1.3.1c) is obtained.
Concerning the mass flux j, multiple definitions exist. Particle growth or evaporation

depends on the direction of the net flux of vapor molecules relative to a particle, namely
c∞g − csurf

g [96]. If c∞g,i > csurf
g,i , the flow of gas molecules of species i goes inside the particle

10



1.3. MASS TRANSFER

and if c∞g,i < csurf
g,i , it goes outside the particle. Different formulations of the correction term

in front of c∞g − csurf
g have been suggested in atmospheric models [112]. Works of Fuchs

[40], Fuchs and Sutugin [41], Dahneke [27], and Wexler and Seinfeld [107] can be cited as
the major references. Let us follow the definition proposed by Wexler and Seinfeld, i.e.

ji

(

c∞g,i(t), c
surf
g,i (t), R(t)

)

=
4πR(t)Di

λair

αiR(t)
+ 1

(

c∞g,i(t) − csurf
g,i (t)

)

, for i = 1, . . . , s; (1.3.2)

where Di is the diffusion coefficient of the species i, λair is the mean free path of the air and
αi is the accommodation coefficient of the chemical species i. Let us define the following
matrix H

H = diag

(

4πRDi

1
λ

αiR
+ 1

)

i=1,...,s

.

The expression of the flux j becomes

j(c∞g , c
surf
g , R) = H(R)

(

c∞g − csurf
g

)

, (1.3.3)

which represents the number of moles of gas exchanged between each aerosol particle and
the surrounding gas per unit of time.

Remark 1.3.1. The matrix H uniquely depends on the radius R. All the other parameters
are chemical features of the components present in the aerosol and all are independent of
the time. Thus the matrix is written as H(R).

Remark 1.3.2. In equation (1.3.3) the Kelvin effect is neglected. Actually equation (1.3.3)
is correct when the surface between the particle aerosol and the gas molecules is flat. As
soon as the surface is curved, the formulation of the flux must be modified as follows [53, 96]

j(c∞g , c
surf
g , R) = H(R)

(

c∞g − η(b, R) csurf
g

)

. (1.3.4)

The corrective term η(b, R) is the s× s diagonal matrix defined by

η(b, R) = diag

(

exp

(

2σ(b)mw,i

RcTρiR

))

i=1,...,s

,

where σ(b) is the surface tension coefficient when the composition of the particle is given
by b, mw,i is the molecular weight of the chemical species i, T is the temperature of the
system and Rc is the ideal gas constant (Rc = 8.20574587 · 10−5 [m3atmK−1mol−1]).

At small particle sizes the Kelvin effect can be significant. However this effect becomes
negligible for particle diameters larger than 20nm. For a 20nm diameter particle the
effect represents only a 5% correction to csurf

g [11, 96]. Consequently the Kelvin effect is
not included in our model.

In the differential system (1.3.1) the equations govern the time evolution of the variables
c∞g , b and R, but an expression controlling the variable csurf

g is missing. Let us leave aside
the calculation of csurf

g for a moment and study the determination of the phase equilibrium
of an aerosol particle.

11



CHAPTER 1. MODELING

1.4 Phase equilibrium problem

Organic aerosol particles can be separated into several liquid phases as explained in Section
1.1. For each composition vector b of the aerosol, the partitioning of organics between
different liquid phases is determined by minimizing the Gibbs free energy of the particle
[5, 107]. This optimization problem is called the phase equilibrium problem (PEP). For
this section we consider an aerosol particle with a fixed composition vector b (i.e. neither
evaporation nor condensation occurs with the surrounding media) and define explicitly the
PEP.

1.4.1 Liquid-liquid separation

Before starting with the formulation of the PEP, let us have a look at the example depicted
in Table 1.1 and coming from [5] in order to better understand the notion of liquid phase
and the forthcoming notations. In this example the particle is made of n-Butyl-Acetate
(C6H12O2) and Water (H2O), and the composition-vector is defined by bT = (0.5, 0.5).
In other words the particle is composed of 0.5 mole of n-Butyl-Acetate and 0.5 mole of
Water. Amundson et al. in [5] found that for a temperature of 298 K and a pressure of
1 atm the aerosol is separated into 2 liquid phases. The first liquid phase contains 0.545
mole of a mixture composed of 8.3 % of n-Butyl-Acetate and 91.7 % of Water. The second
liquid phase contains 0.455 mole, made of 99.9 % of n-Butyl-Acetate and 0.01 % of Water.

Chemical components b Liquid phase I Liquid phase II

n-Butyl-Acetate (C6H12O2) 0.50 0.083 0.999
Water (H2O) 0.50 0.917 0.001
Number of moles 1 0.545 0.455

Table 1.1: Phase equilibrium for an aerosol composed of n-Butyl-Acetate and Water at
temperature 298 K and pressure 1 atm.

Let us denote by xα, α = 1, 2, the mole-fraction vector associated to the liquid phase
α and by yα, α = 1, 2, the total number of moles in liquid phase α. For the example in
Table 1.1 one has

x1 =

(

0.083
0.917

)

, x2 =

(

0.999
0.001

)

, y1 = 0.545 and y2 = 0.455.

It ensues that the total organic mass is conserved through the relation

2
∑

α=1

yαxα = b.

In this example the number of liquid phases present in the aerosol is equal to 2. De-
pending on the value of b, the parameters characterizing the interactions between the

12



1.4. PHASE EQUILIBRIUM PROBLEM

chemical species, the temperature and the pressure in the system, this number changes.
In fact its value always remains between 1 and s at constant temperature and pressure
(Gibbs-Duhem relation [96]). Let us denote by p the maximal number of liquid phases in
the aerosol. Thus the following inequalities hold: 1 ≤ p ≤ s.

If a liquid phase α, 1 ≤ α ≤ p, is not present at equilibrium in the particle, then the
corresponding total number of moles yα is equal to 0. In the other case, if the liquid phase
is present in the aerosol, then the value of yα is positive, i.e. yα > 0. Consequently the
following relation holds

yα ≥ 0, ∀α = 1, . . . , p.

Concerning the variable xα, the definition of a mole-fraction vector implies that the
sum of the components of xα is equal to 1. Moreover we make an assumption here that all
phases contain all chemicals. On a mathematical point of view it yields

eTxα = 1 and xα > 0, ∀α = 1, . . . , p; (1.4.1)

where eT = (1, . . . , 1) and the relation xα > 0 is a shortened expression for xα,i > 0, ∀ i =
1, . . . , s, ∀α = 1, . . . , p.

The relation (1.4.1) is clearly satisfied by both liquid phases of the example in Table 1.1.
In the case yα = 0, the corresponding mole-fraction vector xα does not take any particular
physical value since the liquid phase is not present in the particle. Thus this case has no
influence on the mass balance and the following relation still holds

p
∑

α=1

yαxα = b.

1.4.2 Formulation of the phase equilibrium problem

With all the notations and relations given in the previous subsection, the phase equilibrium
problem can now be defined. The determination of the number and composition of the
liquid phases present in the aerosol particle of composition b is given by the global minimum
of the following constrained minimization problem [5, 28, 96]

min
{yα,xα}p

α=1

p
∑

α=1

yα ḡ(xα)

s.t.

p
∑

α=1

yαxα = b, (1.4.2)

yα ≥ 0, eTxα = 1, xα > 0, α = 1, . . . , p;

where ḡ is the molar Gibbs free energy.
In (1.4.2) the objective function gives the total Gibbs free energy of the particle whereas

the constraints ensure the conservation of the mass balance and the characteristics of the
variables yα and xα, α = 1, . . . , p.
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Remark 1.4.1. If in problem (1.4.2) there exist two phases α and β such that yα > 0,
yβ > 0 and xα = xβ, it means that the phases α and β are similar. Then we combine both
phases in one unique phase by setting yα = yα +yβ and yβ = 0. This trick allows to assume
that all liquid phases (and therefore xα) present in the aerosol have distinct compositions.

The molar Gibbs free energy function ḡ is a homogeneous function of degree one that
is usually defined by

ḡ(x) = xT µl(x), (1.4.3)

where µl(x) is the chemical potential vector for the mole-fraction vector x defined by

µl(x) = µ∗
l + RcT ln(al(x)), (1.4.4)

where al is the vector describing the activity of the species i, i = 1, . . . , s and µ∗
l is the

chemical potential at the hypothetical state for which al,i(x), i = 1, . . . , s, tends to 1 [96]
(which corresponds to pure mixture). As one can observe in the relations (1.4.3) and
(1.4.4), the function ḡ depends on the chemical species constituting the aerosol particle.
Hence the graph of ḡ depends on the chemical species. Nevertheless the properties of ḡ
mentioned below hold for any chemical composition of the aerosol.

The function ḡ is continuous on Rs
+, belongs to C∞(Rs

++) with R++ denoting the set of
real positive numbers, and is such that

lim
xi→0

∂ḡ

∂xi

(x1, . . . , xs) = −∞, ∀i = 1, . . . , s;

that is, the values of ḡ approach finite limits as any given mole fraction tends to zero, and
these limiting values are approached with negatively infinite slope.

From the definition of ḡ and the fact that the temperature and the pressure are constant,
the Gibbs-Duhem equation reads [96]

xT
∇µl(x) = 0, ∀x ∈ R

s
++ s.t. eTx = 1.

This equation implies the 3 following relations ∀x ∈ R
s
++ satisfying eTx = 1

∇ ḡ(x) = µl(x), (1.4.5)

ḡ(x) = xT
∇ḡ(x), (1.4.6)

∇
2ḡ(x)x = 0. (1.4.7)

Relationship (1.4.7) means that the pair (0,x) is an eigen-pair for the matrix ∇
2ḡ(x).

The definitions of ḡ and of the chemical potential for the nonideal solution xα, α =
1, . . . , p allow to transform the expression of the objective function in (1.4.2). Combining
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the relations (1.4.3) and (1.4.4) the objective function of (1.4.2) becomes
p
∑

α=1

yαḡ(xα) =

p
∑

α=1

yα xT
αµl(xα)

=

p
∑

α=1

yα xT
α µ∗

l + RcT

p
∑

α=1

yα xT
α ln(al(xα))

=

(

p
∑

α=1

yα xα

)T

µ∗
l + RcT

p
∑

α=1

yα xT
α ln(al(xα)),

since µ∗
l is a constant vector independent of xα, α = 1, . . . , p.

With the mass balance equation this relation becomes
p
∑

α=1

yαḡ(xα) = bT µ∗
l + RcT

p
∑

α=1

yα xT
α ln(al(xα)).

Since bT µ∗
l and RcT are constants, to minimize

∑p
α=1 yαḡ(xα) is equivalent to minimize

∑p

α=1 yα xT
α ln(al(xα)). Then let us define the normalized Gibbs free energy by

g(x) = xT ln(al(x)).

The relationship between the molar Gibbs free energy and its normalized version is given
by

ḡ(x) = xT µ∗
l + RcT g(x), ∀x ∈ R

s
++.

Consequently the function g inherits the properties of ḡ, in particular

g(x) = xT
∇g(x), ∀x ∈ R

s
++ s.t. eTx = 1. (1.4.8)

The PEP is then equivalent to solve

min
{yα,xα}p

α=1

p
∑

α=1

yα g(xα)

s.t.

p
∑

α=1

yαxα = b, (1.4.9)

yα ≥ 0, eTxα = 1, xα > 0, α = 1, . . . , p.

In the sequel, this formulation of the phase equilibrium is considered. Problem (1.4.9)
is a nonconvex nonlinear constrained optimization problem with equality and inequality
constraints. The molar Gibbs free energy g depends on interaction parameters between the
chemical species composing the particle [39, 51]. The determination of these parameters
is a difficult task and still an ongoing research [24]. The semi-empirical thermodynamic
model UNIFAC is a well-established method for estimating the activity coefficients that
define g . In this thesis, the molar Gibbs free energy is obtained using the UNIFAC model
[39].

In the following subsection we present an overview of the theory of constrained opti-
mization and its first-order optimality conditions.
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1.4.3 First-order optimality conditions

A general formulation for the constrained optimization problem (1.4.9) is given by [75]

min
y∈Rn

f(y) subject to

{

ci(y) = 0, i ∈ E ,
ci(y) ≥ 0, i ∈ I ,

(1.4.10)

where the functions f and ci are all smooth, real-valued functions on a subset of Rn, and
E and I are two sets of indices.

In this subsection optimality conditions that characterize the solutions of constrained
optimization problem (1.4.10) are presented. First let us define the feasible set Ω as the
set of points that satisfy the constraints; that is

Ω = {y ∈ R
n | ci(y) = 0, ∀i ∈ E ; ci(y) ≥ 0, ∀i ∈ I }. (1.4.11)

A point y is said to be feasible if it belongs to the set Ω. So the problem (1.4.10) can be
rewritten more compactly as

min
y∈Ω

f(y).

At a feasible point y, the inequality constraint i ∈ I is said to be active if ci(y) = 0
and inactive if the strict inequality ci(y) > 0 is satisfied. Thus let us define the active set
A (y) as

Definition 1.4.1. The active set A (y) at any feasible point y consists of the equality
constraint indices from E together with the indices of the inequality constraints i for which
ci(y) = 0; that is

A (y) = E ∪ {i ∈ I | ci(y) = 0}.

An important condition that is assumed to hold in the majority of optimization al-
gorithms is the so-called linear independence constraint qualification (LICQ). The LICQ
states that at any feasible point y, the gradients of all the active constraints are linearly
independent. The main purpose of the LICQ is to ensure that the set of constraints is
well-defined, in a way that there are no redundant constraints or no constraints defined
such that their gradients are always equal to zero.

Definition 1.4.2. Given the point y and the active set A (y), the linear independence
constraint qualification (LICQ) holds if the set of active constraint gradients {∇ci(y), i ∈
A (y)} is linearly independent.

Let us state now the first-order necessary conditions for y∗ to be a local minimizer of
(1.4.10). As a preliminary to stating the necessary conditions, let us define the Lagrangian
function for the general problem (1.4.10)

L(y,λ) = f(y) −
∑

i∈E∪I

λi ci(y). (1.4.12)

The vector λ = (λi)i∈E∪I is called the Lagrange multiplier vector.
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The necessary conditions defined in the following theorem are called first-order condi-
tions or Karush-Kuhn-Tucker (KKT) conditions. These conditions describe the properties
of the gradients of the objective and constraint functions.

Theorem 1.4.1. Suppose that y∗ is a local solution of (1.4.10), that the functions f and
ci are continuously differentiable, and that the LICQ holds at y∗. Then there is a Lagrange
multiplier vector λ∗, with components λ∗i , i ∈ E ∪ I , such that the following conditions
are satisfied at (y∗,λ∗)

∇yL(y∗,λ∗) = 0,
ci(y

∗) = 0, ∀ i ∈ E ,
ci(y

∗) ≥ 0, ∀ i ∈ I ,
λ∗i ≥ 0, ∀ i ∈ I ,

λ∗i ci(y
∗) = 0, ∀ i ∈ E ∪ I .

(1.4.13)

The point y∗ is called a KKT-point.

The first condition of (1.4.13) states that (y∗,λ∗) is a stationary point of the Lagrangian
L, the second and third groups of equations ensure that y∗ is a feasible point of (1.4.10), the
fourth group enforces the nonnegativity of the components of the Lagrange multiplier λ∗,
whereas the last set of equations are complementarity conditions which imply that either
constraint i is active or λ∗i = 0, or possibly both. In particular, the Lagrange multipliers
corresponding to inactive inequality constraints are zero. Thus the terms for indices i /∈
A (y∗) can be omitted from the stationarity condition and this condition rewrites

0 = ∇yL(y∗,λ∗) = ∇f(y∗) −
∑

i∈A (y∗)

λ∗i ∇ci(y
∗).

For a given problem (1.4.10) and solution point y∗, there may be many vectors λ∗ for which
the KKT conditions (1.4.13) are satisfied. When the LICQ holds, however, the optimal λ∗

is unique.
Let us examine if the LICQ holds for problem (1.4.9). First let us define the vector y

in the case of problem (1.4.9):

yT = (xT
1 , . . . ,x

T
p , y1, . . . , yp) ∈ R

sp
++ × R

p
+.

The vector y is of dimension n = sp + p. The equality and inequality constraints are
then written as

ci(y) =

p
∑

α=1

yαxα,i − bi, i = 1, . . . , s;

cs+i(y) = eTxi − 1, i = 1, . . . , p;

cs+p+i(y) = yi, i = 1, . . . , p.

Lemma 1.4.2. Assume that the vectors xα, α = 1, . . . , p, are linearly independent. Then,
the LICQ holds for (1.4.9) at any feasible point yT = (xT

1 , . . . ,x
T
p , y1, . . . , yp).
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Proof. Let y be a feasible point of (1.4.9). Without loss of generality let us suppose that
the first p̃ constraints are active and the last p− p̃ constraints are inactive, namely:

yα = 0, ∀α = 1, . . . , p̃, and yα > 0, ∀α = p̃+ 1, . . . , p.

Then the matrix of active constraint gradients is given by

(∇c1(y), . . . ,∇cs+p+p̃(y)) =





































y1 Is e 0 · · · 0 0

y2 Is 0 e · · · 0 0
...

...
...

. . .
...

...
yp Is 0 0 · · · e 0

xT
1 0 0 · · · 0 eT

1
...

...
...

. . .
...

...
xT

p̃ 0 0 · · · 0 eT
p̃

xT
p̃+1 0 0 · · · 0 0T

...
...

...
. . .

...
...

xT
p 0 0 · · · 0 0T





































,

where eT = (1, . . . , 1), Is is the identity matrix of dimension s×s, eT
i , i = 1, . . . , p̃, are the

standard basis vectors defined by eij = δij (the Kronecker symbol), and 0 designs either
a vector or a matrix whose elements are all equal to 0. Since the mole fraction vectors xα,
α = p̃+ 1, . . . , p are linearly independent, the column rank of the above matrix is equal to
s + p + p̃. Consequently the set of active constraint gradients is linearly independent and
the LICQ holds.

Suppose that the point (xT
1 , . . . ,x

T
p , y1, . . . , yp) is a local solution of (1.4.9) and that the

constraints functions ci, i = 1, . . . , s+2p are continuously differentiable in the neighborhood
of (xT

1 , . . . ,x
T
p , y1, . . . , yp), then by the Theorem 1.4.1 there exist Lagrange multipliers

λ ∈ Rs, ζα, θα ∈ R, α = 1, . . . , p, such that the following KKT conditions are satisfied

yα(∇g(xα) + λ) + ζαe = 0, ∀α = 1, . . . , p, (1.4.14a)

g(xα) + λTxα − θα = 0, ∀α = 1, . . . , p, (1.4.14b)

b−

p
∑

α=1

yα xα = 0, (1.4.14c)

1 − eTxα = 0, ∀α = 1, . . . , p, (1.4.14d)

yα ≥ 0, ∀α = 1, . . . , p, (1.4.14e)

θα ≥ 0, ∀α = 1, . . . , p, (1.4.14f)

θαyα = 0, ∀α = 1, . . . , p, (1.4.14g)

where the complementary conditions for the Lagrange multipliers λ and ζα, α = 1, . . . , p,
are omitted.
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Let us define the sets of indices A = {α ∈ {1, . . . , p} | yα = 0} and I = {α ∈
{1, . . . , p} | yα > 0}. The set A represents the set of indices of the active inequality
constraints and is a subset of A , and I is the set of inactive constraints. Let pA, resp. pI ,
be the cardinal of A, resp. I, such that pA + pI = p.

Remark 1.4.2. In the sequel an exponent I, resp. A, is added to the variables yα and
xα to specify that α ∈ I, resp. A. For instance, the expression yIα stands for all yα with
α ∈ I. Moreover the notation α = 1, . . . , pI is considered equivalent to ∀α ∈ I.

If yα > 0, the complementary equation (1.4.14g) implies θα = 0. Hence for all liquid
phases present in the particle the second stationarity equation (1.4.14b) becomes

g(xα) + λTxα = 0.

Furthermore if the first stationarity equation (1.4.14a) is multiplied by xα, and if the
property (1.4.8) of g and the above equation are used, the following successive relations
hold

0 = yα

(

∇
Tg(xα)xα + λTxα

)

+ ζα eTxα

= yα

(

g(xα) + λTxα

)

+ ζα eTxα

= ζα eTxα.

Since eTxα = 1, ∀α = 1, . . . , p, it follows

ζα = 0, ∀α ∈ I.

This equality in (1.4.14a) gives

yα (∇g(xα) + λ) = 0, ∀α ∈ I.

In conclusion the following relation is established for all liquid phases present in the aerosol

∇g(xα) = −λ, ∀α ∈ I. (1.4.15)

And it follows immediately

∇g(xα) = ∇g(xβ), ∀α, β ∈ I. (1.4.16)

Relations (1.4.15) and (1.4.16) mean that all liquid phases present in the aerosol have
their gradients equal to the opposite of the Lagrange multiplier λ when they are at the
KKT-point.

Before summarizing the equations that constitute the model, let us come back to the
missing relation in (1.3.1), namely the computation of the gas-concentration vector csurf

g .
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1.5 Computation of the gas-concentration vector csurfg

Let us study the variable csurf
g more precisely and begin this subsection with some chemistry

arguments. Since the atmosphere can be considered as an ideal gas mixture with negligible
error [88, 96] the following relation holds

pi V = niRcT, ∀i =, 1, . . . , s;

where pi is the partial pressure of compound i and ni is the number of moles of compound i,
i = 1, . . . , s. This relation is called the ideal gas law. Thanks to this relation an expression
for csurf

g can be given

csurf
g =

1

RcT
psurf

g , (1.5.1)

where psurf
g is the pressure of the gas at the particle surface.

For the determination of psurf
g let us consider the chemical potential of the gaseous and

liquid states. Since no reaction occurs in the gas-aerosol system, the gas-liquid equilibrium
relation expresses the equality between the chemical potentials of the gaseous state and all
the liquid phases present in the aerosol [32, 79], namely

µsurf
g = µl(x

I
1 ) = . . . = µl(x

I
pI),

where µsurf
g and µl are respectively the chemical potential vector of size s for the gaseous

and liquid states. Since the gas is supposed to be ideal, the chemical potential µsurf
g is

equal to
µsurf

g = µ0
g + RcT ln(psurf

g ),

where µ0
g is the standard chemical potential vector defined at a pressure of 1 atm.

The chemical potential vector µl in a non ideal solution (as it is usually the case with
atmospheric aerosols) is recalled

µl(xα) = µ∗
l + RcT ln(al(xα)).

From the previous subsection the following relations hold

∇g(xI
α) = −λ, ∀α ∈ I,

∇g(xα) = ln(al(xα)), ∀α = 1, . . . , p.

Then
ln(al(x

I
α)) = −λ, ∀α ∈ I,

and consequently
µl(x

I
1 ) = . . . = µl(x

I
pI ) = µ∗

l −RcTλ.

The condition for the equilibrium between gas and the aerosol is shortened to

µsurf
g = µ∗

l −RcTλ.
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Thus the gas-liquid equilibrium becomes

ln(psurf
g ) = −λ +

1

RcT
(µ∗

l − µ0
g). (1.5.2)

The values of µ0
g and µ∗

l are often not available and difficult to measure. For that
reason let us transform this expression further. Consider the relation (1.5.2) and suppose
that there is only one component in the system and that this component is pure. Then
the activity and the pressure become equal to

al = 1 ⇒ λ = − ln(al) = 0,

psurf
g = po

g,

where po
g is the vapor pressure of the gas. In this case the expression (1.5.2) is transformed

in

ln(po
g) =

1

RcT
(µ∗

l − µ0
g). (1.5.3)

Thus an equivalent expression for the term 1
RcT

(µ∗
l − µ0

g) is obtained. The advantage of
this expression is that po

g is known and given in traditional chemical tables. Thanks to
(1.5.3) the relation for the pressure at the surface particle becomes

ln(psurf
g ) = −λ + ln(po

g); (1.5.4)

and the new expression of the gas concentration-vector at the surface is given by

csurf
g =

1

Rc T
exp

(

−λ + ln(po
g)
)

. (1.5.5)

The variable csurf
g can also be expressed in term of xI

α by writting

csurf
g =

1

Rc T
exp

(

∇g(xI
α) + ln(po

g)
)

, (1.5.6)

where any inactive constraint can be considered to define the value ∇g(xI
α).

1.6 Formulation of the coupled model

The purpose of this thesis is the modeling and computation of the gas-particle partitioning
and phase equilibrium for organic aerosol particles. In Section 1.3 the ordinary differential
equations for modeling the mass transfer between the aerosols and the surrounding gas
were formulated as

d

dt
c∞g (t) = −N j

(

c∞g (t), csurf
g (t), R(t)

)

,

d

dt
b(t) = j

(

c∞g (t), csurf
g (t), R(t)

)

, (1.6.1)

R(t) =

(

3

4π

s
∑

i=1

mc,ibi(t)

ρi

) 1
3

,
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with the expressions for the flux j and the gas concentration csurf
g

j(c∞g (t), csurf
g (t), R(t)) = H(R(t))

(

c∞g (t) − csurf
g (t)

)

,

csurf
g (t) =

1

RcT
exp

(

∇g(xI
α(t)) + ln(po

g)
)

.

Moreover the determination of the number and composition of the liquid phases present
in each aerosol was presented in Section 1.4 and consists in solving the following minimiza-
tion problem

{xα(t), yα(t)}p
α=1 = argmin

{x̄α,ȳα}p
α=1

p
∑

α=1

ȳα g(x̄α) (1.6.2)

s.t.

p
∑

α=1

ȳαx̄α = b(t),

eT x̄α = 1, x̄α > 0, ȳα ≥ 0, α = 1, . . . , p.

The formulation is slightly different from (1.4.9). The motivation is to better represent
{xα, yα}

p
α=1 as the minimizer of the optimization problem, i.e. the points that realize the

global minimum of the total Gibbs free energy of the particle.
Hence the coupling between the ordinary differential system (1.6.1) and the optimiza-

tion problem (1.6.2) is now clear. In (1.6.1) the expression of the mass flux depends on
∇g(xI

α) whereas b appears in the equality constraint on the mass balance of (1.6.2).
Equations from (1.6.1) and (1.6.2) form the complete system that models the time

evolution of the gas-aerosol system. However this set of equations can be written on a
reduced form. If the second differential equation of (1.6.1) is multiplied by N and the
result is added to the first differential equation, then the below relation is obtained

d

dt
c∞g + N

d

dt
b = 0,

which is equivalent to
d

dt
(c∞g + N b ) = 0.

Therefore the quantity c∞g + N b is constant, since the gas-aerosol system is supposed to
be closed. Let us denote by btot the total concentration-vector of the system. This vector
is thus constant and equal to

c∞g + N b = btot. (1.6.3)

Consequently once the value of b is known, the value of c∞g is immediately deduced. The
first differential equation in (1.6.1) can then be omitted from the set of equations. Moreover
the flux j can be rewritten as

j(c∞g , c
surf
g , R) = j(b,xI

α, R) = H(R)

(

btot −N b−
1

RcT
exp(∇g(xI

α) + ln(po
g))

)

,
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and the variable csurf
g may also be removed from the set of equations.

Finally the final formulation of the model describing the evolution of the aerosol parti-
cles embedded in a gas phase is given by: find b,xα : (0, T ) → R

s
+ and R, yα : (0, T ) →

R+, α = 1, . . . , p satisfying

d

dt
b(t) = H(R(t))

(

btot −Nb(t) −
1

RcT
exp(∇g(xI

α(t)) + ln(po
g))

)

,

R(t) =
3

4π

(

s
∑

i=1

mc,ibi(t)

ρi

)
1
3

,

{xα(t), yα(t)}p
α=1 = argmin

{x̄α,ȳα}p
α=1

p
∑

α=1

ȳα g(x̄α) (1.6.4)

s.t.

p
∑

α=1

ȳαx̄α = b(t),

eT x̄α = 1, x̄α > 0, ȳα ≥ 0, α = 1, . . . , p

where T is the final time of integration and the initial condition is given by b(0) = b0 with
b0, a given initial composition-vector.

The value of c∞g and csurf
g are then computed on the following manner

c∞g = btot −N b,

csurf
g =

1

RcT
exp(∇g(xI

α) + ln(po
g)).

Remark 1.6.1. In (1.6.4) the variable R could also be removed from the system. However
in that case the expression of the flux becomes more complicated because of the definition
of H. For more readability in (1.6.4) we have chosen to keep the variable R.

The system (1.6.4) couples ordinary differential equations and a minimization problem
with mixed constraints. The ODE are nonlinear. Due to the possible wide range of time
for evaporation and condensation among the different chemical species in the gas-aerosol
system, the ODE form a stiff system [60, 83, 110]. The objective function in the minimiza-
tion problem is nonconvex and nonlinear, and one of the equality constraint is nonlinear.
Hence the numerical method that solves the system (1.6.4) has to handle stiff and nonlinear
ODE coupled with a nonconvex, nonlinear minimization problem with mixed constraints.
Moreover the variables yα and xα lose regularity when one variable yα(t) > 0 vanishes (ac-
tivation of an inequality constraint) or, reciprocally, when one variable yα(t) = 0 becomes
strictly positive (deactivation of an inequality constraint). The numerical method has also
to accurately detect and compute the times of activation and deactivation of constraints
in order to guarantee the correctness and accuracy of the solution.

Two different approaches to solve (1.6.4) are proposed in this thesis. The first approach
consists of a time splitting between the differential equations and the optimization problem.

23



CHAPTER 1. MODELING

Since an efficient method that solves the minimization of the Gibbs free energy of the
particle has been developed in [4, 5], the aim of the first approach is to adapt the method
of Amundson et al. and include it in a dynamical system. With this approach the chemical
and physical characteristics of the problem are conserved.

The second approach leaves the physics and chemistry aside and exploits the math-
ematical properties of (1.6.4). If the number of active inequality constraints is fixed,
the considered system can be associated to a system of differential algebraic equations
(DAE), by replacing the minimization problem by its first order optimality conditions
(Theorem 1.4.1). In that case, since the computation of the global minimum of energy is
required, uniqueness is lost and the solutions may bifurcate between branches of global op-
tima, local optima or saddle-points. Efficient techniques to solve DAE systems relying on
implicit Runge-Kutta methods have been developed in [7, 49, 50, 61]. The second approach
follows the works of E. Hairer and G. Wanner in [50].

Both techniques are presented in the sequel, with numerical results and some theoretical
considerations. Before their description let us give a geometrical interpretation of (1.6.4)
that is helpful to understand both numerical methods.

1.7 Geometric interpretation

A geometric interpretation of (1.6.4) is useful to understand the dynamics of the system and
design efficient numerical techniques. First let us consider the optimization problem solely
with a fixed point b and observe that if {yα,xα}

p
α=1 is solution of the minimization problem

for b, then for any c > 0, {cyα,xα}
p
α=1 is the solution of the minimization problem for the

point cb. Therefore, without loss of generality, it is assumed that eTb = 1 in this section.
The hereafter interpretation follows [5] and starts with the projection of the optimization
problem on a reduced space of lower dimension.

Let ∆′
s be defined by ∆′

s = {x ∈ Rs|eTx = 1, x ≥ 0} and for r = s − 1 denote
∆r = {z ∈ R

r|eTz ≤ 1, z ≥ 0}. The unit simplex ∆r can be identified with ∆′
s via the

mapping

Π : ∆r → ∆′
s

z 7→ x = es + Zez,

where es is the canonical basis vector and ZT
e = (Ir,−e) with Ir the r× r identity matrix.

Let f = g oΠ. Then f belongs to the space E given by

E = {f ∈ C∞(int∆r) | f ∈ C0(∆r), ∂f(z) = ∅ for z ∈ ∂∆r},

where ∂f(z) represents the subdifferential of f at z [109].

Let P be the projection from Rs to Rr defined by P (x1, . . . , xr, xs) = (x1, . . . , xr), and
denote zα = Pxα for α = 1, . . . , p, and d = Pb. The minimization problem in (1.6.4) is
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equivalent after projection to

min
{yα, zα}p

α=1

p
∑

α=1

yαf(zα),

s.t.

p
∑

α=1

yαzα = d, (1.7.1)

p
∑

α=1

yα = 1,

yα ≥ 0, α = 1, . . . , p.

Since the domain of f is ∆r, the condition zα ∈ ∆r does not need to be included as
constraint in (1.7.1).

Let us recall that the convex envelope of a set of points Z ⊂ Rr is the minimal convex set
containing Z and the convex envelope of the real function f is the largest convex extended
real-valued function majorized by f on ∆r. In convex geometry Carathéodory’s theorem
is a classical result that states if a point lies in a convex envelope [93]. This theorem reads

Theorem 1.7.1. Let Z be any set included in Rr and let C = convZ, the convex envelope
of Z. Then z ∈ C if and only if z can be expressed as a convex combination of r+ 1 of the
points and directions in Z (not necessarily distinct).

A direct consequence of the Carathéodory’s theorem implies that the problem (1.7.1)
is equivalent to the determination of the convex envelope of f at point d [5]. This result
is stated in the following theorem.

Theorem 1.7.2. For every d ∈ ∆r, the minimum of (1.7.1) is conv f(d), the value of the
convex envelope of f at d. Moreover, one has

convf(d) =

p
∑

α=1

yαf(zα)

for some convex combination d =
∑p

α=1 yαzα,
∑p

α=1 yα = 1, yα ≥ 0, α = 1, . . . , p. The
point (zT

1 , . . . , z
T
p , y1, . . . , yp) ∈ Rsp is called a phase splitting of d.

A phase splitting is called stable if yα > 0 for all α = 1, . . . , p and zα are distinct. Note
that any phase splitting can be transformed into a stable phase splitting by considering
only the subset {zα : yα > 0} or the point (zI,T

1 , . . . , zI,T

pI
, yI1 , . . . , y

I
pI

).
The following result states the existence and uniqueness of the stable phase splitting

for a given d and characterizes the geometrical structure of conv f(d).

Theorem 1.7.3. There exists a residual set R of E such that for any function f ∈ R, every
d ∈ ∆r has a unique stable phase splitting. More precisely, there exists a unique (pI − 1)-
simplex

∑

(d) = conv(zI1 , . . . , z
I
pI

) with pI ≤ s such that conv f(d) =
∑

α∈I y
I
αf(zIα) with

the barycentric representation d =
∑

α∈I y
I
αz

I
α,
∑

α∈I y
I
α = 1 and yIα > 0, ∀α ∈ I.

25



CHAPTER 1. MODELING

The proof of this result can be found in [89]. From now on the function f is assumed to
belong to R. For a given d ∈ int∆r, the (pI − 1)-simplex

∑

(d) is called the phase simplex
of d.

In phase equilibrium theory the Gibbs tangent plane criterion is an important tool
to determine the correctness of the phase repartition. The Gibbs tangent plane criterion
[37, 68] states that a (pI − 1)-simplex

∑

(d) = conv(zI1 , . . . , z
I
pI

) is a phase simplex if and
only if there exist multipliers η ∈ R

r and γ ∈ R such that

∇f(zIα) + η = 0, ∀α ∈ I, (1.7.2)

f(zIα) + ηTzIα + γ = 0, ∀α ∈ I, (1.7.3)

f(z) + ηTz + γ ≥ 0, ∀z ∈ ∆r. (1.7.4)

Geometrically, the above relations stipulate that the affine hyperplane tangent to the graph
of f at (zIα, f(zIα)), ∀α ∈ I lies entirely below the graph of f . This hyperplane is called
the supporting tangent plane.

Let us consider a last definition. A point d ∈ int ∆r is said to be a single-phase point
if and only if conv f(d) = f(d). The following result states that the vertices of a phase
simplex are single-phase points.

Theorem 1.7.4. Consider d ∈ int ∆r and Σ(d) = conv(zI1 , . . . , z
I
pI

) the phase simplex of

d. Then for all α ∈ I, zIα ∈ int∆r and conv f(zIα) = f(zIα).

Finally the Corollary 1.7.5 states that the Gibbs tangent plane criterion (1.7.4) is equiv-
alent to the single-phase point criterion to determine whether a “tangent” simplex is a
phase simplex.

Corollary 1.7.5. Let Σ = conv(zI1 , . . .,z
I
pI

) be a (pI − 1)-simplex. Assume that the
vertices of Σ are single-phase points. If there exist multipliers η ∈ R

r and γ ∈ R satisfying
conditions (1.7.2) and (1.7.3), then Σ is a phase simplex.

Following these definitions and theorems, let us interpret the phase equilibrium problem
geometrically. The energy function of g (and therefore of f) depends on the chemical
components present in the aerosol and the temperature and the pressure present in the
system. Nevertheless, for organic aerosols the graph of f is at the most composed of r+ 1
convex regions lying in the neighborhood of the vertices of ∆r. Let us consider first the
case of an aerosol made of 2 chemical components. Thereby s = 2, r = 1 and ∆r is the
interval [0, 1]. A generic representation of f is given in Figure 1.2 (namely the case when
the maximum number of convex areas is reached). For the points d considered on the left
and right graphs, the value of the convex envelope of f at d is equal to the value of f at
d and conv f(d) = f(zα). This implies that the stable phase splitting of d is given by
(zT , y) with pI = 1, z = d and y = 1, and that d is a single-phase point.

On the central graph of Figure 1.2 the convex envelope of f considered at points d is
no longer superposed with f but follows the segment given by [f(z1), f(z2)]. Hence the
minimum of (1.7.1) is given by conv f(d) = y1f(z1) + y2f(z2), the stable phase splitting
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Figure 1.2: Geometric representation of the dynamic computation of the convex envelope.
For a sequence of times t1 < t2 < t⋆ < t3 < t4 < t† < t5 < t6, the vector d(t) moves
from left to right. The supporting tangent plane follows the tangential slope at point d(t).
Deactivation occurs at time t⋆ when the tangent plane (dashed line) touches the graph of
f ; Activation occurs at time t† when the tangent plane (dashed line) gets released from
the graph of f .

of d is (zT
1 , z

T
2 , y1, y2) with pI = 2 and y1 + y2 = 1, and the phase simplex of d is equal to

conv (z1, z2) where the vertices z1 and z2 are single-phase points.
Each single-phase point is associated to a convex region of f . We denote by ∆r,α the

part of ∆r that corresponds to the convex region of f associated to zα, and by ∆
′

s,α the
image of ∆r,α through Π. Without loss of generality the single phase z1 is affiliated to the
convex region situated on the left, and z2 to the one on the right. Hence the phase splitting
is defined by (zT

1 , y1) on the left graph of Figure 1.2 and by (zT
2 , y2) on the right graph.

In Figure 1.2 the supporting tangent plane is drawn for all considered d. It can be
observed that every hyperplane lies below the graph of f as the Gibbs tangent plane
criterion stated. When d is a single-phase point, the tangent plane is in contact with f
at the point (dT , f(d)) solely. When the phase simplex of d is given by conv (z1, z2) the
tangent plane touches f at (zT

1 , f(z1)) and (zT
2 , f(z2)).

The domain ∆r is then split into 3 areas according to the number of inactive inequality
constraints. The separated domain is called a phase diagram. For the example in Figure
1.2 the interval [0, 1] is separated as follow

[0, 1] = [0, z1]∪ ]z1, z2[∪ [z2, 1].

The digit 1 is associated to the areas [0, z1] and [z2, 1], and the digit 2 is given to ]z1, z2[
in order to represent the number of inactive inequality constraints in each area. The areas
with digit 1 are called area 1 and the area with digit 2 is called area 2.

Let us consider the case where b (and therefore d) evolves in time. The points b(t)
are no longer supposed to be normalized. Conforming to the previous theory the points

1
eT b(t)

b(t) lie in ∆
′

s and the points d(t) represent the projection of 1
eT b(t)

b(t) onto the

simplex ∆r. The time evolution of b is governed by the differential equation of (1.6.4)
and requires the time-dependent computation of the stable phase simplex Σ(d(t)). The
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activation/deactivation of constraints therefore corresponds to a change of dimension of
the corresponding phase simplex Σ(d(t)). In particular, the deactivation of a constraint
can be interpreted as a new tangential contact between the supporting tangent plane and
the graph of the function f .

Figure 1.2 shows the motion of the supporting tangent plane in one dimension of space,
when the point b goes from left to right. When the tangent plane becomes in contact with
the right convex region, one constraint is deactivated and the phase simplex’ size increases
by one (pI = 1 becomes pI = 2). Reciprocally, when the tangent plane leaves contact with
the graph of f , the phase simplex’ size decreases by one (pI = 2 becomes pI = 1 again).

0
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0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.05

0.1

0.15
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Figure 1.3: A generic representation of the reduced Gibbs free energy of a particle made
of 3 chemical components.

Let us also study an aerosol particle made of 3 chemical components. In this case r = 2
and ∆2 is the unit triangle defined by

∆2 = {z ∈ R
2 | eTz ≤ 1, z ≥ 0}.

In [56] Jiang et al. propose a generic form of the reduced energy f used in the chemical
engineering literature. In the case r = 2 this form reads for z = (z1, z2) ∈ ∆2

f(z1, z2) = 0.76 z1 + 0.77 z2 + 0.78 (1 − z1 − z2)

+z1 ln(z1) + z2 ln(z2) + (1 − z1 − z2) ln(1 − z1 − z2)

+10z1z2 ln(1 − z1 − z2).

The reduced energy f is depicted in Figure 1.3. For more visibility the graph is truncated
at 0.2. The energy function f contains 3 distinct convex areas. Hence the maximal number
of contact points between the supporting tangent plane and the surface is equal to 3 and
the phase diagram of the particle is separated between areas where 1, 2 or 3 inequality
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constraints are inactive. The phase diagram is illustrated in Figure 1.4. As for the case
r = 1, the areas with one inactive inequality constraint are situated in the neighborhood
of the corners of ∆2 and the indices of the phases are attributed as follow

• phase 1: bottom right corner,

• phase 2: top left corner,

• phase 3: bottom left corner.

In the interior of ∆2 lays the area where all inequality constraints are inactive. The 3
remaining areas in ∆2 are for the regions with 2 inactive constraints.
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Figure 1.4: Trajectory of the composition-vector d on the phase diagram for a sequence of
times t1 < t2 < t3 < t4 < t5 when the aerosol is made of 3 chemical components.

On the phase diagram of Figure 1.4 the motion of the composition-vector d is shown
for a sequence of times t1 < t2 < t3 < t4 < t5. The vector d(ti), i = 1, . . . , 5 is represented
by a green circle if the number of inactive constraints at this point is equal to 1, by a blue
circle if this number is equal to 2, and by a red circle if it is equal to 3. The first point
d(t1) is in area 1. Consequently d(t1) is a single-phase point collinear to z1(t

1) and is
represented by a green circle. For the points d(t2) the phase simplex is given by

Σ(d(t2)) = conv(z1(t
2), z2(t

2)).

In other words the inequality constraints α = 1 and α = 2 are inactive, and the minimum
of energy for the particle at d(t2) follows the segment defined by [f(z1(t

2)) f(z2(t
2))] and
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is given by y1(t
2)f(z1(t

2)) + y2(t
2)f(z2(t

2)). The vector d(t3) is also situated in the area
2 and its phase simplex is given by

Σ(d(t3)) = conv(z1(t
3), z2(t

3)),

which is a 1-simplex again. Unlike the case r = 1 the single-phase points z1 and z2 moves
when d evolves in area 2. The trajectory of z1 and z2 follows the frontier between the area
2 and the area 1.

Once d is in area 3 the phase simplex is given by conv(z1, z2, z3). The points z1, z2 and
z3 remain fixed as long as d evolves in area 3 because they define the unique hyperplane
that is in contact with f at 3 points. Only the barycentric coordinates y1, y2 and y3 evolves
such that the relation d =

∑3
α=1 yαzα holds as d moves.

The last considered value of d is in the area 2 situated on the left side of the phase
diagram ∆2. The phase simplex of d(t5) is a segment but unlike the points d(t2) and d(t3)
the segment is generated by the single-phase z2(t

5) and z3(t
5) and one has

Σ(d(t5)) = conv(z2(t
5), z3(t

5)).

Hence the representation of the time evolution of d on the phase diagram allows to know
the evolution of the phase equilibrium defined at each d.

The size of the convex regions of the energy function g on the phase diagrams covers
many orders of magnitude (see [5]), with normalized values ranging from 100 to 10−16. The
phase diagram presented in Figure 1.5 is a real example from atmospheric chemistry. For
instance the point situated at the frontier between the areas 1, 2 and 3 on the bottom left
part of ∆2 (the point z3(t

4) in Figure 1.4) has the coordinates

zT
3 = (1.05 · 10−3, 1.17 · 10−15).

Moreover a zoomed-in view of the bottom right corner of ∆2 shows how the number
of inactive constraints may rapidly vary in a very small region. Hence the method of
resolution for finding the phase simplex points (or contact points between the graph and
the supporting tangent plane) has to handle several scales.

The energy functions f presented in this section have a number of convex areas that is
equal to s. This representation stands as the general situation. Let us qualify the associated
phase diagram classical. In reality the number of convex areas takes a value comprised
between 1 and s. In Figure 1.6 two such examples are depicted. For both examples the
energy function has 2 convex areas. Hence no area with 3 inactive inequality constraints
can exist. On the left example 2, different areas are present: a large one with one inactive
constraint and a small one with 2 inactive constraints. In this example the vectors z1, z2

and z3 share the same area ∆2,1 = ∆2,2 = ∆2,3, but are still associated to a corner of ∆2.
The example on the right is the opposite case with a large area with 2 inactive constraints
and 2 small areas with one inactive constraint. The area ∆2,2 is equal to ∆2,3. Let us call
such phase diagrams not classical.
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1.7. GEOMETRIC INTERPRETATION
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Figure 1.5: Phase diagram of the ternary system pinonic acid (C10H16O3)/nonacosane
(C29H60)/water (H2O) at temperature 298K and pressure 1atm.
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Figure 1.6: 2 phases diagrams of ternary system at temperature 298K and pressure 1atm.
On the left: adipic acid (C6H10O4)/glutaraldehyde (C5H8O2)/water. On the right: 2-
hydroxy-glutaric acid (C5H8O5)/palmitic acid (C16H32O2)/water.
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CHAPTER 1. MODELING

Remark 1.7.1. Even if we work with g and the variables xα and b, it is more convenient
to represent to projections f , zα and d. For that reason the figures in the remainder of
this thesis always illustrate f and the projected variables zα and d, but the notations g, xα

and b are kept in the text and on the forthcoming figures.
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Chapter 2
Solving the phase equilibrium problem

In the previous chapter the modeling of the gas-aerosol system and its geometrical inter-
pretation have been presented. Before starting the numerical resolution of (1.6.4), and
since the PEP is an integral part of both resolution methods, let us describe further the
characterizations of this optimization problem.

Amundson et al. in [4, 5] have studied the PEP for organic particles when the composition-
vector b is a fixed input. In their works the PEP is described and its mathematical charac-
terizations are presented. Moreover Amundson et al. propose an efficient technique to solve
the PEP, based on a primal-dual interior-point method. Since this thesis is the continuity
of their works, this chapter is dedicated to introduce their results. Some characteristics of
the PEP and some insights on constrained optimization theory have already been given in
the previous chapter. Here let us summarize the mathematical characteristics of the local
minima of the PEP and present the primal-dual interior-point method of Amundson et al.
[4, 5].

2.1 Mathematical characterizations of the local min-

ima

Let us consider the reduced minimization problem (1.7.1), rewritten below

min
{yα, zα}p

α=1

p
∑

α=1

yαf(zα),

s.t.

p
∑

α=1

yαzα = d,

p
∑

α=1

yα = 1, (2.1.1)

yα ≥ 0, α = 1, . . . , p.

In the Section 1.7 the convex envelope of f was studied to get information about the
global minimizer of (2.1.1). In this section, results that characterize the local minima of
the problem and distinguish them from the global minimum, are presented.
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CHAPTER 2. SOLVING THE PHASE EQUILIBRIUM PROBLEM

In order to study the local minima, the Kuhn-Tucker theory introduced in Section 1.4.3
is used. As for the PEP (1.4.2), the LICQ holds for (2.1.1) at any feasible point. The proof
of this result follows the proof of the Lemma 1.4.2. Furthermore the objective function
and the constraints of (2.1.1) are continuously differentiable. Then the Theorem 1.4.1 that
gives the KKT conditions, can be applied.

Theorem 2.1.1. Let yT = (zT
1 , . . . , z

T
p , y1, . . . , yp) be a local minimizer of (2.1.1) with

d ∈ ∆r. Then there exist unique Lagrange multipliers η ∈ R
r, γ ∈ R and θα ∈ R,

α = 1, . . . , p, such that

yα(∇f(zα) + η) = 0, ∀α = 1, . . . , p, (2.1.2a)

f(zα) + ηTzα + γ − θα = 0, ∀α = 1, . . . , p, (2.1.2b)

d−

p
∑

α=1

yαzα = 0, (2.1.2c)

p
∑

α=1

yα − 1 = 0, (2.1.2d)

yα ≥ 0, ∀α = 1, . . . , p, (2.1.2e)

θα ≥ 0, ∀α = 1, . . . , p, (2.1.2f)

θαyα = 0, ∀α = 1, . . . , p. (2.1.2g)

The Lagrange multiplier η is associated to the first equality constraint whereas γ is
associated to the equality constraint

∑p

α=1 yα − 1 = 0. The Lagrange multipliers θα are
relative to the inequality constraints yα ≥ 0, α = 1, . . . , p. In optimization theory, Lagrange
multipliers are also called dual variables, whereas yα and xα, α = 1, . . . , p are referred to
as primal variables.

A solution of the KKT system (2.1.2) is called a KKT point of (2.1.1) and is generally
non unique. The hyperplane associated with the KKT point y is defined by

Hy = {(zT , xs) ∈ R
s |∇f(zα)T (z− zα) − xs + f(zα) = 0},

where xT = (zT , xs) defines the points lying in Rs, and zα is any point of y such that
yα > 0.

As for the optimization problem (1.4.2), let us denote by I, resp. A, the set of indices
of inactive inequality constraints, resp. active. Then the index α ∈ I if and only if yα > 0,
and one has from (2.1.2a) and (2.1.2g) for all α ∈ I:

∇f(zα) = −η

θα = 0.

Hence (2.1.2b) becomes

f(zα) + ηTzα = −γ, ∀α ∈ I,
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2.1. MATHEMATICAL CHARACTERIZATIONS OF THE LOCAL MINIMA

and the equality in the definition of the hyperplane Hy reads

−ηTz − xs − γ = 0.

Equivalently if the hyperplane is characterized through the function h defined by h(z) =
−ηTz − γ, its definition reads

Hy = {(zT , xs) ∈ R
s | h(z) = xs}. (2.1.3)

In this definition y is implicitly present through its dual variables η and γ. Moreover
from this definition a point (zT , xs) ∈ Rs is situated below the hyperplane defined at y if
h(z) < xs and above if h(z) > xs.

Remark 2.1.1. Similarly to Section 1.7, a KKT point yT = (zT
1 , . . . , z

T
p , y1, . . . , yp) of

(2.1.1) can be quite improper. Some of the zα can not be present in the local minimizer,
namely those for which yα = 0, and the zα need not be distinct. It is easy to remedy this by
eliminating all the indices α such that yα = 0, and adding all the yα > 0 corresponding to
the same zα. Therefore, one needs only to consider a KKT point (zI,T

1 , . . . , zI,T

pI
, yI1 , . . . , y

I
pI

)

of (2.1.1) that is stable in the sense that all the zα are present in the local minimizer and
distinct.

In the sequel let us denote the stable KKT point (zI,T
1 , . . . , zI,T

pI
, yI1 , . . . , y

I
pI

) in the

shortened form (yα, zα)α∈I . Let us now establish the distinction between a global and the
local minima of (2.1.1). From the multijet theory, as applied in [89], the assumption that
f belongs to the residual set R implies the following corollary:

Corollary 2.1.2. Let y = (yα, zα)α∈{1,...,p} be a stable KKT point of (1.7.1) with d ∈int∆r

such that yα > 0 and zα are distinct. Then the set Σ = conv(z1, . . . , zp) is a (p−1)-simplex
with p ≤ s.

From Theorem 1.7.3, one deduces that for a global minimizer of (2.1.1), denoted by y† =
(y†α, z

†
α)α∈I† , the set Σ† = conv(z†1, . . . , z

†
pI

† ) is the phase simplex of d. From Corollaries

1.7.5 and 2.1.2, the zα, α ∈ I, of a KKT point of problem (2.1.1) form a tangent simplex
and the single-phase point criterion can be applied to determine if this KKT point is a
global minimum of (2.1.1). The aim of the following theorem is to make this statement
precise.

Theorem 2.1.3. Consider y† = (y†α, z
†
α)α∈I a feasible point of (2.1.1). The point y† is a

global minimum of (2.1.1) if and only if y† is a KKT point of (2.1.1) and z†α are single-
phase points for all α ∈ I.

Therefore a global criterion to determine whether a KKT point is a global minimum is
established. From Theorem 1.7.3, this criterion is equivalent to require that the hyperplane
associated with the KKT point lies below the graph of f on ∆r.
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CHAPTER 2. SOLVING THE PHASE EQUILIBRIUM PROBLEM

Theorem 2.1.4. Consider y† = (y†α, z
†
α)α∈I a feasible point of (2.1.1). The point y† is a

global minimum of (2.1.1) if and only if y† is a KKT point of (2.1.1) and

f(z) ≥ h†(z), ∀z ∈ ∆r, (2.1.4)

where h† is the function associated to the hyperplane defined at the KKT point y†.

The characteristics of local and global minima of (2.1.1) are thus established. Now let
us go back to the original PEP and study what are the implications of the Theorems 2.1.1-
2.1.4 on (1.4.2). The point (yα,xα)α∈I is a local minimizer of (1.4.2) if and only if (yα, zα =
Pxα)α∈I is a local minimizer of (2.1.1). Moreover d is in int∆r if and only if b is in rint∆′

s,
the relative interior of ∆′

s [12]. Then if (yα,xα)α∈I is a local minimizer of (1.4.2) and b is
in rint∆′

s, yα > 0 implies that xα belongs to rint∆′
s, so that g is differentiable at xα. Since

the LICQ holds at (yα,xα)α=1,...,p, one has then

yα (∇g(xα) + λ) + ζαe = 0, α = 1, . . . , p, (2.1.5a)

g(xα) + λTxα − θα = 0, α = 1, . . . , p, (2.1.5b)

b−

p
∑

α=1

yαxα = 0, (2.1.5c)

1 − eT xα = 0, xα > 0, α = 1, . . . , p, (2.1.5d)

θαyα = 0, θα ≥ 0, yα ≥ 0, α = 1, . . . , p, (2.1.5e)

where ζα is the Lagrange multiplier associated to the equality constraints eTxα − 1 = 0
and λ is related to the multipliers η and γ in (2.1.2) via

η = ZT
e λ, γ = λs, (2.1.6)

with λs the sth component of λ.
Note that the tangent plane criterion (2.1.4) stated in Theorem 2.1.4 is a global condi-

tion. There is no rigorous approach to determine whether the tangent plane arising from
a KKT point lies below the molar Gibbs free energy surface for all feasible compositions z

in ∆r. Therefore, one has to rely on local criteria, even if this increases the odds of finding
local minima. One such local criteria is related to a local phase stability test, which states
that, if a postulated KKT point y† = (y†α, z

†
α)α∈I is thermodynamically stable with respect

to perturbations in any or all of the phases, then

f(z) − h†(z) ≈ (z − z†α)T
∇

2f(z†α)(z− z†α) ≥ 0, ∀z ∈ Bǫ(z
†
α), (2.1.7)

where Bǫ(z
†
α) is a neighborhood of z†α in ∆r. Relationship (2.1.7) is equivalent to ∇

2f(z†α) ≥
0. From now on, let us assume that the Hessian matrix of f , ∇

2f , is positive definite at
the phases z†α of y†, i.e.,

∇
2f(z†α) ≥ 0. (2.1.8)

Relation (2.1.8) is also called the meta-stability conditions for problem (2.1.1).
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2.2. SOLUTION OF THE PHASE EQUILIBRIUM PROBLEM

The above mathematical characterizations are, however, not directly applicable for com-
putation because finding a solution that satisfies the KKT system (2.1.2), or equivalently
(2.1.5), is a difficult problem. The difficulty is mainly caused by the combinatorial aspect
of the KKT system (2.1.5), or more precisely by the complementary conditions: θα ≥ 0,
yα ≥ 0 and θαyα = 0. Indeed one could attempt to guess the optimal active set A. Based
on this guess, one could transform (2.1.5) into a system of nonlinear equations, which is
much more computationally tractable. Unfortunately, the set of all possible active sets
grows exponentially with p, the number of phases considered.

Moreover, not all the solutions of the KKT system (2.1.5) are solutions of the optimiza-
tion problem in (1.4.2); some of them could be, for example, maximizers, saddle points, or
unstable local minimizers. Therefore this type of approach can only be practical if initiated
by a correct guess of the inactive and active sets, I and A. This question is addressed in
the next section.

2.2 Solution of the phase equilibrium problem

2.2.1 Active set method

The accurate identification of active constraints is important [34, 101]. Such an identi-
fication, by removing the difficult combinatorial aspect of the optimization problem in
(1.4.2), reduces the mixed constrained minimization problem to an equality constrained
problem which is much easier to deal with, and allows a faster convergence to the phase
equilibrium. An active set identification procedure is presented here that correctly de-
tects active constraints in a neighborhood of a KKT point. In order to identify accu-
rately the active constraints, one needs to have a pair of primal and dual variables, e.g.,
(y1, . . . , yp,x1, . . . ,xp; λ, ζ1, . . . , ζp, θ1, . . . , θp), that is close to a KKT point. The primal-
dual interior-point algorithm presented later will produce such a sequence of primal and
dual variables. In the sequel, the pair (y1, . . . , yp,x1, . . . ,xp; λ, ζ1, . . . , ζp, θ1, . . . , θp) is short-
ened in (yα,xα; λ, ζα, θα).

The inequality constraints defined in the PEP are only about the variables yα, α =
1, . . . , p. Hence the detection of the active inequality constraints in the neighborhood of a
KKT point simply consists in observing the value of yα, α ∈ I. If this value is lower than
a prescribed threshold, then the index of the corresponding constraint has to be removed
from the set I. Formally if the pair (yα,xα; λ, ζα, θα) is sufficiently close to a KKT point,
then the set I of inactive constraints actually present at the equilibrium can be obtained
by removing the activating constraints from the system [34, 75, 101]

I = {1, . . . , p}\{α | 0 < yα < ǫy} (2.2.1)

where ǫy is a given threshold. In numerical experiments ǫy is set to 10−8 when b is
normalized (i.e. eTb = 1). The exact solution of (1.4.2) can be computed based on the
inactive constraints from the following reduced KKT system of equations:
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yα (∇g(xα) + λ) + ζαe = 0, α ∈ I,

g(xα) + λTxα = 0, α ∈ I,
∑

α∈I
yαxα = b, (2.2.2)

eTxα = 1, xα > 0, yα > 0, α ∈ I.

This identification procedure permits to couple the interior-point method presented
in the next subsection with an active set method for the activation/deactivation of the
inequality constraints. The procedure is the following: the inactive set I is initialized to
{1, . . . , p}. Then an iterative sequence is built, that alternates between solving (2.2.2) and
updating the inactive set.

Remark 2.2.1. The system (2.2.2) only includes the indices α ∈ I. Consequently the
variables yα,xα, θα and ζα, α ∈ A are not updated and their values at the previous iteration
are used to define the new iterate (y+

α ,x
+
α ; λ+, ζ+

α , θ
+
α ).

Let PI denote the index set of constraints α ∈ I that satisfy 0 < y+
α < ǫy. The set

PI is the set of constraints that have to be removed from the set of inactive constraints
at the next iteration.

At the next iteration, it is also possible that constraints α ∈ A have to be added to
the inactive set I. The condition to deactivate a constraint α ∈ A follows the definition of
the dual variable θα that stipulates θ+

α ≥ 0. Following the remark 2.2.1, θ+
α is not updated.

However an update can be made by using the relation (2.1.5b) and one gets

θ+
α = g(x+

α ) + (λ+)Tx+
α . (2.2.3)

Note that in this expression the variable λ+ is solution of (2.2.2) whereas x+
α is the same

as at the previous iteration since α ∈ A. So if the dual variable is such that θ+
α < 0, then

the index α have to be added to I. Let PA denote the index set of constraints α ∈ A,
that satisfy θ+

α < 0, the new inactive set I+ is then given at the next iteration by

I+ =
(

I ∪ P
A) \PI . (2.2.4)

The KKT equations (2.2.2) are then updated and another iteration is carried out.

Remark 2.2.2. The scalar product λTxα may be rewritten as ηTzα + γ thanks to the
relation between λ and (η, γ) and the relation eTxα = 1. Moreover by definition of the
projection, we have g(xα) = f(zα). Then the relation (2.2.3) is equal to

θ+
α = f(z+

α ) + (η+)Tz+
α + γ+ = f(z+

α ) − h(z+
α ).

Thus θ+
α > 0 indicates that the point (z+,T

α , f(z+
α )) is situated above the tangent hyperplane

defined at (y+
α ,x

+
α ). The Gibbs tangent criterion is violated if θ+

α < 0 and the constraint α
has to be added to I in order to converge to the phase equilibrium.

The primal-dual interior-point method and the details of its coupling with the active
set identification procedure are addressed in the next subsection.
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2.2.2 Primal-dual interior-point method

Interior-point methods have proved to be successful for nonlinear optimization and are cur-
rently the most powerful algorithms for large-scale nonlinear programming [75]. Interior-
point method can be seen as barrier methods and one approach is to soften the non-
negativity constraints yα ≥ 0 by adding slack variables sα, α = 1, . . . , p and incorporating
them into a logarithmic barrier term in the objective function. The optimization problem
(1.4.2) is transformed into the following barrier problem:

min
{yα,xα,sα}p

α=1

Bν(yα,xα) =

p
∑

α=1

yαg(xα) − ν

p
∑

α=1

ln sα,

s. t.

p
∑

α=1

yαxα = b,

eTxα = 1, xα > 0, α = 1, . . . , p,
yα − sα = 0, sα > 0, α = 1, . . . , p,

(2.2.5)

where ν is a positive parameter.
Problem (2.2.5) is not equivalent to (1.4.2), but contains only equality constraints,

and is much simpler to solve than (1.4.2). In the primal-dual interior-point algorithm of
Amundson et al., (2.2.5) is approximately solved by applying one Newton iteration to its
KKT system of equations, then decreasing the parameter ν, and repeating the process.
This leads to a sequence of iterates that converges to a solution of (1.4.2) as ν → 0 under
certain assumptions, as mentioned in the next lemma, which is an application of Theorem 8
in [36] with box constraints yα ≥ 0.

Lemma 2.2.1. Since the objective function and constraints of the problem (1.4.2) are
continuous, the solution to the penalized problem (2.2.5) converges to the solution to the
initial problem (1.4.2), when the penalty parameter ν tends to zero.

This convergent sequence is used for a finite termination of the algorithm by applying
the active phase identification procedure outlined in the previous section. Once the active
constraints are identified and removed from the iterations, the exact solution of the PEP
can be obtained by setting ν = 0 and computing in a final step an equilibrium point only
on the inactive constraints.

Let us now consider the problem of finding an approximate solution of problem (2.2.5)
for a fixed value of the parameter ν. Denoting the Lagrange multipliers for yα − sα = 0
again by θα, α = 1, . . . , p, the KKT conditions for the barrier problem take the form:

yα (∇g(xα) + λ) + ζαe = 0, α = 1, . . . , p,

g(xα) + λTxα − θα = 0, α = 1, . . . , p,
p
∑

α=1

yαxα = b,

eT xα = 1, xα > 0, α = 1, . . . , p,

39



CHAPTER 2. SOLVING THE PHASE EQUILIBRIUM PROBLEM

yα − sα = 0, sα > 0, α = 1, . . . , p,

sαθα − ν = 0, θα > 0, α = 1, . . . , p,

where, the last two sets of equations can be combined by eliminating the slacks sα, yielding
to the reduced system

yα (∇g(xα) + λ) + ζαe = 0, α = 1, . . . , p, (2.2.6a)

g(xα) + λTxα − θα = 0, α = 1, . . . , p, (2.2.6b)
p
∑

α=1

yαxα = b, (2.2.6c)

eTxα = 1, xα > 0, α = 1, . . . , p, (2.2.6d)

yαθα − ν = 0, yα > 0, θα > 0, α = 1, . . . , p. (2.2.6e)

Note that the above KKT system (2.2.6) contains only equations, and can be viewed as
a perturbation of the original KKT system (2.1.5) where the complementary slackness
conditions are approximated by a set of equations that is controlled by ν. Note also that
the KKT system (2.2.6) produces a sequence of primal and dual variables (yα,xα; λ, ζα, θα)
that converges to a solution of (2.1.5) as ν → 0; the convergent sequence is used in the
active phase identification procedure (2.2.1) for a finite termination of the algorithm.

Let us ignore (for the moment) the fact that yα and θα must be positive. System (2.2.6)
is solved with the Newton method. Let us denote by pyα

,pxα
,pλ, pζα

and pθα
respectively

the increments of the variables yα,xα,λ, ζα and θα, α = 1, . . . , p. A Newton iteration gives
the following system

yα∇
2g(xα)pxα

+ (∇g(xα) + λ)pyα

+yαpλ + pζα
e = −yα∇g(xα) − yαλ − ζαe,

α = 1, . . . , p,

(∇g(xα) + λ)Tpxα
+ xT

αpλ − pθα
= −g(xα) − xT

αλ + θα,

α = 1, . . . , p,
p
∑

α=1

yαpxα
+

p
∑

α=1

pyα
xα = b −

p
∑

α=1

yαxα,

eTpxα
= 1 − eTxα, α = 1, . . . , p,

θαy
−1
α pyα

+ pθα
= νy−1

α − θα, α = 1, . . . , p,

which is further simplified by eliminating pθα
from the second set of equations via the

relations from the last set of equations

pθα
= νy−1

α − θα − θαy
−1
α pyα

,

40



2.2. SOLUTION OF THE PHASE EQUILIBRIUM PROBLEM

giving

yα∇
2g(xα)pxα

+ (∇g(xα) + λ)pyα
(2.2.7)

+yαpλ + pζα
e = −yα∇g(xα) − yαλ − ζαe,

α = 1, . . . , p,

(∇g(xα) + λ)Tpxα
+ xT

αpλ

+θαy
−1
α pyα

= −g(xα) − xT
αλ + νy−1

α , (2.2.8)

α = 1, . . . , p,
p
∑

α=1

yαpxα
+

p
∑

α=1

xα pyα
= b−

p
∑

α=1

yαxα. (2.2.9)

eTpxα
= 1 − eT xα, (2.2.10)

α = 1, . . . , p.

This system is written on the reduced matrix form








yα∇
2g(xα) ∇g(xα) + λ yαI e

(∇g(xα) + λ)T θα

yα
I xT

α 0

yαI xα 0 0

eT 0 0 0

















pxα

pyα

pλ

pζα









=









−yα∇g(xα) − yαλ − ζαe
−g(xα) − xT

αλ + νy−1
α

b−
∑p

α=1 yαxα

1 − eTxα









.

(2.2.11)
One can observe that the matrix is symmetric. Since the pair (0,x) is an eigen-pair

for the matrix ∇
2g(x) (relation (1.4.7)), ∇

2g(x) is not invertible and techniques based
on directly computing the Schur complement or its inverse cannot be applied to solve
the linear system. Hence a technique of deflating ∇

2g(xα) is applied to transform the
linear system (2.2.7)-(2.2.10) so that the singularity no longer poses a difficulty. More
precisely, the idea is to project the system (2.2.7)-(2.2.10) onto the null-space of eT so that
the corresponding reduced Hessian ZT

e ∇
2g(xα)Ze is not singular. The reduced Hessian

ZT
e ∇

2g(xα)Ze is positive definite in a neighborhood of a stable equilibrium. Then, the
reduced system with the positive definite Hessian allows us to apply a Schur complement
method for its solution.

The null-space matrix of eT is given by

Ze =

(

Ir

−eT

)

.

Let us define

∇zα
f(zα) = ZT

e ∇g(xα), ∇
2
zα
f(zα) = ZT

e ∇
2g(xα)Ze, η = ZT

e λ,

where ∇zα
f and ∇

2
zα
f are the reduced gradient and reduced Hessian of g respectively. Let

us recall the relation between λ and the reduced variables η and γ

λ =

(

η + γ e

γ

)

⇐⇒ (η = λ1:r − γ e and γ = λs) , (2.2.12)
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where λ1:r stands for the subvector of λ made of the first r components.
The linear system (2.2.7)-(2.2.10) is then equivalent to:









yα∇
2f(zα) ∇f(zα) + η yαI 0

(∇f(zα) + η)T θα

yα
I zT

α eTxα

yαI zα 0 0

0 eTxα 0 0

















pzα

pyα

pη

pγ









=









bzα

byα

bη

bγ









(2.2.13)

where
bzα

= −yα∇zα
f − yαη − yαZ

T
e ∇

2g(xα)p0
xα

= −yα∇zα
f − yαη − yα(1 − eTxα)

(

∂2
1:r,sg(xα) − ∂2

s,sg(xα) e
)

,
byα

= −g(xα) − xT
αλ + νy−1

α − (∇g(xα) + λ)Tp0
xα

= −g(xα) − xT
αλ + νy−1

α − (1 − eTxα) (∂ns
g(xα) + γ) ,

bη = d −
∑p

α=1 yαzα,
bγ = eT b−

∑p

α=1 yα,

and p0
xα

=

(

0

1 − eTxα

)

which is a particular solution of (2.2.10). Details on the nu-

merical resolution of (2.2.13) can be found in [4, 5]. Then the increments pxα
and pλ are

given by

pxα
= p0

xα
+ Zepzα

,

pλ =

(

pη + pγe

pγ

)

.

The new estimate of the solution of the KKT system (2.2.6) is proceeded by

y+
α = yα + τpyα

, α = 1, . . . , p, (2.2.14a)

x+
α = xα + τpxα

, α = 1, . . . , p, (2.2.14b)

λ+ = λ + τpλ, (2.2.14c)

ζ+
α = ζα + τpζα

, α = 1, . . . , p, (2.2.14d)

θ+
α = θα + τpθα

, α = 1, . . . , p. (2.2.14e)

The step length τ is chosen to ensure that y+
α > 0 and θ+

α > 0. In other words

τ = max{0 < σ ≤ 1 | yα + σpyα
> 0, θα + σpθα

> 0, α = 1, . . . , p}.

The combination of the active set identification procedure with the Newton algorithm
consists in working only with the indices α ∈ I and updates the inactive set I at each step
of the Newton method. This algorithm is summarized as follows

Algorithm 2.2.1 (Summary of active set/ interior-point/ Newton algorithm). Initialize
y0

1, . . . , y
0
p, x0

1, . . . ,x
0
p, λ0, ζ0

1 , . . . , ζ
0
p , θ

0
1, . . . , θ

0
p, ν

0 and I0. For j = 0, 1, 2, . . ., execute
the following steps until some stopping criterion is satisfied
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1. Compute the Newton direction (pj
yα
,pj

xα
, pj

ζα
,pj

λ, p
j
θα

) of the Newton method associated

with the inactive set Ij (i.e. with α ∈ Ij);

2. Compute the step length τ in (2.2.14) to ensure that yj+1
α > 0 and θj+1

α > 0, α ∈ Ij;

3. Update yj+1
α ,xj+1

α ,λj+1, ζj+1
α , θj+1

α for α ∈ Ij ;

4. Update the set of inactive constraints Ij+1 with (2.2.4);

5. Compute the new parameter νj+1.

Terminate with a resolution of the linear system with ν = 0 and the last inactive set Ij+1.

The stopping criterion at the jth step is based on the increments of the linear system
(2.2.13) and reads

‖(pj,T
zα
, pj

yα
,pj,T

η , pj
γ)‖∞ ≤ tolipm, with α ∈ Ij ,

where tolipm is a given tolerance for the primal-dual interior-point method.
Strategy on the decrease of the parameter ν can be found in [5, 6, 29, 38] and is not

discussed here. The forthcoming discussion is about the initialization of the procedure of
the algorithm above-mentioned for the PEP.

2.2.3 Initialization procedure

Let y† = (y†α, z
†
α)α∈I† be the global minimizer of (2.1.1). In order to use a common

terminology in the field of interior-point methods, we would like to obtain a central path
{yν

α, z
ν
α}α=1,...,p generated by the interior-point method as described in the Algorithm 2.2.1

that converges to y†. For the initialization of Σ0 := conv(z0
1, . . . , z

0
p), the points z0

α are
initialized in the corners of the simplex ∆r in order to cover all convex areas. Typically
the initialization of the vector z0

α is given by

x0
α,i =

{

ǫ, if i 6= α,
1 − rǫ, if i = α,

for i = 1, . . . , s;

and z0
α = Px0

α,

with 0 < ǫ≪ 1 given and r = s− 1.
Once the initial simplex Σ0 is set, then y0

α, α = 1, . . . , p, are initialized as the barycentric
coordinates of d in Σ0: d =

∑p
α=1 y

0
αz

0
α. If there exist α ∈ {1, . . . , p} such that y0

α ≤ εy,
then the indices α are removed from I0, y0

α is set to εy and the barycentric coordinates are
recomputed such that d =

∑

α∈I0 y0
αz

0
α.

Let us study the initialization of the dual variables λ0 and θ0
α, α = 1, . . . , p. Since the

variables η and γ are employed in the resolution of the optimization instead of λ, let us
consider the initialization of η0 and γ0. To that aim let us resume the first equation of the
KKT conditions for the barrier problem (2.2.6)

y0
α

(

∇g(x0
α) + λ0

)

+ ζ0
αe = 0, α = 1, . . . , p.
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Then let us multiply this latter by ZT
e . We obtain for all α = 1, . . . , p

0 = y0
α

(

ZT
e ∇g(x0

α) + ZT
e λ0

)

+ ζ0
αZ

T
e e

= y0
α

(

∇f(z0
α) + η0

)

.

The variable η0 is set to minimize ∇f(z0
α)+ η0 in least squares sense with the weights y0

α,
α = 1, . . . , p. In other terms for given z0

α and y0
α, α = 1, . . . , p, η0 is the minimizer of

min
η

p
∑

α=1

y0
α

2
‖∇f(z0

α) + η‖2
2.

The minimum is obtain by finding the zero of the first order conditions, namely

p
∑

α=1

y0
α(∇f(z0

α) + η) = 0.

The initialization for η0 is then established

η0 =
1

p
∑

α=1

y0
α

p
∑

α=1

y0
α∇f(z0

α). (2.2.15)

Concerning the initialization of γ let us resume this time the second KKT conditions
of (2.2.6)

g(xα) + λTxα − θα = 0, ∀α = 1, . . . , p,

which is equivalent to

f(zα) + zT
αη + γ − θα = 0, ∀α = 1, . . . , p. (2.2.16)

The initialization of γ0 is as before set to minimize the above equation in least squares
sense with the weights y0

α, α = 1, . . . , p. Thus γ0 is the root of

p
∑

α=1

y0
α

(

f(z0
α) + η0,Tz0

α + γ0 − θ0
α

)

= 0,

for given y0
α, z0

α, α = 1, . . . , p, and η0.
One deduces the following expression for γ0:

γ0 = −

∑p

α=1 y
0
α

(

f(z0
α) + η0,Tz0

α − θ0
α

)

∑p

α=1 y
0
α

.

Using the complementarity relation ν = y0
αθ

0
α for α = 1, . . . , p, the following relation is

obtained
p
∑

α=1

y0
αθ

0
α = p ν0
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that allows to establish the initialization formula for γ0

γ0 = −

∑p
α=1 y

0
α(f(z0

α) + η0,Tz0
α) − p ν0

∑p
α=1 y

0
α

. (2.2.17)

Since the dual variables ζα, α = 1, . . . , p, do not appear in the reduced linear system
(2.2.13) there is no need to initialize them. Consequently the last dual variables to initialize
is θα, α = 1, . . . , p. If the αth inequality constraints is inactive, i.e. if y0

α > 0, then the
variable θ0

α is initialized by using the complementarity relation

θ0
α =

ν0

y0
α

, α ∈ I0.

When α ∈ A0, the equation (2.2.16) gives immediately the relation

θ0
α = f(z0

α) + η0,Tz0
α + γ0eTx0

α, α ∈ A0.

Finally the initial value of the barrier parameter ν0 is empirically set to 0.001.
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Chapter 3
An optimization-based numerical method

The purpose of this chapter is the numerical resolution of the system (1.6.4) in order to
determine b(t), R(t), xα(t) and yα(t), α = 1, . . . , p and t ∈ [0, T ). In addition to these
variables, the system (1.6.4) contains implicitly the variable I and A, the set of indices of
the inactive, resp. active, inequality constraints. As the other variables, the sets I and A
evolve in time. Consequently let us write I(t) and A(t) from now on.

Two different methods for the resolution of the system (1.6.4) are presented. The first
method exploits the characteristics of the minimization problem to ensure the admissibility
of the solution and advocates a time splitting algorithm that decouples differential and
optimization operators. The second method views the system (1.6.4) as a differential
algebraic system and uses implicit Runge-Kutta methods to solve it. Both methods follow
the same strategy

• Solve the system (1.6.4) for a fixed number of inactive inequality constraints.

• At each time step of the resolution, check if an inequality constraint has to be acti-
vated or deactivated through detection criteria.

• If an activation/deactivation occurs, the resolution is stopped and the computation
of the activation or deactivation time and points is started.

• Once this computation is achieved, the resolution of (1.6.4) with a different number
of inactive inequality constraints restarts.

In this chapter the first numerical method is introduced. The second method is de-
veloped in the next chapter. Both presentations are structured as the above-mentioned
strategy. Hence let us begin with the time splitting scheme for the resolution of (1.6.4)
when the number of inactive constraints is fixed. The detection and computation of the
activation and deactivation are considered in a second step. Some theoretical results are
presented in a simplified case and numerical results conclude this chapter.
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CHAPTER 3. AN OPTIMIZATION-BASED NUMERICAL METHOD

3.1 Numerical method for a fixed number of inactive

constraints

In this first section, the sets I(t) and A(t) are supposed to be constant. The first method of
resolution is inspired by the optimization techniques described in Chapter 2 and developed
by Amundson et al. in [4, 5]. The main idea is to keep the optimization algorithm based
on a primal-dual interior-point method and include it in a dynamic structure. For that
reason a time splitting scheme is used [2].

3.1.1 A time splitting scheme

Let us recall the complete system to solve: find b,xα : (0, T ) → Rs
+ and R, yα : (0, T ) →

R+, α = 1, . . . , p satisfying

d

dt
b(t) = j

(

b(t),xI
α(t), R(t)

)

, b(0) = b0

R(t) =

(

3

4π

s
∑

i=1

mc,ibi(t)

ρi

)
1
3

,

{xα(t), yα(t)}p
α=1 = argmin

{x̄α,ȳα}p
α=1

p
∑

α=1

ȳα g(x̄α) (3.1.1)

s.t.

p
∑

α=1

ȳαx̄α = b(t),

eT x̄α = 1, x̄α > 0, ȳα ≥ 0, α = 1, . . . , p,

where T > 0 is the final time of integration, b0 ∈ Rs
+ is a given initial composition-vector

and the flux j is defined by

j(b(t),xI
α(t), R(t)) = H(R(t))

(

btot −Nb(t) −
1

RcT
exp

(

∇g(xI
α(t)) + ln(po

g)
)

)

.

Let us remind that the exponent I is added to specify that α ∈ I is such that yα > 0
(inactive constraint).

In the time splitting scheme, the differential equations are solved with the Crank-
Nicolson method. Let h > 0 be a fixed time step, tn = nh, n = 0, . . . , m, the discretization
of [0, T ] with tm = T . The approximations of the variables b, R, xα, and yα, α = 1, . . . , p,
at time tn are respectively denoted by bn, Rn, xn

α, and yn
α, α = 1, . . . , p. The set I(tn)

and A(tn) respectively denote the set of inactive/active inequality constraints defined at
tn. For this section one has I(tn) = I(t0) and A(tn) = A(t0), ∀n ∈ {0, . . . , m}.

The differential equations discretized in time with the Crank-Nicolson scheme consist
of

1

h
(bn+1 − bn) =

1

2
j(bn,xI,n

α , Rn) +
1

2
j(bn+1,xI,n+1

α , Rn+1). (3.1.2)
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With the definition of the flux j at time tn+1 the equation (3.1.2) leads to

bn+1 =

(

I +
Nh

2
H(Rn+1)

)−1 [

bn +
h

2
j(bn,xI,n

α , Rn)

+
h

2
H(Rn+1)

(

btot −
1

RcT
exp

(

∇g(xI,n+1
α ) + ln(po

g)
)

)]

. (3.1.3)

Since H(Rn+1) is a diagonal matrix, the term I + Nh
2

H(Rn+1) is a diagonal matrix and its
inverse is also diagonal with diagonal components defined by 1

1+ Nh
2

Hii(Rn+1)
, for i = 1, . . . , s.

Discretizing the whole system (3.1.1), one obtains the following system to solve at each
time step: find bn+1,xn+1

α ∈ Rs and yn+1
α , Rn+1 ∈ R for α = 1, . . . , p that satisfy

bn+1 =

(

I +
Nh

2
H(Rn+1)

)−1 [

bn +
h

2
j(bn,xI,n

α , Rn)

+
h

2
H(Rn+1)

(

btot −
1

RcT
exp

(

∇g(xI,n+1
α ) + ln(po

g)
)

)]

,

Rn+1 =

(

3

4π

s
∑

i=1

mc,ib
n+1
i

ρi

)
1
3

, (3.1.4)

{xn+1
α , yn+1

α }p
α=1 = argmin

{x̄α,ȳα}p
α=1

p
∑

α=1

ȳα g(x̄α)

s.t.

p
∑

α=1

ȳαx̄α = bn+1,

eT x̄α = 1, x̄α > 0, ȳα ≥ 0, α = 1, . . . , p.

The system (3.1.4) can be expressed as the fixed point of a function G : Rs+1+sp+p →
Rs+1+sp+p of the variables bn+1, Rn+1,xn+1

α and yn+1
α , α = 1, . . . , p, that is defined as the

right hand side of (3.1.4):


























bn+1

Rn+1

xn+1
1
...

xn+1
p

yn+1
1
...

yn+1
p



























= G(bn+1, Rn+1,xn+1
1 , . . . ,xn+1

p , yn+1
1 , . . . , yn+1

p ).

In order to obtain such a fixed point, a sequence of iterates ((bn+1)l, (R
n+1)l, (x

n+1
1 )l, . . . ,

(xn+1
p )l, (y

n+1
1 )l, . . . , (y

n+1
p )l) is computed and the following iterative algorithm is constructed,

based on the following facts i) the system is mass-conserving, and ii) xn+1
α and yn+1

α ,
α = 1, . . . , p, are computed independently.
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Algorithm 3.1.1 (Fixed-point algorithm). For the resolution of (3.1.4)

• initialize (bn+1)0 = bn, (Rn+1)0 = Rn, (xn+1
α )0 = xn

α and (yn+1
α )0 = yn

α for α =
1, . . . , p.

• For l = 0, 1, 2, . . ., execute the following steps until some stopping criterion is satisfied
or the maximum number of iterations is reached

1. Compute the composition-vector (bn+1)l+1 with the formula (3.1.3), namely

(bn+1)l+1 =

(

I +
Nh

2
H((Rn+1)l)

)−1 [

bn +
h

2
j(bn,xI,n

α , Rn)

+
h

2
H((Rn+1)l)

(

btot −
1

RcT
exp

(

∇g((xI,n+1
α )l) + ln(po

g)
)

)]

.

2. Compute the radius

(Rn+1)l+1 =

(

3

4π

s
∑

i=1

mc,i(b
n+1
i )l+1

ρi

)
1
3

.

3. Solve the optimization problem with the composition-vector (bn+1)l+1 to compute
(xn+1

α )l+1 and (yn+1
α )l+1 for α = 1, . . . , p:

{(xn+1
α )l+1, (y

n+1
α )l+1}

p
α=1 = argmin

{x̄α,ȳα}p
α=1

p
∑

α=1

ȳα g(x̄α)

s.t.

p
∑

α=1

ȳαx̄α = (bn+1)l+1,

eT x̄α = 1, x̄α > 0, α = 1, . . . , p,

ȳα ≥ 0, α = 1, . . . , p.

• Set bn+1 = (bn+1)l+1, R
n+1 = (Rn+1)l+1, xn+1

α = (xn+1
α )l+1, and yn+1

α = (yn+1
α )l+1 for

α = 1, . . . , p.

The chosen stopping criterion is based on the relative error between two consecutive
iterates. In other words the above algorithm is stopped when the following criterion is
satisfied

‖(bn+1)l+1 − (bn+1)l‖2 ≤ tol ‖(bn+1)l+1‖2,

where tol is a given tolerance and ‖ · ‖2 is the Euclidean norm.
Note that once bn+1 and xI,n+1

α are computed, the gas concentration-vectors c∞,n+1
g

and csurf,n+1
g are given by

c∞,n+1
g = btot −Nbn+1,

csurf,n+1
g =

1

RcT
exp

(

∇g(xI,n+1
α ) + ln(po

g)
)

.
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Hence at each iteration l+1 of the fixed-point method one has to solve the optimization
problem to determine (xn+1

α )l+1 and (yn+1
α )l+1 for α = 1, . . . , p. The optimization problem

is solved with the interior-point method described in Chapter 2. Since several minimization
problems are solved in the Algorithm 3.1.1 and that all these optimization problems are
defined for slightly different composition-vectors (bn+1)l+1, a strategy is elaborated to
reduce the number of interior-point iterations, the key-point being the initialization of the
interior-point method. Such techniques are called warm-start strategies in optimization
theory and are introduced in the following subsection.

3.1.2 A warm-start strategy

Warm-start strategies are used when a sequence of closely related optimization problems
are solved. These techniques are based on the expectation that if the change in the data
of the problem is small enough, the change in the optimal solution is also small. In other
words two closely related optimization problems should in general share similar charac-
teristics. Hence taking advantage of the resolution of an original optimization problem,
computational costs can be reduced for solving a closely related problem. The techniques
that identify an advanced starting point for the solution of a nearby optimization problem
using the information gained from the original one are referred to as warm-start strategies.
When no such information is used, the new problem is solved from a so-called cold-start.

Several warm-start strategies for linear programming have been developed. Among oth-
ers one can cite the works of Benson and Shanno [9], Gondzio [44], Gondzio and Grothey
[45], John and Yıldırım [57] or Yıldırım and Wright [108]. The case of nonlinear program-
ming is less studied. Benson and Shanno proposed some issues in [10]. All these strategies
are elaborated techniques originating generally from the generic warm-start algorithm de-
veloped by Yıldırım and Wright in [108]. This algorithm can be summarized as follows.
Suppose that an original optimization problem is solved with a primal-dual interior-point
method and that iterates generated during the resolution are saved. First the last iterate
is considered and an adjustment is computed. If the adjusted iterate is an acceptable
starting point for the closely related optimization problem, it is considered as a successful
warm-start. Otherwise the algorithm returns to the next most advanced iterate among
the stored iterates and repeats the same procedure. If none of the stored iterates yields an
acceptable warm-start, then the algorithm reverts to cold-start.

In our case, the cold-start strategy corresponds to the initialization procedure intro-
duced in Subsection 2.2.3. Since an active set strategy is added to the interior-point method
and that a rapid resolution method is required, only the last iterate is considered for the
warm-start. If the resolution of the new minimization problem does not succeed with the
warm-start strategy based on the last iteration, the cold-start is chosen for the initializa-
tion. Our warm-start strategy is not as elaborated as the one’s proposed in [9, 44, 57]
because no adjustment in the primal and dual variables is computed. The primal variables
yα and xα, α = 1, . . . , p, and the dual ones λ and θα, α = 1, . . . , p are initialized by taking
their value at the last iterate of the previous optimization problem. The only adjustment
is applied to the barrier parameter ν that is computed thanks to the complementarity
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relation and given by

ν0 =

∑p

α=1 θαyα

p
, (3.1.5)

where θα and yα, α = 1, . . . , p are the solution of the original optimization problem.
To summarize, at the initial time step t0 the first optimization problem to solve is

initialized with a cold-start since no previous optimization problem exists. The barrier pa-
rameter ν and the primal and dual variables xα, yα, η, γ, θα, α = 1, . . . , p are thus initialized
following the techniques presented in Subsection 2.2.3. For all the following minimization
problems and as long as the number of inactive inequality constraints remains fixed, the
warm-start strategy of equation (3.1.5) is employed.

The resolution of the optimization problem may not succeed. The first kind of failure
is the non-convergence of the active set/ interior-point/ Newton Algorithm 2.2.1. The
maximum number of iterations is reached whereas the discrepancy is still greater than a
fixed tolerance. The second kind of failure is due to the trajectory of xα, α ∈ I on the
phase diagram. As described in Section 1.7 the vectors xα, α = 1, . . . , p must remain in
their respective convex region ∆

′

s,α in order to ensure the admissibility of the solution.
However at the boundary of these convex regions, the Hessian of the reduced function f
is singular. Then if a vector xα comes closer to this boundary, the ill-conditioning of ∇

2f
may lead to unstable Newton iterates and the resolution of the optimization problem fails.

If one of the failure cases occurs when warm-start techniques are used, the resolution
is stopped and restarts with a cold-start strategy for the initialization procedure. In the
case of a failure with the cold-start, the interior-point method can not be used to solve the
optimization problem and the resolution method is stopped. According to [4, 5], this case
does not exist in theory and is rare in practice.

The warm-start strategy is helpful for decreasing the computational time. However this
strategy encourages the solution of the optimization problem to stay in phase simplices of
the same dimension and consequently to enforce the global solution of the optimization
problem to follow a minimizer of the Gibbs energy that may become a local minimizer. The
detection of the change of dimension of phase simplices, or equivalently the detection of
activation/deactivation of inequality constraints is adressed in Section 3.2. The technique
relies on the active set strategy with the update of the set of inactive constraints I, and
on the Gibbs tangent plane criterion presented in Section 1.7.

3.2 Detection of the discontinuity times and points

Let us begin this section by recalling the definition of the activation and the deactivation
of the inequality constraints yα(t) ≥ 0, α = 1, . . . , p.

The activation of the inequality constraint yᾱ(t) ≥ 0 corresponds to the transition from
the state yᾱ(t) > 0 to the state yᾱ(t) = 0. The minimal time t∗ such that the transition
occurs is called the activation time. At this particular time t∗ the variable yᾱ is truncated
to zero and its first derivative is discontinuous. It also induces a discontinuity in the first
derivative of the variables yα, α ∈ I and of all the other variables in the optimization
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problem, namely xα and θα for α ∈ I, and λ. Furthermore the loss of regularity of λ at t∗

implies the loss of regularity of the gas concentration-vector csurf
g at t∗.

Similarly the deactivation of the inequality constraint yᾱ(t) ≥ 0 refers to the transition
from the state yᾱ(t) = 0 to yᾱ(t) > 0. The minimal time t† such that the transition occurs
is called the deactivation time and as well as yᾱ, xᾱ and θᾱ, the variables yα, xα and θα for
α ∈ I, λ and csurf

g lose their regularity at t†.
The times t∗ and t† are also called discontinuity times, and the above-mentioned vari-

ables, together with b evaluated at the discontinuity time t∗ or t† are called discontinuity
points.

The discontinuity points have to be detected with accuracy [35, 42, 47, 48], although
the time at which the discontinuities occurs is not known in advance. Moreover, this time
is not explicitly described by an event function, since the variables yα and xα, α = 1, . . . , p,
are the result of an underlying minimization problem for given b.

Numerical methods for the tracking of discontinuity points usually consist of two steps:
(i) the detection of the time interval [tn, tn+1] that contains the event; (ii) the accurate
computation of the event time and discontinuity points. The first step applied to (3.1.1)
is detailed in this current section.

3.2.1 Criterion for the detection

Since no explicit function characterizes the activation or the deactivation, one needs to
define criteria instead. An activation or a deactivation is expressed through the variables
yα, α = 1, . . . , p as explained above. However thanks to the definition of the set of indices
I(t) both events can also be expressed as follows

• an activation occurs in the time interval [tn, tn+1] if

card(I(tn+1)) = card(I(tn)) − 1,

• a deactivation occurs in the time interval [tn, tn+1] if

card(I(tn+1)) = card(I(tn)) + 1.

The active set identification procedure in the resolution of the optimization problem
detailed in Section 2.2.1 allows to update the set of inactive constraints I(t). Let us suppose
that we solve the optimization problem with the composition vector (bn+1)l+1 (step 3 of the
Algorithm 3.1.1). The resolution performs the Algorithm 2.2.1. Let Ij

l+1(t
n+1) denotes the

inactive set at the jth iterate of the Algorithm 2.2.1 for the resolution of the minimization
problem defined for (bn+1)l+1, and Aj

l+1(t
n+1) the corresponding active set. The inactive

set is then updated as follows

Ij+1
l+1 (tn+1) =

(

Ij
l+1(t

n+1) ∪ {α ∈ Aj
l+1(t

n+1) | θ̄j+1
α = g(x̄j+1

α ) + λ̄
j+1,T

x̄j+1
α < 0}

)

\ {α ∈ Ij
l+1(t

n+1) | 0 < ȳj+1
α < ǫy }.
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If such an index α exists, then an event occurs in the time interval [tn, tn+1]. If α ∈
Aj

l+1(t
n+1), a deactivation is detected. If α ∈ Ij

l+1(t
n+1), an activation is detected. The

Algorithm 3.1.1 is then stopped and the computation of the discontinuity time and points
starts.

Thus the active set identification procedure constitutes a first class of criteria for the
detection of either an activation or a deactivation of an inequality constraint. Note that
in the resolution of the optimization problem the variable x̄α is not updated as long as
α ∈ A. Consequently in the active set identification procedure, θ̄Aα is always computed
with the same x̄A

α . If x̄A
α is not accurate the deactivation may be missed. Such a situation

is illustrated in Figure 3.1 (left), where the Gibbs free energy g is represented by a black
curve. The black straight lines are the supporting tangent plane at two consecutive points
of the simulation (bn, g(bn)) and (bn+1, g(bn+1)) when the deactivation is missed.

As described in Section 1.7 the deactivation of a constraint occurs when the supporting
tangent plane to the energy function g becomes tangent to a new point on the graph
of the function. In the example considered in Figure 3.1, s = 2, ∆r = [0, 1] and we
suppose that bn is the last correct single-phase point, situated on the left side of the phase
diagram. Moreover let us assume that bn moves to the right until the area where both
inequality constraints are deactivated and the deactivation of the second constraint does
not occur. In that case bn+1 remains a single-phase point and the corresponding tangent
plane crosses the graph of the function. The mole-fraction vector associated to the active
constraint is denoted by xA

2 and is located on the right side of the phase diagram. From
the first time-step, and because of the warm-start strategy, the variable xA

2 is not updated.
In Figure 3.1 (left) the point (xA

2 , g(x
A
2 )) is situated above the supporting tangent plane

and consequently the variable θA2 , which represents the distance between the supporting
tangent plane and (xA

2 , g(x
A
2 )) remains positive. Thus the deactivation is not detected and

the index 2 remains in A (eventhough the tangent plane at (bn+1, g(bn+1)) crosses the
graph of g). The deactivation is missed because of the poor approximation of xA

2 .

Consequently the criterion stemmed from the active set identification procedure is not
sufficient to detect the deactivation. Let us find another criterion. The deactivation occurs
when the supporting tangent plane crosses the curve g. Since the function g is known only
point-wise, the intersection between the supporting tangent plane and the graph of g cannot
be computed analytically. However, it is not necessary to compute this intersection, but
only to find one point (x, g(x)) located below the tangent plane. Let us sign the distance
between (x, g(x)) and the supporting tangent plane in such a way that the distance is said
to be positive if (x, g(x)) lies above the tangent plane, equal to zero if (x, g(x)) is situated
on the tangent plane and negative if (x, g(x)) is below the tangent plane. The points at
negative distance are located in the convex areas associated to the active constraints ∆

′

s,α,
α ∈ A. Since there is no condition on xA

α except eTxA
α − 1 = 0 and that these points

are not updated in the resolution of the optimization problems, we define xA
α such that

the point (xA
α , g(x

A
α )) is situated at minimal distance from the supporting tangent plane.

If dn(x) denotes the signed distance between (x, g(x)) and the supporting tangent plane
at time tn, then the criterion to detect the presence of the deactivation of an inequality
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Figure 3.1: Deactivation of an inequality constraint. Left: the point xA
2 remains unchanged

during the simulation and (xA
2 , g(x

A
2 )) is situated above the supporting tangent plane. In

that case the deactivation of the constraint is missed. Right: the variable xA
2 is updated at

each time step as the point at minimal distance to the supporting tangent plane. In that
case the point (xA,n+1

2 , g(xA,n+1
2 )) is situated below the supporting tangent plane and the

deactivation is detected in the time interval [tn, tn+1].

constraint is to check at each time step tn+1 if

∃ ᾱ ∈ A(tn+1) such that dn(xn
ᾱ) > 0 and dn+1(xn+1

ᾱ ) < 0, (3.2.1)

where xn
ᾱ, x

n+1
ᾱ ∈ ∆

′

s,ᾱ are the points that respectively minimize dn(·) and dn+1(·) in the

convex area ∆
′

s,ᾱ.

Remark 3.2.1. The points at minimal distance to the tangent plane are not computed at
each active set identification procedure of the optimization problems, but only at each time
step. Since the difference between two successives iterates bn

l in the fixed-point algorithm
is usually not large, it is enough to compute the point at minimal distance xA

α at each time
step.

The computation of the points that minimize the distance to the supporting tangent
plane is explained in the following section. Before ending this section let us consider a last
criterion for the detection of an activation or a deactivation of an inequality constraint.

As explained in the previous section, the primal-dual interior-point method may fail. If
the warm-start strategy was used to initialized the interior-point method, the failure may
indicate that an event has occurred in the considered time interval. Hence when the cold-
start strategy is used in order to solve the interior-point method, one needs to compare
the number of inactive inequality constraints with the one of the previous time step. If
these 2 numbers are not equal, it indicates that either an activation (if the new number of
inactive constraints is smaller) or a deactivation of a constraint occurs.

Let us summarize the criteria of detection described in this section. Suppose that the
time interval is [tn, tn+1]. If one of the following criteria is satisfied
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• there exist an iterate l in the fixed-point algorithm and an iterate j in the Algo-
rithm 2.2.1 for the resolution of the optimization problem defined for (bn+1)l+1, such
that

◮ card(Ij+1
l+1 (tn+1)) = card(Ij

l+1(t
n+1)) − 1 (activation),

◮ or card(Ij+1
l+1 (tn+1)) = card(Ij

l+1(t
n+1)) + 1 (deactivation);

• there exists an iterate l in the fixed-point algorithm for which the resolution of the
optimization problem defined for (bn+1)l+1 failed with the warm-start strategy, suc-
ceed with the cold-start strategy, but whose number of inactive constraints stemmed
from the resolution with the cold-start strategy, is

◮ or less than card(I(tn)) (activation),

◮ greater than card(I(tn)) (deactivation);

• there exists an index α ∈ A(tn+1) such that the distance of the point (xn+1
α , g(xn+1

α ))
to the supporting tangent plane is negative (deactivation);

then stop the numerical resolution of (3.1.1) and compute the discontinuity time and points.
Note that in the above-mentioned criteria, the last criterion is specific to the detection

of a deactivation, whereas the others stand for both types of events.

3.2.2 Computation of the minimal distance criterion

Let us determine first the equation describing the supporting tangent plane as well as the
distance between the plane and any points (x, g(x)), x ∈ R

s
++. As described in Section 1.7

the supporting tangent plane is the affine hyperplane tangent to the graph of g at the
points (xα, g(xα)), α ∈ I. Since ∇g(xα) = ∇g(xβ), ∀α, β ∈ I, the normal vector to the
tangent plane is uniquely determined. Similarly to Chapter 2 the supporting tangent plane
is then defined by the set of points (x, xs+1) ∈ Rs × R satisfying

∇g(xα)T (xα − x) + xs+1 − g(xα) = 0,

where xα is any of the points with α ∈ I.
Since ∇g(x)Tx = g(x), ∀x ∈ Rs

++ the definition of the hyperplane is reduced to

−∇g(xα)Tx + xs+1 = 0.

The vector xα being solution of the PEP and α belonging to I, the relation λ = −∇g(xα)
holds (cf relation (1.4.15)) and the above equation becomes

λTx + xs+1 = 0.

The signed distance of any point (x, g(x)) to the tangent plane is thus given by

d(x) =
λTx + g(x)

‖n‖2
,
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where n =
(

−λT , −1
)T

and ‖n‖2 is the Euclidean norm of n. Since the vector n is
independent of x, let us consider the normalized distance, again denoted by d, defined by

d(x) = λTx + g(x). (3.2.2)

Hence at each time step tn+1 of the time discretization algorithm, and for all inactive
constraints α ∈ A, the computation of the point xA,n+1

α ∈ ∆
′

s,α is given by the resolution
of the following minimization problem

xA,n+1
α = arg min

x∈∆′
s,α

dn+1(x) = arg min
x∈∆′

s,α

λn+1,Tx + g(x), (3.2.3)

where λn+1 stems from the resolution of the PEP defined for bn+1 in Algorithm 3.1.1 and
dn+1 denotes the distance function d defined at time tn+1.

The distance function d possesses several local minima. Each xI
α realizes a local min-

imum that is such that d(xI
α) = 0. If no deactivation occurs, the points xI

α achieve the
global minimum since d(xA

α ) > 0, ∀α ∈ A. The determination of xA
α corresponds in fact to

finding the point located in ∆
′

s,α that realizes the local minima of the distance function.

In the minimization problem (3.2.3) x is constrained to remain in the domain ∆
′

s,α.
This domain is not known explicitly and its size can vary widely. One way to characterize
∆

′

s,α is to impose a constraint to (3.2.3) that expresses the positive-definiteness of the

Hessian matrix ∇
2g(x). Since it is difficult to handle such a constraint, another approach

is considered by solving a new minimization problem where the sole condition on x is
eTx − 1 = 0 and the constraint x ∈ ∆

′

s,α is imposed weakly via a variable step length
during the resolution. This new problem is defined as follows

xA,n+1
α = arg min

x
λn+1,Tx + g(x), (3.2.4)

s.t. eTx − 1 = 0.

The KKT conditions relative to (3.2.4) lead to the nonlinear system:

∇g(x) + λn+1 + ζe = 0,
eTx − 1 = 0,

(3.2.5)

where ζ ∈ R is a Lagrange multiplier associated to the equality constraint eTx − 1 = 0.
The unknowns are x and ζ , and the size of (3.2.5) is s+ 1, which is small by opposition to
the optimization problem arising in the PEP. However the small nonlinear system (3.2.5)
has to be solved at each time step and for all α ∈ A. The resolution method must not be
time consuming numerically.

Problem (3.2.5) is solved with the Newton method and the corresponding Newton
system reads

(

∇
2g(x) e

eT 0

)(

px

pζ

)

= −

(

∇g(x) + λn+1 + ζe
eTx − 1

)

, (3.2.6)

where px and pζ are the increments corresponding to the variables x and ζ .
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Lemma 3.2.1. If x belongs to a convex region of g, (3.2.6) is solvable.

Proof. If x remains in a convex region of g, ∇
2g(x) is symmetric positive definite and the

inertia theorem (see e.g. [46]) allows to conclude that the matrix of (3.2.6) is invertible.

Following Lemma 3.2.1, the numerical algorithm for the solution of (3.2.6) must pay
attention to building a sequence of iterates that remains in the convex region ∆

′

s,α. The
initial guess of the Newton method is given either in a neighborhood of the vertices of
the simplex ∆

′

s (as the initial guesses of the interior-point method described in [5]), or
by the converged iterate obtained in the convex region ∆

′

s,α at the previous time step
(continuation approach [29]).

For each iterate xi of the Newton sequence, the sequence is re-initialized at xi−1 and
stopped if the Hessian ∇

2g(xi) is not positive definite or if the point xi goes out of the
simplex. In order to guarantee the convergence to the local minimum, the Newton incre-
ments are also controlled with a step length algorithm [29] in order to ensure that the
iterates remain in the convex region ∆

′

s,α and the Hessian remains positive definite. More
precisely, let cthres be a given threshold (that corresponds to an approximation of the dis-
tance between convex regions), if det(∇2g(xi)) is close to zero, and ‖(px, pζ)

T‖2 > cthres,
then the Newton iterates are computed as

(

xi+1

ζ i+1

)

=

(

xi

ζ i

)

+ αi

(

px

pζ

)

, αi =
cthres

‖(px, pζ)T‖2

; (3.2.7)

otherwise the new iterate (xi+1, ζ i+1)T is computed with αi = 1.
Since the points xi lie in the simplex ∆

′

s, the parameter cthres is initialized to 0.1.
However, the distance between the convex areas could be smaller than 0.1 and, therefore
the value of cthres can be empirically updated at each time step by computing the minimal
distance between all the xα, α = 1, . . . , p.

Figure 3.2 illustrates the influence of the modification of the increments given by (3.2.7)
for the scalar case r = 1. A 2-components chemical system composed of 1-hexacosanol and
pinic acid is considered. The simplex ∆1 is the segment [0, 1] (0 meaning 100% of pinic
acid in the system). As in Section 1.7 the index 1 is attributed to the constraint situated
on the left extremity of ∆1 and 2 stands for the one on the right extremity. In this example
the inactive constraint is situated on the right and the active constraint is on the left.

The distance function d is represented with a bold curve, and the derivative ∇d is
symbolized with a dashed curve. The tangent lines for the determination of the next
iterate in the Newton method are the black straight lines. The black squares correspond to
the successive Newton iterates, x0 being the starting point. The black circles are therefore
the successive values g(xk), k = 0, . . . , i, i + 1, . . .. In this example d contains only one
minimum that is d(xI,n+1

2 ) and the minimizer of d on ∆
′

1,1 is the right edge of ∆
′

1,1 where
the Hessian of g becomes singular.

Figure 3.2 (left) shows the minimizing sequence obtained with the Newton method
without the adaptive step length (3.2.7). The iterate xi+1 leaves the convex area ∆

′

1,1

and jumps to the convex area of the inactive constraint because the Newton system is
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ill-conditionned around xi. Consequently the sequence converges to the global minimizer
and x

A,n+1
1 = x

I,n+1
2 . Since the Hessian of g at each iterate is positive definite, the jump is

not detected and the sequence converges to the global minimizer instead of the minimizer
belonging to ∆

′

1,1.
Figure 3.2 (right) illustrates the convergence of the sequence with step length modifi-

cation. The iterate xi+1 is modified by (3.2.7) and when the new value falls in the area
where the Hessian is not positive definite, the Newton method is stopped and x

A,n+1
1 is set

to xi which is located near the local minimizer.
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Figure 3.2: Left: Steps of the Newton algorithm for the computation of the point at
minimal distance to the tangent plane without the criterion on the increment (αi = 1).
Right: same but with the criterion on the increment.

At each iteration of the Newton method the distance is computed and the algorithm is
stopped if the distance is negative. Otherwise the algorithm stops if the stopping criterion
on the Euclidean norm of the residuals is smaller than a fixed tolerance, or if a maximal
number of iterations K is reached.

The converged iterate of the Newton method serves as the initial guess of the Newton
method at the next time step, i.e. a classical continuation method for the computation of
the point at minimal distance of the tangent plane is used (see e.g. [6, 29]). The algorithm
for the computation of the minimal distance is summarized as follows:

Algorithm 3.2.1. At each time step tn+1 and for each inequality constraint such that
α ∈ A(tn), initialize x0 = xn

α and ζ0 = ζn. Then, for i = 1, . . . , K

(i) Build and solve the system (3.2.6) to obtain pi
x and pi

ζ .

(ii) If det ∇
2g(xi−1) ≤ δ, δ given, and ‖(pi

x, p
i
ζ)

T‖2 > cthres then set
(

xi

ζ i

)

=

(

xi−1

ζ i−1

)

+
cthres

‖(pi
x, p

i
ζ)

T‖2

(

pi
x

pi
ζ

)

;

else compute xi = xi−1 + pi
x and ζ i = ζ i−1 + pi

ζ .
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(iii) If ∇
2g(xi) is not positive definite, or xi does not belong to the simplex ∆

′

s, or if the
Newton method does not converge, STOP and set xn+1

α = xi−1.

(iv) If the distance to the supporting tangent plane is negative, if the stopping criterion is
satisfied, or if i = K, STOP and set xn+1

α = xi.

Remark 3.2.2. Since some constraints can have the same convex area, it is important to
check at the end of the Newton method if xi can be expressed as a linear combination of
xn+1

α , α ∈ I(tn+1). In that case, xi has to be reset to x0.

Once an event (activation or deactivation) is detected, the exact time and points of
discontinuity are computed. Their computation is detailed in the following section.

3.3 Computation of the discontinuity times and points

In the literature about ordinary differential equations with discontinuities, the location of
the discontinuities is based on a combination of the discontinuity locking approach intro-
duced by Cellier in [23] and interpolation procedures. The discontinuity locking approach
consists in locking the system of equations during an integration step. In other words the
system of equations is not modified during the integration even if an event occurs and
implies a change in the system. The solver completes the integration as if no event oc-
curs. This approach eliminates the difficulties of integration over discontinuities. Moreover
according to Park and Barton [81] this approach is efficient and correct if the system of
equations is mathematically well behaved in a small interval after the event, even if the
solution is not physically meaningful.

Almost all of the algorithms present in the literature follow the same strategy: first to
integrate through the discontinuity locking approach and second to look for events using
an interpolant. The first use of interpolants is due to Shampine et al. in [97]. Then many
techniques to define the interpolating polynomials were proposed. Esposito and Kumar
in [33] and Mao and Petzold in [66] give a review of the main techniques. According to
Esposito and Kumar [33] the event detection proposed by Park and Barton [81] seems to
be the most reliable technique in the literature to date. However the authors point out that
these methods fail to locate events which are close to regions where the right hand side of
the differential system is undefined. The reason is that each of these methods attempts
to evaluate the right hand side before determining if an event has occurred. In order
to overcome this failure Esposito and Kumar elaborate a new technique that approaches
the event from only one side. This technique consists in constructing an extrapolation
polynomial in order to select the integration step size by checking for potential future
events and avoiding the need to evaluate the differential equations in potentially singular
regions.

The techniques to detect an activation or a deactivation of an inequality constraint
follow the discontinuity locking approach. Concerning the computation of the disconti-
nuity time and points, the extrapolation method is in fact more suitable than the use of
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interpolating polynomials as it is showned in the sequel. Let us distinguish the cases of
an activation and a deactivation of a constraint, and assume that the event occurs in the
time interval [tn, tn+1].

3.3.1 Activation of an inequality constraint

Let us assume that the ᾱth constraint activates and that the activation occurs during the
interval [tn, tn+1]. This situation is depicted in Figure 3.3 (left) for a generic time evolution
of the activating variable yᾱ against the time. The variable yᾱ is represented by a blue
curve. Since the constraint activates, yᾱ at tn is positive and equal to zero at tn+1. The
purpose of this section is to approximate the discontinuity time t∗ where yᾱ is equal to zero
for the first time.

One can observe in Figure 3.3 (left) that yᾱ is truncated to zero at t∗ and its first time
derivative is discontinuous. This truncation implies the inefficiency of the interpolating
polynomials to locate t∗. Indeed the interpolants are prone to be zero only in a neighbor-
hood of tn+1. Consequently the evaluation of the interpolants in the neighborhood of t∗ is
positive and t∗ cannot be determined. An example of interpolation called yᾱ,h is given in
Figure 3.3 (right). This interpolant is such that

yᾱ,h(t
n) = yᾱ(tn), yᾱ,h(t

n+1) = yᾱ(tn+1),

y
′

ᾱ,h(t
n) = y

′

ᾱ(tn), y
′

ᾱ,h(t
n+1) = y

′

ᾱ(tn+1).

Clearly one has yᾱ,h(t
∗) > 0. However extrapolation techniques are fully practicable be-

cause they are not subjected to the truncation.

yᾱ

yᾱ(tn)

ttn tn+1t∗

yᾱ,h

yᾱ(tn)

ttn tn+1t∗

Figure 3.3: Left: The function yᾱ on the time interval [tn, tn+1]. The ᾱth constraint is
activated at time t∗. Right: An interpolant of yᾱ on the time interval [tn, tn+1].

In order to define the extrapolation polynomial, let us follow the technique proposed
by Esposito and Kumar in [33]. The underlying idea is to construct a polynomial, whose
accuracy is of the same order as the underlying integration algorithm, and that extrapolates
the event function on [tn, tn+1]. For the case of an activation, the event function is defined
by yᾱ and the event is characterized by the smallest fractional time step τ which satisfies
yᾱ(tn + τ) = 0. A Taylor series expansion gives

0 = yᾱ(tn + τ) = yᾱ(tn) + τ
d

dt
yᾱ(tn) +

τ 2

2

d2

dt2
yᾱ(tn) + O(τ 3). (3.3.1)
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Let us remind that the variable yᾱ is only known point-wise as a result of an optimiza-
tion problem. Consequently the determination of its successive derivatives in time is not
straightforward. For this reason let us only consider the first derivative in the definition of
the extrapolation polynomial. This polynomial P a

ᾱ is defined by

P a
ᾱ(τ) = yᾱ(tn) + τ

d

dt
yᾱ

(

tn +
τ

2

)

. (3.3.2)

The discontinuity fractional time τ is then given by the root of P a
ᾱ .

The value yᾱ(tn) is already approximated by yn
ᾱ. The first derivative d

dt
yᾱ

(

tn + τ
2

)

re-
mains to be estimated. First since yᾱ comes from the optimization problem let us transform
the time derivative by using the chain rule

d

dt
yᾱ

(

tn +
τ

2

)

=
s
∑

i=1

∂yᾱ

∂bi

(

b
(

tn +
τ

2

)) d

dt
bi

(

tn +
τ

2

)

. (3.3.3)

Since no information from the time step tn+1 should be used and following the technique
in [33] the derivatives d

dt
bi
(

tn + τ
2

)

, i = 1, . . . , s, are approximated with the straight line
passing through

(

tn−1, j(bn−1,xI,n−1
α , Rn−1)

)

and
(

tn, j(bn,xI,n
α , Rn)

)

, namely

d

dt
b
(

tn +
τ

2

)

≈
(

1 +
τ

2h

)

j(bn,xI,n
α , Rn) −

τ

2h
j(bn−1,xI,n−1

α , Rn−1). (3.3.4)

In this equation both fluxes j(bn,xI,n
α , Rn) and j(bn−1,xI,n−1

α , Rn−1) come from the results
of the discretized system (3.1.4) at the time step tn and tn−1 and no further computation
is required. Hence the first kind of derivatives in (3.3.3) is approximated. Concerning
the second kind of derivatives, namely ∂yᾱ

∂bi

(

b
(

tn + τ
2

))

, i = 1, . . . , s, the approximation of
∂yᾱ

∂bi
(b (tn)) is computed instead because optimization features furnish good estimates in

that case.

Fiacco and McCormick proved in [36] that it is possible to be explicit about the deriva-
tive of the primal and dual variables of an optimization problem if appropriate assumptions
are made about conditions holding at the optimum. The technique follows from the sensi-
tivity analysis of the optimization problem. Let us present the sensitivity analysis in the
following subsection and then apply this analysis to the approximation of the derivatives
∂yᾱ

∂bi
(b (tn)), i = 1, . . . , s.

Sensitivity analysis in nonlinear optimization

The sensitivity analysis of a model in numerical analysis consists in estimating the variation
in the solution when the inputs of the model are slightly perturbed. In optimization theory
the purpose is similar: to estimate how much the optimum changes when changes are made
in the constraints and the objective function. The theory developed below is inspired from
Fiacco and McCormick [36].
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For the statement of the sensitivity analysis let us consider the following nonlinear
optimization problem: find y∗ ∈ R

n that satisfies

min
y

G(y)

s.t. ci(y) ≥ 0, ∀i = 1, . . . , nI , (3.3.5)

ci(y) = 0, ∀i = 1, . . . , nE .

The associated perturbed optimization problem is defined as follows

min
y

G(y) + a0κ0(y)

s.t. ci(y) + aiϕi(y) ≥ 0, ∀i = 1, . . . , nI , (3.3.6)

ci(y) + ai+nI
ψi(y) = 0, ∀i = 1, . . . , nE ,

where κ0, {ϕi}
nI

i=1 and {ψi}
nE

i=1 are scalar-valued functions of y and the {ai}
nI +nE

i=0 are scalar.
Let a denote the vector of the scalars ai, i = 0, . . . , nI +nE , i.e. aT = (a0, a1, . . . , anI +nE

).
As discussed in Subsection 1.4.3 let us define the following sets

• the set of inequality constraints: I = {1, . . . , nI },

• the set of equality constraints: E = {1, . . . , nE },

• the set of feasible points: Ω = {y ∈ Rn | ci(y) = 0, ∀i ∈ E ; ci(y) ≥ 0, ∀i ∈ I },

• the active set at any feasible point y ∈ Ω: A (y) = E ∪ {i ∈ I | ci(y) = 0}.

Given a feasible point y, a direction vector, say k, is feasible if there exists ℓ > 0 such that
y + ℓk is feasible. One can define the set of linearized feasible directions F at a given
feasible point y.

Definition 3.3.1. Given a feasible point y and the active set A (y), the set of linearized
feasible directions F (y) is

F (y) =

{

k ∈ R
n

∣

∣

∣

∣

kT
∇ci(y) = 0, ∀i ∈ E ,

kT
∇ci(y) ≥ 0, ∀i ∈ A (y) ∩ I

}

.

When the Karush-Kuhn-Tucker conditions are satisfied (see Theorem 1.4.1), a move
along any feasible direction k ∈ F (y∗) either increases the first-order approximation to the
objective function (kT

∇G(y∗) > 0), or else keeps this value the same (kT
∇G(y∗) = 0). For

this latter case one cannot determine from the first derivative information alone whether
a move along k increases or decreases the objective function. Second-order conditions
examine the second derivative terms in the Taylor series expansions of G and ci, i ∈ E ∪I ,
to see whether this extra information resolves the issue of increase or decrease in G. The
set of feasible directions for which it is not clear from first derivative information alone
whether G increases or decreases, is called the critical cone and defined as follows [75]
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Definition 3.3.2. Given F (y∗) and a Lagrange multiplier vector λ∗ satisfying the Karush-
Kuhn-Tucker conditions. The critical cone is the set C(y∗,λ∗) defined by

C(y∗,λ∗) = {k ∈ F (y∗)|∇ci(y
∗)Tk = 0, ∀i ∈ A (y∗) ∩ I with λ∗i > 0}.

The definition of F allows to express the definition of the critical cone in an equivalent
way

k ∈ C(y∗,λ∗) ⇔







∇ci(y
∗)Tk = 0, ∀i ∈ E ,

∇ci(y
∗)Tk = 0, ∀i ∈ A (y∗) ∩ I with λ∗i > 0,

∇ci(y
∗)Tk ≥ 0, ∀i ∈ A (y∗) ∩ I with λ∗i = 0.

The theorem that provides the second-order sufficient conditions on G and ci, i ∈ E ∪I

to ensure y∗ is a local minimum, is the following [36, 75].

Theorem 3.3.1. Sufficient conditions that a point y∗ be an isolated (unique locally) local
minimum of (3.3.5), where f and ci, i ∈ E ∪I are twice-differentiable functions, are that
there exists a Lagrangian vector λ∗ such that the following Karush-Kuhn-Tucker conditions
are satisfied for (y∗,λ∗)

∇yL(y∗,λ∗) = 0,
ci(y

∗) = 0, ∀ i ∈ E ,
ci(y

∗) ≥ 0, ∀ i ∈ I ,
λ∗i ≥ 0, ∀ i ∈ I ,

λ∗i ci(y
∗) = 0, ∀ i ∈ I ;

(3.3.7)

and that ∀k ∈ C(x∗,λ∗) with k 6= 0 one has

kT
∇

2
yyL(y∗,λ∗)k > 0.

Then y∗ is a strict local solution of (3.3.5).

Before stating the theorem about the optimum of the perturbed problem (3.3.6) from
[36], let us separate the Lagrange multiplier λ between the equality and inequality con-
straints. Equivalently, let us write λT = (uT ,wT ) where u ∈ RnI is the Lagrange multi-
plier associated to the inequality constraints and w ∈ RnE is for the equality constraints.
Moreover let us associate the index i to the inequality constraints and the index j to the
equality constraints if nothing is specified. Finally let L∗ denote L(y∗,u∗,w∗) and so on
for all functions evaluated at y∗,u∗ or w∗. The theorem reads

Theorem 3.3.2. If (a) the functions G and ci, i ∈ E ∪ I , are twice-differentiable, (b)
the Karush-Kuhn-Tucker conditions (3.3.7) hold at y∗, (c) the gradients ∇ci(y

∗), i ∈
A (y∗) are linearly independent, and (d) strict complementarity holds (that is u∗i > 0 when
ci(y

∗) = 0 for i ∈ I ), then

(i) the multipliers u∗
i , i ∈ I and w∗

j , j ∈ E are unique;

(ii) there exists a differentiable function (y(a),u(a),w(a)) in the neighborhood of 0, where
y(a) is a local minimum of problem (3.3.6), and (u(a),w(a)) are the multipliers
associated with it, where lima→0(y(a),u(a),w(a)) = (y∗,u∗,w∗),
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(iii) a differential approximation to





y(a) − y∗

u(a) − u∗

w(a) −w∗





is given by





∇
2
yyL

∗ −C∗
I

C∗
E

U∗(C∗
I

)T diag(c∗i ) 0

(C∗
E
)T 0 0





−1



−∇κ∗o U∗Φ∗ −W∗Ψ∗

0 diag(−u∗iϕ
∗
i ) 0

0 0 diag(−ψ∗
j )



 a,

where U∗ = diag(u∗i ), C∗
I

= (−∇c∗1, . . . ,−∇c∗nI
), C∗

E
= (∇c∗1, . . . ,∇c∗nE

), Φ∗ =
(∇ϕ∗

1, . . . ,∇ϕ∗
nI

), W∗ = diag(w∗
j ), and Ψ∗ = (∇ψ∗

1 , . . . , ψ
∗
nE

),

(iv) the change in the optimum value of the objective function G(y(a))−G(y∗) is approx-
imated by

−

nI
∑

i=1

aiu
∗
iϕ

∗
i +

nE
∑

j=1

aj+nE
w∗

jψ
∗
j .

The proof of the theorem can be found in [36]. In their proof, Fiacco and McCormick
showed how to be explicit about the derivative of the differentiable functions y,u and w

whose existence is assured by the implicit function theorem. Let us summarize the main
ideas of the proof.

Because of Assumption (b), the following set of equations is satisfied at (y,u,w) =
(y∗,u∗,w∗) and a = 0

∇G(y) + a0∇κ0(y) −

nI
∑

i=1

ui [∇ci(y) + ai∇ϕi(y)] +

nE
∑

j=1

wj [∇cj(y) + aj+nI
∇ψj(y)] = 0,

ui [ci(y) + aiϕi(y)] = 0, i ∈ I , (3.3.8)

cj(y) + aj+nI
ψj(y) = 0, j ∈ E .

This is a system of n+nI +nE equations. The Jacobian matrix of this system with respect
to (y,u,w) at (y∗,u∗,w∗) and a = 0 is

M∗ =





∇
2
yyL

∗ −C∗
I

C∗
E

U∗(C∗
I

)T diag(c∗i ) 0

(C∗
E
)T 0 0



 ,

where the elements of M∗ are those defined in part (iii). Under Assumptions (a)-(d)
this matrix has an inverse. From the implicit function theorem a unique differentiable
vector function (y(a),u(a),w(a)) in a neighborhood about a = 0 is obtained, satisfying
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the system (3.3.8). Then treating the equations in the system (3.3.8) as functions of a,
differentiating, evaluating at (y∗,u∗,w∗) and a = 0, and rearranging yields





∇
2L∗ −C∗

I
C∗

E

U∗(C∗
I

)T diag(c∗i ) 0

(C∗
E
)T 0 0









dy
da

(0)
du
da

(0)
dw
da

(0)



 =





−∇κ∗o U∗Φ∗ −W∗Ψ∗

0 diag(−u∗iϕ
∗
i ) 0

0 0 diag(−ψ∗
j )



 ,

(3.3.9)
where the vector of derivatives represents in fact the following matrix





dy
da

(0)
du
da

(0)
dw
da

(0)



 =







































∂y1

∂a1
. . . ∂y1

∂a1+nI +nE

...
. . .

...
∂yn

∂a1
. . . ∂yn

∂a1+nI +nE
∂u1

∂a1
. . . ∂u1

∂a1+nI +nE

...
. . .

...
∂unI

∂a1
. . .

∂unI

∂a1+nI +nE
∂w1

∂a1
. . . ∂w1

∂a1+nI +nE

...
. . .

...
∂wnE

∂a1
. . .

∂wnE

∂a1+nI +nE







































(0) ∈ R
(n+nI +nE )×(1+nI +nE ).

Hence the resolution of this system allows to compute the exact value of the first
derivative of y, u and w with respect to a at 0.

Application to the computation of the discontinuity time

In the relation (3.3.3) about the derivative of yᾱ at tn, an approximation for the partial
derivatives ∂yᾱ

∂bi
(b(tn + τ

2
)), i = 1, . . . , s, is needed. Since yᾱ is solution of a constrained

optimization problem, the sensitivity analysis developed above can be used.
One needs to approach the derivative of yᾱ with respect to bi, i = 1, . . . , s at time tn+ τ

2
.

However since the minimization problem is already solved at tn, let us employ the sensitivity
analysis to estimate ∂yᾱ

∂bi
(b(tn)) instead and use this estimate as the approximation of

∂yᾱ

∂bi
(b(tn + τ

2
)). Hence let us consider the optimization problem defined for bn

min
{yα,xα}α∈I(tn)

∑

α∈I(tn)

yα g(xα)

s.t. yα ≥ 0, ∀α ∈ I(tn),
∑

α∈I(tn)

yαxα − bn = 0,

1 − eTxα = 0, ∀α ∈ I(tn).

The point (xn
α, y

n
α,λ

n, θn
α, ζ

n
α) is a KKT point and already computed. Furthermore since

the objective function and the constraints are twice-differentiable functions of yα and xα
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for α ∈ I(tn) the assumptions of the Theorem 3.3.2 are satisfied at this KKT point. So
the sensitivity analysis can be applied and the perturbed optimization system for a general
index i ∈ {1, . . . , s} defined as

min
{yα,xα}α∈I(tn)

∑

α∈I(tn)

yα g(xα)

s.t. yα ≥ 0, ∀α ∈ I(tn),
∑

α∈I(tn)

yαxα − bn − dbi ei = 0,

1 − eTxα = 0, ∀α ∈ I(tn).

Because only the derivative with respect to dbi is required, the perturbation is only ex-
pressed on the second group of equality constraints. In comparison to (3.3.6) the vector a

is defined as: a0 = 0, aj = 0, for j = 1, . . . , pI , for j = 1, . . . , s one has

aj+pI =

{

dbi if j = i,
0 if j 6= i,

and aj+s+pI = 0, for j = 1, . . . , pI . The function ψi associated to the perturbation is the
function identically equal to −1.

The sensitivity analysis requires first to consider a set of equations formed by the
gradient of the Lagrangian associated to the perturbed problem with respect to the primal
variables only, the complementarity equation for the inequality constraints and finally the
equality constraints. This set reads in that case

yα (∇g(xα) + λ) + ζαe = 0, ∀α ∈ I(tn),

g(xα) + λTxα − θα = 0, ∀α ∈ I(tn),

θa yα = 0, ∀α ∈ I(tn),
∑

α∈I(tn)

yαxα − bn − dbi ei = 0,

1 − eTxα = 0, ∀α ∈ I(tn).

The next step is to consider this system as a function of aT = (0, . . . , 0, dbi, 0, . . . , 0),
differentiating and evaluating at a = 0 and the KKT point (xn

α, y
n
α,λ

n, θn
α, ζ

n
α). Since the

sole non-zero component of a is dbi, the differentiation is done only with respect to dbi

and one obtains the system

yn
α∇

2g(xn
α)

dxα

dbi

+
dyα

dbi

(∇g(xn
α) + λn) + yn

α

dλ

dbi

+
dζα
dbi

e = 0, ∀α ∈ I(tn),

(∇g(xn
α) + λn)T dxα

dbi

+ xn,T
α

dλ

dbi

−
dθα

dbi

= 0, ∀α ∈ I(tn),

θn
α

dxα

dbi

+ yn
α

dθα

dbi

= 0, ∀α ∈ I(tn),

67



CHAPTER 3. AN OPTIMIZATION-BASED NUMERICAL METHOD

∑

α∈I(tn)

yn
α

dxα

dbi

+
∑

α∈I(tn)

dyα

dbi

xn
α − ei = 0,

−eT dxα

dbi

= 0, ∀α ∈ I(tn).

At the KKT point the primal variable yn
α is positive and the dual variable θn

α is equal to 0,
∀α ∈ I(tn). Consequently the derivative dθα

dbi
= 0 and the above system simplifies in

yn
α∇

2g(xn
α)

dxα

dbi

+
dyα

dbi

(∇g(xn
α) + λn) + yn

α

dλ

dbi

+
dζα
dbi

e = 0, ∀α ∈ I(tn),

(∇g(xn
α) + λn)T dxα

dbi

+ xn,T
α

dλ

dbi

= 0, ∀α ∈ I(tn),

∑

α∈I(tn)

yn
α

dxα

dbi

+
∑

α∈I(tn)

dyα

dbi

xn
α − ei = 0,

−eT dxα

dbi

= 0, ∀α ∈ I(tn).

The variable θα is removed from the system that can be rearranged in the following
linear form









yn
α∇

2g(xn
α) ∇g(xn

α) + λn yn
αIs e

(∇g(xn
α) + λn)T 0 xn,T

α 0
yn

αIs xn
α 0 0

eT 0 0 0



















dxα

dbi
(0)

dyα

dbi
(0)

dλ
dbi

(0)
dζα

dbi
(0)











=









0

0
ei

0









. (3.3.10)

Hence by solving this linear system the approximation of the partial derivative of yᾱ

relative to bi is given by
∂yᾱ

∂bi

(

b
(

tn +
τ

2

))

≈
dyᾱ

dbi

(0).

Observe that the linear system (3.3.10) is similar to the system (2.2.11) stemmed from
the interior-point method with µ = 0. Consequently the same method of resolution can
be used. Furthermore the elements in the matrix are already computed since they are
the result of the resolution of the optimization problem defined for bn, and the additional
computational costs to build and solve this linear system are not expensive.

Then the extrapolation polynomial P a
ᾱ can be approximated by

P a
ᾱ ≈ yn

ᾱ + τ
s
∑

i=1

dyᾱ

dbi

(0)
[(

1 +
τ

2h

)

jn
i −

τ

2h
jn−1
i

]

= yn
ᾱ + τ

s
∑

i=1

dyᾱ

dbi

(0) jn
i +

τ 2

2h

s
∑

i=1

dyᾱ

dbi

(0) (jn
i − jn−1

i ),

where jn
i and jn−1

i denote respectively the ith component of the fluxes j(bn,xI,n
α , Rn) and

j(bn−1,xI,n−1
α , Rn−1).
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Consequently looking for τ consists in solving the following second order equation in τ

yn
ᾱ + τ

s
∑

i=1

dyᾱ

dbi

(0) jn
i +

τ 2

2h

s
∑

i=1

dyᾱ

dbi

(0) (jn
i − jn−1

i ) = 0. (3.3.11)

For a time step h sufficiently small, the numerical experiments show that the equation
admits a unique positive root τ ∗ in [0, h]. The discontinuity time is then given by t∗h =
tn + τ ∗.

Remark 3.3.1. If the constant time step h used in the discretization is not small enough
in order to ensure τ ∗ ∈ [0, h], then a smaller time step h

′

is considered and a new fixed-
point iteration is done to approximate b at tn + h

′

. The time step is chosen such that the
activation does not occur at time tn +h

′

, implying that the new time tn +h
′

is closer to the
discontinuity time than tn. The technique for the computation of the discontinuity time is
executed on the time interval [tn + h

′

, tn+1].

Once the fractional time step τ ∗ is computed, the two-steps Adams-Bashforth with
variable time step is used to approximate b at time tn+1 := tn + τ ∗, namely

bn+1 = bn + τ ∗
[(

1 +
τ ∗

2h

)

jn −
τ ∗

2h
jn−1

]

. (3.3.12)

All the terms in the above equation are already known before the computation of the dis-
continuity time. Hence the computation of bn+1 requires only addition and multiplication
operations.

Finally the values of yn+1
α , xn+1

α , λn+1, θn+1
α and ζn+1

α for all α ∈ {1, . . . , p} are obtained
by solving the optimization problem for bn+1 of (3.3.12) with a warm-start strategy defined
by the solution at tn with the exception of the removal of the constraint ᾱ from I(tn).

In conclusion, the computation of the discontinuity time and points for the activation
uses a lot of data that are already known from the previous time step tn, and the effort is
essentially based on the resolution of a linear system which is in fact similar to the systems
arising in the interior-point method. Hence the computation cost is not expensive.

3.3.2 Deactivation of an inequality constraint

Although, the computation of the discontinuity time and points is done with a similar
method as for the activation case, it requires more attention. Let us assume that the
deactivation of the phase ᾱ ∈ A(tn) is detected in the time interval [tn, tn+1], that is the
point

(

xn+1
ᾱ , g

(

xn+1
ᾱ

))

is situated at a negative distance to the tangent plane defined by

λn+1.
As for the activation case, the event of the discontinuity can be expressed as an equation

in the fractional time step τ . An event is detected if a point is situated at a negative distance
to the supporting tangent plane and no event occurs if all the points on the graph of the
energy are situated above the supporting tangent plane. In Section 1.7 the deactivation
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of a constraint is geometrically interpreted as the time when the supporting tangent plane
has a new contact point with the energy graph without violating the Gibbs tangent plane
criterion. This new contact point is then at a zero distance from the tangent plane.

Thus we are looking for the fractional time step τ ∈ [0, h] such that at time tn + τ the
supporting tangent plane has a new contact point with g in the convex region relative to
the index ᾱ. Equivalently let us find τ satisfying

F (tn + τ) = g(xᾱ(tn + τ)) + λ(tn + τ)T xᾱ(tn + τ) = 0, (3.3.13)

where xᾱ is solution of the minimization problem

xᾱ(tn + τ) = arg min
x
g(x) + λ(tn + τ)T x (3.3.14)

s.t. eT x − 1 = 0.

The expression for F resumes the definition (3.2.2) of the distance d between the sup-
porting tangent plane and the graph of g. However unlike in (3.2.2) the variable λ is no
more an input, but an unknown. Furthermore in (3.3.13) the variable xᾱ is an unknown
that depends on λ since it is the point such that (xᾱ, g(xᾱ)) is situated at minimal distance
to the tangent plane defined by λ. In fact in (3.3.13) one should write xᾱ(λ(tn + τ)), but
for avoiding heavy notations, only the dependence on τ is mentioned for xᾱ. Hence two
optimization problems are related to F . The first one is the original optimization problem
with b(tn + τ) in order to get λ(tn + τ). The second one is the minimization problem
(3.3.14) that defines the variable xᾱ(tn + τ).

The computation of the discontinuity time τ follows the strategy for the activation case.
Thus let us consider the Taylor series expansion of F

F (tn + τ) = F (tn) + τ
d

dt
F (tn) +

τ 2

2

d2

dt2
F (tn) + O(τ 3).

Then the extrapolation polynomial is expressed as

P d
ᾱ(τ) = F (tn) + τ

d

dt
F (tn +

τ

2
).

The expression of the derivative is computed with the chain rule. By the definition of F
one can write successively

d

dt
F
(

tn +
τ

2

)

=
d

dt
g
(

xᾱ

(

tn +
τ

2

))

+
d

dt

(

λ
(

tn +
τ

2

)T

xᾱ

(

tn +
τ

2

)

)

,

= ∇g
(

xᾱ

(

tn +
τ

2

))T d

dt
xᾱ

(

tn +
τ

2

)

+
d

dt
λ
(

tn +
τ

2

)T

xᾱ

(

tn +
τ

2

)

+ λ
(

tn +
τ

2

)T d

dt
xᾱ

(

tn +
τ

2

)

,

=
[

∇g
(

xᾱ

(

tn +
τ

2

))

+ λ
(

tn +
τ

2

)]T d

dt
xᾱ

(

tn +
τ

2

)

+
d

dt
λ
(

tn +
τ

2

)T

xᾱ

(

tn +
τ

2

)

.
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Now with the chain rule the time derivative of xᾱ is transformed in

d

dt
xᾱ

(

tn +
τ

2

)

=
d

dλ
xᾱ

(

tn +
τ

2

) d

dt
λ
(

tn +
τ

2

)

,

and the derivative of F at tn + τ
2

becomes

d

dt
F
(

tn +
τ

2

)

=
[

∇g
(

xᾱ

(

tn +
τ

2

))

+ λ
(

tn +
τ

2

)]T d

dλ
xᾱ

d

dt
λ
(

tn +
τ

2

)

+
d

dt
λ
(

tn +
τ

2

)T

xᾱ

(

tn +
τ

2

)

.

The difficulty consists therefore in the computation of the matrix d
dλ

xᾱ

(

tn + τ
2

)

and the
vector d

dt
λ
(

tn + τ
2

)

. The technique is similar to the activation case with a sensitivity
analysis on a perturbed optimization problem.

Let us begin with the simplest case: d
dt

λ
(

tn + τ
2

)

. Using the chain rule again, this
expression becomes

d

dt
λ
(

tn +
τ

2

)

=

s
∑

i=1

∂λ

∂bi

(

b
(

tn +
τ

2

)) d

dt
bi

(

tn +
τ

2

)

.

The approximation of d
dt
bi
(

tn + τ
2

)

, i = 1, . . . , s, is given by the straight line passing
through

(

tn−1, j(bn−1,xI,n−1
α , Rn−1)

)

and
(

tn, j(bn,xI,n
α , Rn)

)

as for the activation case.
The other derivative ∂λ

∂bi

(

b
(

tn + τ
2

))

, i = 1, . . . , s, is in fact directly obtained by the
resolution of the linear system (3.3.10) defined for the activation case. Hence the derivative
d
dt

λ
(

tn + τ
2

)

is estimated as in the previous section.
Concerning the matrix d

dλ
xᾱ

(

tn + τ
2

)

, let us use the sensitivity analysis again. Because
of the dependence of xᾱ on λ and the definition of xᾱ, let us consider the minimization
problem of the distance:

min
xᾱ

g(xᾱ) + λTxᾱ

s.t. eTxᾱ − 1 = 0,

considering λ as an input and not a variable.
The matrix d

dλ
xᾱ is defined by

d

dλ
xᾱ =

(

dxᾱ

dλ1

, . . . ,
dxᾱ

dλs

)

.

Then let us approximate each dxᾱ

dλi
, i = 1, . . . , s with the sensitivity analysis method. For

a general index i the perturbed minimization problem is defined by

min
xᾱ

g(xᾱ) + λTxᾱ − dλie
T
i xᾱ

s.t. eTxᾱ − 1 = 0.
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In comparison to (3.3.6), the vector aT = (dλi, 0) and the function ψi associated to the
perturbation is the function defined by −eT

i xᾱ.
The objective function and the equality constraint are twice-differentiable functions of

xᾱ. Furthermore xn
ᾱ is a KKT point of the original minimization problem by construction.

Thus the Theorem 3.3.2 can be applied and one can consider the set of equations issued
from the derivative of the Lagrangian with respect to xᾱ and the equality constraint

∇g(xᾱ) + λ − dλiei + ζᾱe = 0,

eTxᾱ − 1 = 0,

where ζᾱ ∈ R is the dual variable associated to the equality constraint.
The variable λ is considered as a given constant. Treating this set of equations as a

function of dλi, we differentiate it with respect to the independent variable dλi and evaluate
it at a = 0. It yields the following system:

∇
2g(xn

ᾱ)
dxᾱ

dλi

(0) − ei +
dζᾱ
dλi

(0) e = 0,

eT dxᾱ

dλi

(0) = 0.

Hence for all i = 1, . . . , s the derivative dxᾱ

dλi
is obtained by solving the following linear

system
(

∇
2g(xn

ᾱ) e

eT 0

)( dxᾱ

dλi
(0)

dζᾱ

dλi
(0)

)

=

(

ei

0

)

. (3.3.15)

Finally by combining all these previous results the derivative d
dt
F
(

tn + τ
2

)

is approxi-
mated by

d

dt
F
(

tn +
τ

2

)

≈

[

(∇g(xn
ᾱ) + λn)T dxᾱ

dλ
(0) + x

n,T
ᾱ

]

dλ

dt

(

tn +
τ

2

)

≈

[

(∇g(xn
ᾱ) + λn)T dxᾱ

dλ
(0) + x

n,T
ᾱ

]

dλ

db
(0)
(

jn +
τ

2h

(

jn − jn−1
)

)

,

with jn = j(bn,xI,n
α , Rn) and jn−1 = j(bn−1,xI,n−1

α , Rn−1).
Let us define both scalars

An =

[

(∇g(xn
ᾱ) + λn)T dxᾱ

dλ
(0) + x

n,T
ᾱ

]

dλ

db
(0)jn,

Bn =

[

(∇g(xn
ᾱ) + λn)T dxᾱ

dλ
(0) + x

n,T
ᾱ

]

dλ

db
(0)(jn − jn−1).

The approximation of the derivative d
dt
F
(

tn + τ
2

)

becomes

d

dt
F
(

tn +
τ

2

)

≈ An +
τ

2h
Bn,
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and the approximation of the associated extrapolation polynomial reads

P d,n
ᾱ (τ) = F n + τAn +

τ 2

2h
Bn, (3.3.16)

with F n = g(xn
ᾱ) + λn,Txn

ᾱ ≈ F (tn).
As for the activation case the extrapolation polynomial is a second order polynomial in τ
and the determination of τ consists in solving the second order equation in τ

P d,n
ᾱ (τ) = 0.

For a time step h sufficiently small, there exists a root τ ∗ of P d,n
ᾱ (τ) = 0 that is in [0, h].

The approximated discontinuity time is then given by t∗h = tn + τ ∗.
Once the fractional time step τ ∗ is computed, the two-step Adams-Bashforth method

with variable time step is used to approximate b at tn+1 := tn + τ ∗, namely

bn+1 = bn + τ ∗
[(

1 +
τ ∗

2h

)

jn −
τ ∗

2h
jn−1

]

.

All the terms in the above relation are known. Then the computation of bn+1 only requires
addition and multiplication operations.

Before restarting the simulation, the values of the variables xα, yα, ζα, θα, for α =
1, . . . , p, and λ need to be approximated at tn+1. As for the activation case their ap-
proximation is done through the optimization problem defined for bn+1. However the
resolution of the optimization problem must be executed very carefully in order not to
remove the new inactive constraint ᾱ from the set I. At the discontinuity time the new
inactive constraints yᾱ is in fact equal to 0 and its value is numerically forced to yn+1

ᾱ = ǫy.
If the warm-start strategy as defined in Section 3.1.2 is applied, the variable yᾱ is likely
removed from I because of its small value close to the threshold ǫy. If the cold-start strat-
egy is applied, all the informations from the time step tn are lost even if the variables xn,I

α

are generally good approximations of xn+1,I
α and that the resolution of the optimization

problem may be difficult since it is defined at a discontinuity point.
Such a situation is represented in Figure 3.3.2. On this example the constraints y1 and

y2 are inactive at time tn and the corresponding phase simplex is the segment defined by
conv(xn

1 ,x
n
2) = [xn

1 ,x
n
2 ]. At the discontinuity time tn+1 the constraint y3 is activated and

the new phase simplex is the triangle whose vertices are the points xn+1
1 ,xn+1

2 and xn+1
3 .

The discontinuity point bn+1 belongs to the triangle. However since bn+1 is situated at
the transition between both phase simplices, bn+1 belongs to the edge [xn+1

1 ,xn+1
2 ] and

yn+1
3 = 0. Moreover the points xn

1 and xn+1
1 , and xn

2 and xn+1
2 , are respectively close to

eachother.
The warm-start strategy as defined in Section 3.1.2 will likely lead to the activation of

the constraint yᾱ and the cold-start strategy may also activate the constraint yᾱ. Then
a new warm-start strategy has to be determined in order to ensure the belonging of the
constraint yᾱ in the set of inactive constraints I. This new strategy takes the points
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bn

bn+1

xn
1

xn
2

xn
3

xn+1
1

xn+1
2xn+1

3

Figure 3.4: Deactivation of the constraint y3 at tn+1 when the constraints y1 and y2 are
already inactive at tn.

xn
α as initialization of xn+1

α for α ∈ I(tn) in the optimization problem. Since xn
ᾱ is the

point at minimal distance from the supporting tangent plane defined by λn at tn, this
point constitutes a potentially good initialization of xn+1

ᾱ (the point xn
3 in Figure 3.3.2 is

situated in the neighborhood of xn+1
3 ). Furthermore in order not to favour any inactive

constraints in I and to ensure the remain of ᾱ in I the initialization of the variable yα,
α ∈ I in the optimization problem is given by

yα =
1

pI
, ∀α ∈ I.

For the example in Figure 3.3.2 this initialization reads yα = 1
3

with α ∈ {1, 2, 3}. Then
the remaining variables, namely ζα, θα for α ∈ I and λ are initialized as with the cold-start
strategy but with pI instead of p.

With this new warm-start strategy for the initialization of the resolution of the opti-
mization problem, the approximations of the variables xα, yα, θα and ζα for α = 1, . . . , p,
and λ are obtained at the discontinuity time tn+1. Then the resolution of the system (3.1.1)
is restarted until the next event is detected.

Remark 3.3.2. If the inactive constraint ᾱ is removed from I even if the new warm-start
strategy is applied, the variable xn+1

ᾱ can still be determined since xn+1
ᾱ defines the point

situated in the convex area ∆
′

s,ᾱ that minimizes the distance to the supporting tangent plane

defined at tn+1. Then the Algorithm 3.2.1 applied to ᾱ leads to xn+1
ᾱ and the set of inactive

constraints is again increased by the index ᾱ before the restart of the numerical simulation.
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3.4 A priori error estimation

Error estimates for the approximations of the discontinuity time and points are difficult to
obtain in the case of the system (3.1.1) since one has to handle optimization and differential
features. However if the optimization problem is supposed to be exact, the system (3.1.1)
is reduced to a Cauchy’s problem and a priori error estimates may be established following
the theory developed for nonlinear problems [22, 91].

Let us assume that the optimization algorithm gives an exact solution, meaning that
the primal variables yα and xα for α = 1, . . . , p are computed from b exactly and no error
is made about their value. Moreover the variable R in (3.1.1) is already exact and fully
depends on b. Thus the error estimate for the approximations of the discontinuity time
and points is solely based on the differential part present in the system (3.1.1), and this
system can be reduced to the following Cauchy’s problem for the establishment of error
estimates: find b(t) satisfying











d

dt
b(t) = f(b(t)),

b(0) = b0.

(3.4.1)

As long as the number of inactive inequality constraints remains fixed, the solution of
(3.1.1) is continuously differentiable. Once an event occurs, the variable xα and yα, α ∈ I
lose their regularity, and consequently the flux j loses also its regularity. However one can
extend the flux defined with the fixed number of inactive constraints, in the neighborhood
of the discontinuity point. In the Cauchy’s problem, the function f illustrates the flux
function defined with a fixed number of inactive constraints. Hence the function f can
be extended in the neighborhood of the discontinuity point, and assumed Lipschitz with
the constant L and bounded. Moreover the Cauchy’s problem is supposed to admit a
solution. This solution is differentiable and can also be extended in the neighborhood of
the discontinuity point. Let us denote by bn the iterates obtained from the discretization of
(3.4.1) with the Crank-Nicolson method. The last considered hypothesis is the positiveness
of b(t), ∀t > 0 and of bn, ∀n = 0, . . . , m.

The time interval is [0, T ] with T sufficiently large such that an activation or a deac-
tivation occurs before T . Let t0, t1, ..., tm denote the discretization of [0, T ] with t0 = 0,
tm = T , and hk = tk − tk−1, the length of each subinterval, for k = 1, . . . , m. Finally let us
introduce the variable h = max1≤k≤m h

k. Unlike in Section 3.1 the time step is no longer
fixed. Indeed the time step is fixed except for the fractional time step needed to reach the
discontinuity.

In the forthcoming theory the used norm is the infinity-norm that is simply denoted
by ‖ · ‖. Moreover all the notations for the constants that are defined in the following
lemmas and theorems are local notations. For reasons of simplification the case s = 3 is
first studied. A generalization of the theoretical results to s dimensions is then discussed.
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3.4.1 Theoretical results in 3 dimensions

Let us consider first the case s = 3. In this case the composition-vector b is made of 3
different chemical components and the trajectory of b is represented on a phase diagram
of dimension r = s−1 = 2 (see Section 1.7). A general representation of the ternary phase
diagram is depicted in Figure 3.5.

In the system (3.1.1), b loses its regularity when an inequality constraint activates or
deactivates. On a geometrical point of view this loss of regularity is characterized by a
change in the dimension of the phase simplex associated to b as described in Section 1.7.
In Figure 3.5 the trajectory of b on the phase diagram for a ternary system is presented.
The initial composition-vector b0 is situated in the area 1 which means that b0 is a single-
phase point. A second inequality constraint is deactivated at the first time step. The phase
simplex becomes a segment represented by a dotted blue line and its dimension goes from
pI = 1 to pI = 2. Then the last inequality constraint is deactivated and the corresponding
phase simplex is a triangle.

��������

1

3

2

1

1
1b0

2

1
����

����
����

����

����
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����

mol1

mol2

mol3

b0

Figure 3.5: Phase boundaries on the phase diagram of a ternary system.

One can observe on the one hand in Figure 3.5 that the single-phase points which
constitute the successive phase simplices when pI ≥ 2 follow the frontiers that separate
the different areas of the phase diagrams. The frontiers are the solid red lines in Figure 3.5.
On the other hand both discontinuity points are located on the frontiers too. These two
points are also called phase transition points because the dimension of the phase simplex
changes at these points. In fact all the points on these solid red lines are phase transition
points since they are all situated at the boundary between 2 areas where the dimension
of the phase simplex differs. Thus for the system (3.1.1) b loses its regularity when its
trajectory crosses a frontier of a phase diagram.

For the theoretical study of this section, let us assume that only one event occurs in
the time interval [0, T ]. In other words let us assume that b crosses only one frontier of
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the phase diagram and only once in the time interval [0, T ]. Let us denote by t∗ the exact
time when b crosses the frontier and assume that there exists n = n(h) ≤ m − 1 such
that t∗ ∈ [tn, tn+1[. Note that when h becomes smaller, the index n = n(h) becomes larger.
For the system (3.4.1) b does not lose regularity, but is extended in a C2 manner in the
neighborhood of the discontinuity point.

In Figure 3.5 the frontiers are either segments or curves. However in the neighborhood
of the event this frontier may be locally approximated by a straight line. Thus for this
study let us consider the boundary as a segment [C,D] defined by

[C,D] := {z ∈ R
2 | ∃ℓ ∈ [0, 1] s. t. z = OC + ℓv},

with v = CD, the direction vector of the segment. Note that the frontier really is a
segment when going from 2 to 3 inactive constraints.

Let bh denotes the linear spline interpolation of bn stemmed from the Crank-Nicolson
method. The time at which bh crosses the segment [C,D] is denoted by t∗h. The purpose of
this section is to estimate on the one hand the error between the exact discontinuity time t∗

and the approximated one t∗h, namely |t∗−t∗h|, and on the other hand the difference between
the exact discontinuity point b(t∗) and the approximated one bh(t

∗
h). Let us remind that

in fact the points represented on the phase diagram are normalized points belonging in
Rr with r = s − 1. Therefore if the error between the points that cross the frontier is
wanted, one should to compare their normalized value projected in R2. Let us denote by
d the normalized projected points as in section 1.7. The error estimate is then given by
‖d(t∗) − dh(t

∗
h)‖ with d(t) = 1

eT b(t)
Pb(t) and dh(t) = 1

eT bh(t)
Pbh(t) for all t ∈ [0, T ].
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Figure 3.6: Illustration for exact and approximate trajectories.

The geometrical situation is represented in Figure 3.6. Let us define the following two
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functions:

F : R+ × R → R
2

wT = (t, ℓ) 7→ F(w) = d(t) − OC − ℓv,

and

Fh : R+ × R → R
2

wT = (t, ℓ) 7→ Fh(w) = dh(t) −OC − ℓv.

The root of F, respectively Fh, is the crossing point between the segment and the
trajectory d, respectively dh. Hence the desired error estimates are given by the error
between the zero of each function. Let us denote uT = (t∗, ℓ∗) the zero of F and uh

T =
(t∗h, ℓ

∗
h) the zero of Fh. The establishment of the error estimate follows nonlinear techniques

presented in [22, 91]. Let us first give a property for the Jacobian matrix of F at u.

Lemma 3.4.1. If d
dt
d(t∗) is not parallel to v, then DF (u) is regular.

Proof. Let us denote by v1, v2 the components of the vector v and n the normal vector of
the segment [C,D] defined by:

n =

(

−v2

v1

)

.

The expression of DF (u) is then given by:

DF (u) = DF (t∗, ℓ∗) =

(

d
dt
d1(t

∗) −v1
d
dt
d2(t

∗) −v2

)

.

So the determinant of DF (u) is equal to:

det(DF (u)) = −v2
d

dt
d1(t

∗) + v1
d

dt
d2(t

∗) = n ·
d

dt
d(t∗).

Since d
dt

d(t∗) is not parallel to v by hypothesis, the scalar product n · d
dt

d(t∗) is not equal
to zero. This implies the regularity of DF (u).

In the following theorem the existence and uniqueness of a solution of Fh is proved and
an a priori error estimate is established.

Theorem 3.4.2. Assume that the functions F and Fh admit zeros in (0, T ), denoted by
u = (t∗, ℓ∗) and uh = (t∗h, ℓ

∗
h) respectively. Furthermore let us assume that d can be extended

in a C2 manner in the neighborhood of the discontinuity point, and d
dt

d(t∗) is not parallel
to v. Then:

(i) the following limit holds
lim
h→0

‖Fh(u)‖ = 0;
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(ii) there exists h̄ > 0 and a ball centered in u and with radius δ > 0 denoted by B(u, δ) ⊂
R

2 such that ∀h < h̄ there exists only one uh ∈ B(u, δ) satisfying Fh(uh) = 0.
Moreover there exists a constant C̄ independent of h ≤ h̄ such that the following a
priori error estimates holds

‖u− uh‖ ≤ C̄ ‖Fh(u)‖. (3.4.2)

Proof. Since the Crank-Nicolson and Adams-Bashforth methods are consistent, one has
immediately

lim
h→0

dh(t
∗) = d(t∗).

Then by writing

‖Fh(u)‖ = ‖Fh(u) − F(u)‖ = ‖dh(t
∗) − d(t∗)‖,

it follows

lim
h→0

‖Fh(u)‖ = 0

and the first part of the theorem is proved.
For the second part of the theorem let us define the operator G : R2 → R2 as

G(w) = w −DF (u)−1Fh(w).

By the Lemma 3.4.1, G is well defined. Moreover if uh is a fixed point of G, then uh is a
zero of Fh, i.e. Fh(uh) = 0.
Let δ > 0 and w = (tw, ℓw)T be an element of the closed ball B(u, δ). Without loss of
generality let us assume that tw < t∗. We have:

G(w) −G(u) = w −DF (u)−1Fh(w) − u +DF (u)−1Fh(u)

= DF (u)−1 [DF (u)(w − u) − (Fh(w) − Fh(u))] .

By definition of the Jacobian one can write:

DF (u)(w−u) =

(

d
dt
d1(t

∗) −v1

d
dt
d2(t

∗) −v2

)(

tw − t∗

ℓw − ℓ∗

)

=

(

d
dt
d1(t

∗)(tw − t∗) − (ℓw − ℓ∗)v1

d
dt
d2(t

∗)(tw − t∗) − (ℓw − ℓ∗)v2

)

.

It follows

‖DF (u)(w − u) − Fh(w) + Fh(u)‖ = max
1≤i≤2

(∣

∣

∣

∣

d

dt
di(t

∗)(tw − t∗) − (ℓw − ℓ∗)vi − dh,i(tw)

+Ci + ℓwvi + dh,i(t
∗) − Ci − ℓ∗vi|)

= max
1≤i≤2

(∣

∣

∣

∣

d

dt
di(t

∗)(tw − t∗) − dh,i(tw) + dh,i(t
∗)

∣

∣

∣

∣

)

,
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where Ci is the ith component of OC. Now let us study the expression | d
dt
di(t

∗)(tw − t∗)−
dh,i(tw)+dh,i(t

∗)|. Even if the function d
dt
dh,i is piecewise continuous, the following relation

holds

dh,i(t
∗) − dh,i(tw) =

∫ t∗

tw

d

dt
dh,i(s) ds.

The expression can then be reformulated in

∣

∣

∣

∣

d

dt
di(t

∗)(tw − t∗) − dh,i(tw) + dh,i(t
∗)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t∗

tw

(

d

dt
dh,i(s) −

d

dt
di(t

∗)

)

ds

∣

∣

∣

∣

,

≤

∣

∣

∣

∣

∫ t∗

tw

(

d

dt
dh,i(s) −

d

dt
di(s)

)

ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t∗

tw

(

d

dt
di(s) −

d

dt
di(t

∗)

)

ds

∣

∣

∣

∣

.(3.4.3)

On one hand since the function di is C2, one can consider the Taylor series expansion

∣

∣

∣

∣

d

dt
di(s) −

d

dt
di(t

∗)

∣

∣

∣

∣

=

∣

∣

∣

∣

d2

dt2
di(ξ)

∣

∣

∣

∣

|s− t∗|, with 0 < |ξ − t∗| < |s− t∗|.

The second integral in (3.4.3) is then bounded from above by

∣

∣

∣

∣

∫ t∗

tw

(

d

dt
di(s) −

d

dt
di(t

∗)

)

ds

∣

∣

∣

∣

≤ max
ξ∈[t∗−δ,t∗+δ]\{t∗}

∣

∣

∣

∣

d2

dt2
di(ξ)

∣

∣

∣

∣

|t∗ − tw|
2. (3.4.4)

On the other hand for a fixed h there exists a finite number m̄(δ) of subintervals [ti, ti+1[, i =

n, . . . , m̄(δ) such that ∪m̄(δ)
i=n [ti, ti+1[⊃ [tw, t

∗]. On each subinterval the consistency of the
numerical scheme implies the existence of a constant C̃i independent of h such that

∣

∣

∣

∣

d

dt
dh,i(s) −

d

dt
di(s)

∣

∣

∣

∣

≤ C̃i h, where s ∈ [ti, ti+1[, ∀i = n, . . . , m̄(δ). (3.4.5)

The relations (3.4.4) and (3.4.5) in the inequality (3.4.3) gives

∣

∣

∣

∣

d

dt
di(t

∗)(tw − t∗) − dh,i(tw) + dh,i(t
∗)

∣

∣

∣

∣

≤

[

C̃ h+ max
ξ∈[t∗−δ,t∗+δ]\{t∗}

∣

∣

∣

∣

d2

dt2
di(ξ)

∣

∣

∣

∣

|t∗ − tw|

]

|t∗−tw|,

where C̃ =
∑m̄

i=n C̃i. An upper bound of the term C̃ h is given by

C̃ h =
m̄
∑

i=n

C̃i h ≤ (m̄− n + 1) max
n≤i≤m̄

C̃i h,

= max
1≤i≤m̄

C̃i (m̄− n+ 1) h,

≤ max
1≤i≤m̄

C̃i (δ + 2h).
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Therefore there exists h̄1 > 0 and let us choose δ > 0 such that for i = 1, 2

C̃ h+ max
ξ∈[t∗−δ,t∗+δ]\{t∗}

∣

∣

∣

∣

d2

dt2
di(ξ)

∣

∣

∣

∣

|t∗ − tw| ≤
1

2‖DF (u)−1‖
, ∀h < h̄1.

We deduce:

‖DF (u)(w − u) − Fh(w) + Fh(u)‖ ≤
1

2‖DF (u)−1‖
‖u− w‖, ∀h ≤ h̄1.

Consequently:

‖G(w) −G(u)‖ ≤ ‖DF (u)−1‖ ‖DF (u)(w − u) − (Fh(w) − Fh(u))‖,

≤ ‖DF (u)−1‖
1

2‖DF (u)−1‖
‖u− w‖,

=
1

2
‖u− w‖.

Now by the first part of the theorem, one can choose h̄2 in order to have ‖Fh(u)‖ ≤
δ

2‖DF (u)−1‖ . Consequently there exists h̄ = min(h̄1, h̄2) such that for w ∈ B(u, δ) we have:

‖u−G(w)‖ ≤ ‖u −G(u)‖ + ‖G(u) −G(w)‖,

≤ ‖DF (u)−1‖ ‖Fh(u)‖ +
1

2
‖u− w‖,

≤
δ

2
+
δ

2
= δ.

Hence G(w) ∈ B(u, δ) when w ∈ B(u, δ). So the operator G is a strict contraction of the
ball B(u, δ) and admits a unique fixed point in B(u, δ) denoted by uh. The second part of
the theorem is proved.

For the last part of the theorem, let us take w = uh in the above inequality. We obtain
by noticing that uh = G(uh)

‖u− uh‖ ≤ ‖DF (u)−1‖ ‖Fh(u)‖ +
1

2
‖u − uh‖.

Hence
‖u− uh‖ ≤ 2‖DF (u)−1‖ ‖Fh(u)‖.

The relation (3.4.2) with C̄ = 2‖DF (u)−1‖ is then obtained.

Since the numerical methods used for the discretization of the system (3.4.1) are second
order methods, one can be more precise on the first part of the theorem and prove that
there exists h̃ > 0 and a constant c̃ such that

‖Fh(u)‖ ≤ c̃ h2, ∀h ≤ h̃.

Then combination of this relation with (3.4.2) allow to conclude

∃h0 > 0, C0 > 0 s. t. |t∗ − t∗h| + |ℓ∗ − ℓ∗h| ≤ C0h
2, ∀h < h0. (3.4.6)
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3.4.2 Theoretical results in s dimensions

This theory can be generalized to several dimensions. The problem is to find the intersec-
tion between the curve d(·) and the hyperplane defined by OC +

∑s−1
i=1 λivi, where C is

a point in the plane and vi are the direction vectors of the hyperplane. Thus the Lemma
3.4.1 is changed into

Lemma 3.4.3. If d
dt

d(t∗) is not parallel to the hyperplane, then DF (u) is regular.

Proof. The Jacobian of F at u is given by

DF (u) =







d
dt
d1(t

∗) −v1,1 . . . −vs−1,1
...

...
...

d
dt
ds(t

∗) −v1,s . . . −vs−1,s






,

where vi,j denotes the jth component of the vector vi.
If d

dt
d(t∗) is not parallel to the hyperplane, then d

dt
d(t∗) is not a linear combination of the

vectors vi, i = 1, . . . , s − 1. Consequently the determinant of the Jacobian matrix is not
equal to zero.

In the Theorem 3.4.2 the dimension appears in the computation of the matrix-vector
product DF (u)(w − u). In this case one has

DF (u)(w − u) =







d
dt
d1(t

∗) −v1,1 . . . −vs−1,1
...

...
...

d
dt
ds(t

∗) −v1,s . . . −vs−1,s

















t∗ − tw
ℓ∗1 − ℓw,1

...
ℓ∗n−1 − ℓvn−1











=







d
dt
d1(t

∗)(t∗ − tw) −v1,1(ℓ
∗
1 − ℓw,1) . . . −vs−1,1(ℓ

∗
s−1 − ℓw,s−1)

...
...

...
d
dt
ds(t

∗)(t∗ − tw) −v1,s(ℓ
∗
1 − ℓw,1) . . . −vs−1,s(ℓ

∗
s−1 − ℓw,s−1)






,

where wT = (tw, ℓw,1, . . . , ℓw,s−1) and uT = (t∗, ℓ∗1, . . . , ℓ
∗
s−1).

Then the expression DF (u)(w − u) − Fh(w) + Fh(u) equals to

DF (u)(w − u) − Fh(w) + Fh(u) =
d

dt
d(t∗)(t∗ − tw) − dh(tw) + dh(t

∗),

which is exactly the same expression as in the Theorem 3.4.2. Thus the theorem is still
valid.

3.4.3 Theoretical example

Under the assumption that the optimization algorithm is exact, the system (3.1.1) can
be reduced when additional assumptions are considered. Indeed in the particular case of
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the p-simplex (i.e. when s = p), the phase simplex is a polyhedron of dimension s and
its edges are constant and exactly known once an optimization problem is computed for
a b(t) belonging in the interior of the polyhedron. Consequently for any given analytical
function f and for an initial point b0 situated in the p-simplex, the intersection between
the trajectory of b and the p-simplex can be computed exactly.

Let us work with 3 chemical components. Hence the p-simplex is a triangle. Fur-
thermore let us consider a function f which is a simplified case of the flux in the original
problem (3.1.1). In other words let us assume

• only one particle is in the system, i.e. N = 1,

• in the definition of the flux j the matrix H is equal to the identity matrix.

So the Cauchy’s problem of (3.4.1) reads

{

d
dt
b(t) = −b(t) + K,

b(0) = b0,
(3.4.7)

with K = btot− 1
RcT

exp(−∇g(xα)+ln(po
g)) = btot−csurf

g . First by definition the vector K

is positive. Second as long as b stays in the p-phase simplex, the vector ∇g(xα) is constant
and in fact equal to −λ, the dual variable. Hence as long as b stays in the p-phase simplex,
the vector K is constant.

The solution of the Cauchy’s problem is exactly known and given by:

b(t) = (b0 −K)e−t + K.

Let us denote by z1, z2 and z3 the vertices of the p-simplex defined on the phase diagram.
Moreover without loss of generality let us assume that the curve d(·) crosses the edge
[z1, z3]. One can represent analytically this edge by:

(

c1 + ℓv1

c2 + ℓv2

)

, with ℓ ∈ [0, 1],

where zT
1 = (c1, c2) and v = −−→z3z1.

Before starting the computation of the intersection point, let us write the expression of
d(·) = 1

eT b(·)b(·) more simply. Let us note the expression of b(t)





b1(t)
b2(t)
b3(t)



 =





A1e
−t +B1

A2e
−t +B2

A3e
−t +B3



 ,

where Ai = b0,i −Ki and Bi = Ki for i = 1, . . . , 3.
Hence

eTb(t) = (A1 + A2 + A3)e
−t +B1 +B2 +B3 = Ae−t +B,
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where A := A1 + A2 + A3 and B := B1 + B2 + B3. Consequently finding the intersection
between the curve d and the segment [z1, z3] is given by solving the following system







A1e−t+B1

Ae−t+B
= c1 + ℓv1,

A2e−t+B2

Ae−t+B
= c2 + ℓv2,

where t and ℓ are the unknowns.
This system is equivalent to

{

A1e
−t +B1 = (c1 + ℓv1)(Ae

−t +B),
A2e

−t +B2 = (c2 + ℓv2)(Ae
−t +B).

Multiplying the first equation by v2, the second one by −v1 and additioning these new
equations yield

v2A1e
−t + v2B1 − v1A2e

−t − v1B2 = (Ae−t +B)(v2c1 − c2v1).

We deduce

e−t =
B(v2c1 − c2v1) − v2B1 + v1B2

v2A1 − v1A2 − A(v2c1 − c2v1)
,

and obtain

t = ln

(

v2A1 − v1A2 −A(v2c1 − c2v1)

B(v2c1 − c2v1) − v2B1 + v1B2

)

.

So the intersection point occurs at t∗ = ln
(

v2A1−v1A2−A(v2c1−c2v1)
B(v2c1−c2v1)−v2B1+v1B2

)

and is given by B(t∗).

To apply the theory developed in the previous section we need to verify whether the
required hypotheses are satisfied. The first one to check is the positiveness of the solution.

Lemma 3.4.4. The solution of the differential equation b(t) is positive.

Proof. The solution b(t) is defined by

b(t) = (b0 − K) e−t + K,

which can be transformed into

b(t) = e−t b0 + (1 − e−t )K.

Since the initial condition is chosen to be positive, and the vector K and the variable t are
by definition positive, we deduce immediately the positiveness of the solution.

We need to verify the Lipschitz continuity of the function f .

Lemma 3.4.5. The function f of the Cauchy’s problem (3.4.7) is Lipschitz and the Lips-
chitz constant equals to 1.
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Proof. By definition of f one has for all b1,b2 ≥ 0

‖f(b1) − f(b2)‖ = ‖ − b1 + K + b2 − K‖

= ‖b1 − b2‖.

It means that the function f is Lipschitz and the Lipschitz’s constant equals to 1.

The last hypothesis concerns the positiveness of the numerical scheme. One has to
prove that bk > 0 for k = 0, 1, . . . , m. The first iterate is initially set to the positive value
b0 = b0. The positiveness of the other iterates is proved in the following lemma. Let us
recall that the numerical scheme is the Crank-Nicolson method except for the iterate that
hits the frontier. In this last case the numerical scheme is the Adams-Bashforth method.

Lemma 3.4.6. For all h ∈]0, 2[, the numerical scheme Crank-Nicolson/Adams-Bashforth
is positive.

Proof. Let us assume that the event occurs during the interval [tn, tn+1[. Our algorithm
implies that until the step tn the Crank-Nicolson scheme is used and it follows for k =
0, . . . , n− 1

1

h
(bk+1 − bk) =

1

2
f(bk) +

1

2
f(bk+1),

= −
1

2
bk −

1

2
bk+1 + K,

which is equivalent to

bk+1 =
2 − h

2 + h
bk +

2h

2 + h
K, for k = 0, . . . , n− 1.

Repeating iteratively the process implies

bk+1 =
2 − h

2 + h
bk +

2h

2 + h
K

=
2 − h

2 + h

(

2 − h

2 + h
bk−1 +

2h

2 + h
K

)

+
2h

2 + h
K

=

(

2 − h

2 + h

)2

bk−1 +
2h

2 + h

(

1 +
2 − h

2 + h

)

K

...

=

(

2 − h

2 + h

)k+1

b0 +

[

2h

2 + h

k
∑

p=0

(

2 − h

2 + h

)p
]

K.

Since h > 0 the above sum is a geometric series equals to

k
∑

p=0

(

2 − h

2 + h

)p

=
2 + h

2h

[

1 −

(

2 − h

2 + h

)k+1
]

.
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Hence bk+1 becomes

bk+1 =

(

2 − h

2 + h

)k+1

b0 +

[

1 −

(

2 − h

2 + h

)k+1
]

K. (3.4.8)

Let us now consider the fraction 2−h
2+h

. One has

2 − h

2 + h
=

2 + h− 2h

2 + h
= 1 −

2h

2 + h
.

The time step h ∈]0, 2[ yields

0 ≤
2h

2 + h
≤ 1,

and consequently

0 ≤
2 − h

2 + h
≤ 1.

It implies for k = 0, . . . , n− 1

0 ≤

(

2 − h

2 + h

)k+1

≤ 1 and 0 ≤ 1 −

(

2 − h

2 + h

)k+1

≤ 1.

The expression (3.4.8) for bk+1 for k = 0, . . . , n− 1 is then positive.
The next iterate bn+1 corresponds to the approximation of the discontinuity point and

is obtained with the 2-steps Adams-Bashforth method, with τ = tn+1 − tn. This method
writes

bn+1 = bn + τ
[(

1 +
τ

2h

)

(−bn + K) −
τ

2h
(−bn−1 + K)

]

=

(

1 − τ −
τ 2

2h

)

bn +
τ 2

2h
bn−1 + τ K.

Then with the relation (3.4.8) the expression of bn+1 becomes

bn+1 =

(

1 − τ −
τ 2

2h

)

bn +
τ 2

2h
bn−1 + τK,

=

(

1 − τ −
τ 2

2h

)(

2 − h

2 + h

)n

b0 +

(

1 − τ −
τ 2

2h

)[

1 −

(

2 − h

2 + h

)n]

K

+
τ 2

2h

(

2 − h

2 + h

)n−1

b0 +
τ 2

2h

[

1 −

(

2 − h

2 + h

)n−1
]

K + τK,

=

(

2 − h

2 + h

)n [

1 − τ −
τ 2

2h
+
τ 2

2h

2 + h

2 − h

]

b0

+

[

1 − τ −
τ 2

2h
+
τ 2

2h
−

(

2 − h

2 + h

)n(

1 − τ −
τ 2

2h
+
τ 2

2h

2 + h

2 − h

)

+ τ

]

K,

=

(

2 − h

2 + h

)n(

1 − τ +
τ 2

2 − h

)

b0 +

[

1 −

(

2 − h

2 + h

)n(

1 − τ +
τ 2

2 − h

)]

K.
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Let us write bn+1 in the following manner, which is more convenient to prove the positive-
ness of bn+1

bn+1 =
(2 − h)n−1

(2 + h)n

(

2 − h− (2 − h)τ + τ 2
)

b0+

[

1 −
(2 − h)n−1

(2 + h)n

(

2 − h− (2 − h)τ + τ 2
)

]

K. (3.4.9)

By definition the vectors K and b0 are positive. It remains to prove the positiveness of

2 − h − (2 − h)τ + τ 2 and 1 − (2−h)n−1

(2+h)n (2 − h− (2 − h)τ + τ 2). In that way let us define

the polynomial function q : ]0, h] → R as q(τ) = τ 2 − (2−h) τ + 2−h. Then q is a second
order polynomial in τ and its discrimant is given by

△ = (2 − h)2 − 4(2 − h) = h2 − 4.

This discriminant is negative ∀h ∈]0, 2[. We conclude that q(τ) is positive ∀τ ∈]0, h]. Then
the factor 2 − h− (2 − h)τ + τ 2 is always positive. In order to determine the positiveness

of 1 − (2−h)n−1

(2+h)n [2 − h− (2 − h)τ + τ 2], let us prove

0 ≤
(2 − h)n−1

(2 + h)n

[

2 − h− (2 − h)τ + τ 2
]

≤ 1, ∀τ ∈]0, 1], ∀h ∈]0, 2[.

Since 0 ≤ (2−h)n−1

(2+h)n−1 ≤ 1 and the function q is positive, it remains to establish

1

2 + h
[2 − h− (2 − h)τ + τ 2] ≤ 1.

Let us define the polynomial function q̃ : ]0, h] → R as q̃(τ) = 1
2+h

[2 − h− (2 − h)τ + τ 2].
Then q̃ is a second order polynomial in τ and one has

q̃(0) =
2 − h

2 + h
≤ 1, ∀h ∈]0, 2[;

q̃(h) =
2 − h− (2 − h)h + h2

2 + h
,

=
2 − 3h+ 2h2

2 + h
,

= 1 − 2h
2 − h

2 + h
≤ 1, ∀h ∈]0, 2[.

Consequently q̃ is bounded from above by 1 and 1 − (2−h)n−1

(2+h)n (2 − h− (2 − h)τ + τ 2) is

positive. Thanks to (3.4.9) we deduce the positiveness of bn+1.
For the next iterates bk with k ≥ n + 2 the Crank-Nicolson scheme is used again. So

by definition one has for k = n+ 1, n+ 2, . . .

bk+1 =
2 − h

2 + h
bk +

2h

2 + h
K

= . . . =

(

2 − h

2 + h

)k−n

bn+1 +
2h

2 + h

k−n−1
∑

p=0

(

2 − h

2 + h

)p

K.
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Since h ∈]0, 1[ and bn+1 and K are positive, the above expression is positive too for all
k ≥ n+ 1.
In conclusion we have proven that bk > 0 for all k ∈ N.

The numerical results for this example when s = 3 are presented in the following
section.

3.5 Numerical results

In atmospheric chemistry literature phase diagrams of only few organic aerosol particles are
available. Moreover for particles with more than 4 chemical components, visualization of
the associated phase diagrams becomes very difficult. In [3, 30, 100, 105] phase diagrams
are presented for aerosols made of 2 or 3 chemicals. In this section let us consider the
examples of [3] in order to check the correctness of the solution, i.e. if the solution follows
the phase repartition described on the phase diagrams.

First examples concern particles with 2 chemical species (s = 2). Then examples with
3 chemicals (s = 3) are considered. In addition to these examples, the choice of the
warm-start strategy versus the cold-start one is justified. Finally the theoretical results of
Section 3.4 on the example of Subsection 3.4.3 are applied for different initial conditions
b0.

Then 2 examples with s = 4 are presented. No phase diagram is available. However
the behaviour of the approximations bn, n = 0, 1, . . . can be observed on the tetrahedron
∆3 as well as the time evolution of yn

α, n = 0, 1, . . . with the detection and computation of
the discontinuities.

Finally some examples for an aerosol made of s = 18 chemical species are studied.
Once again no phase diagram is available and no result exist in the literature that may
confirm or invalidate our results. Nevertheless the efficiency of the numerical method to
solve the optimization-constrained differential system and to detect the discontinuities are
highlighted.

For all the following numerical examples, the temperature of the gas-aerosol system
is equal to 298.15 K and the pressure is 1 atm. Furthermore the interaction parameters
that define the molar Gibbs free energy g are derived from vapor-liquid equilibrium data
(Hansen et al. in [51]) except for one class of examples when s = 3. For this case the
parameters are taken from the liquid-liquid equilibrium data referred in Magnussen et al.
[64]. Unless specified otherwise, the number of aerosol particles in the system per unit of
volume N is taken equal to 107 m−3, the tolerance of the stopping criterion for the fixed-
point method is 10−5, and the tolerance for the interior-point method is 10−13 whereas the
maximal number of iterations is fixed to 300.

All computations are executed on a workstation with an Intel processor of 2.4 GHz and
2 GB of RAM memory.
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3.5.1 Numerical results in one dimension

In these examples, the index 1 is associated to the convex area situated on the left side of
the phase diagram and the index 2 stands for the other side. Moreover the regions on the
phase diagram for which one inequality constraint is inactive is denoted area 1, and the
other region with both inactive constraints is called area 2.

The first example concerns an aerosol particle made of 1-hexacosanol and pinic acid.
For this example the molar Gibbs free energy g is represented by a black curve in Fig-
ure 3.7 (left). The corresponding phase diagram is depicted at the bottom of the figure.
The phase diagram is divided in 3 areas as follows

∆1 = [0, 1] = [0, 0.0665672]∪ ]0.0665672, 0.4633492[∪ [0.4633492, 1],

the subinterval in the middle being the area 2 and the two other subintervals are the areas
1. For this example and the remaining of the section, the area 2 is colored in red whereas
the black color is associated to area 1.
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Figure 3.7: Organic aerosol made of 1-hexacosanol and pinic acid with initial composition-
vector bT

0 = (0.01 · 10−7, 0.99 · 10−7) mol. The deactivation occurs at t = 0.3724 s. Left:
evolution of bn, n = 0, 1, 2, . . ., the corresponding supporting tangent plane evolves until
making contact with the graph of g. Middle: zoomed-in view of the deactivation. Right:
time evolution of yn

1 and yn
2 , n = 0, 1, 2, . . ..

In Figure 3.7 (left) the approximations bn, n = 0, 1, 2, . . . are represented by colored
diamonds situated on an axis above the phase diagram. The corresponding values for the
energy g(bn), n = 0, 1, 2, . . . are drawn with colored circles. As for the phase diagram,
when for bn both inequality constraints are inactive, bn is in red. If the number of inactive
constraint is equal to 1, the approximation bn is in blue.

For this first example the initial composition vector is bT
0 = (0.01·10−7, 0.99·10−7) mol,

and its normalized value is situated in the left area 1. The initial gas concentration vector is
initialized by c

∞,T
g,0 = (3, 7) mol/m3 and h = 0.01 s. The simulation of this example leads

to a motion of bn on the right until the area 2. The result illustrated in Figure 3.7 (left)

89



CHAPTER 3. AN OPTIMIZATION-BASED NUMERICAL METHOD

shows that the approximations bn, n = 0, 1, 2, . . . follow the phase diagram correctly since
they become red as they enter in the area 2. Moreover the computed discontinuity point is
equal to bn+1 = (0.94 · 10−8, 0.13 · 10−6) mol. The error committed between the projection
dn+1 = 1

eT bn+1Pbn+1 and the boundary point between the left area 1 and the area 2 of the
phase diagram, namely 0.0665672, is then given by |0.0665672− 0.0665655| = 1.7 · 10−6.

In Figure 3.7 (left) the time evolution of the supporting tangent plane is also depicted.
One can observe how the sequence of the tangent planes tends to the new contact point
as bn, n = 0, 1, 2, . . . tend to the boundary point 0.0665672. A zoomed-in view of the
points g(bn) around the deactivation of the second inequality constraint is proposed in
Figure 3.7 (middle). The points g(bn) before the deactivation are blue and the ones after
the deactivation are red. Moreover these points follow correctly the convex envelope of g
since the blue points are on g and the red points follow the supporting tangent plane which
defines the convex envelope as both inequality constraints are inactive.

Finally Figure 3.7 (right) shows the time evolution of the constraints yn
1 (blue plot) and

yn
2 (green plot), n = 0, 1, 2, . . .. At time t0, y0

1 = 10−7 and y0
2 = 0, which corresponds to the

initial state. Then at time t = 0.3724 s the deactivation occurs and yn
2 becomes positive

afterwards. At this time one can observe that the evolution of the points yn
2 undergoes a

discontinuity in its derivative, and that it is also the case for yn
1 .

Figure 3.8 illustrates the computation of the points (xα, g(xα)), α ∈ A at minimal
distance to the supporting tangent plane for the first example. The computation at three
different time steps is considered. Figure 3.8 (left) stands for a time step far before the
deactivation. The graph in the middle shows the computation at the time step tn, just
before the deactivation, whereas the graph on the right is at tn+1, just after the deactivation.
The blue curve represents the distance function d. The phase diagram is illustrated at the
bottom of the graph as in Figure 3.7 (left). Finally the black diamonds on the axis are
the successive Newton iterations and their correspondants on the curve d are denoted by
black circles.
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Figure 3.8: Computation of the minimal distance between the graph of g and the supporting
tangent plane. Left: distance function when b is far away from the event. Middle: at time
tn, a local minimum appears. Right: at time tn+1, the point x

A,n+1
2 is located at a negative

distance to the tangent plane.
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When the time step is far before the deactivation (Figure 3.8 (left)) the distance function
d is convex and admits one unique global minimizer on [0, 1]. The Newton sequence
naturally tends to the global minimizer, but does not go out from the area 1. As depicted
in Figure 3.8 (left) the algorithm detects when the sequence goes out, stops the Newton
method and sets xA

2 to the last admissible Newton iterate.
In the middle figure the time step tn is near the discontinuity time. The distance

function d is stretched and a local minimum appears. The Newton sequence converges to
this local minimizer. At time tn+1 the Newton sequence converges to a point with a negative
distance to the tangent plane. It indicates that the deactivation occurs in [tn, tn+1]. Note
that x

A,n+1
2 is a good approximation of the deactivation point.

In Figure 3.9 the aerosol particle has the same composition and the initialization of the
example is given by

bT
0 = (3 · 10−8, 7 · 10−8) mol, c

∞,T
g,0 = (9, 1) mol/m3, h = 0.1 s.

Hence the initial point b0 is situated in the area 2 and the initial gas-concentration in
the right area 1. The motion of bn, n = 0, 1, 2, . . . is from left to right and an activation
occurs during the simulation. Figure 3.9 uses the same notations as in Figure 3.7. The
evolution of bn, n = 0, 1, 2, . . ., follows the colored repartition of the phase diagram and
the discontinuity point bn+1 is well situated on the boundary point between the area 2 and
the right area 1 of the phase diagram. The difference between these two points is given by
|0.46334919− 0.46334949| = 3.0 · 10−7. The successive supporting tangent planes are also
depicted. The planes respect the Gibbs criterion and progressively release from the first
contact point as the activation occurs.

The time evolution of yn
1 and yn

2 , n = 0, 1, 2, . . ., is shown in Figure 3.9 (right). As for
the previous example both evolutions lose their regularity at the discontinuity time.

Figures 3.10 and 3.11 illustrate two other examples with s = 2. In Figure 3.10 an
example of a gas-aerosol system with a very small area 1 on the left of its phase diagram
is considered. The chemical components of the system are water and 1-hexacosanol, and
the initial conditions are given by

bT
0 = (9.9 · 10−8, 0.1 · 10−8) mol, c

∞,T
g,0 = (3, 7) mol/m3, h = 0.01 s.

The initial vector b0 is then situated in the right area 1 and the approximations bn,
n = 0, 1, 2, . . ., move from right to left of the phase diagram. A deactivation occurs at
t = 0.0221 s. The time evolution of bn, n = 0, 1, 2, . . ., on the phase diagram and of g(bn),
n = 0, 1, 2, . . ., are illustrated in Figure 3.10 (left). Figure 3.10 (middle) proposes a zoomed-
in view of the deactivation whereas Figure 3.10 (right) shows the evolution of yn

1 and yn
2 ,

n = 0, 1, 2, . . ., with their respective discontinuity at t = 0.0221 s. The error between the
boundary point and the discontinuity point is given by |0.89884− 0.89838| = 0.00046.

Figure 3.11 shows an example of a gas-aerosol system for which the distinction be-
tween the energy function g and its convex envelope is very small on the convex area 2.
The numerical example illustrates a complete time evolution with a deactivation and an
activation. The initial conditions are

bT
0 = (9.5 · 10−8, 0.5 · 10−8) mol, c

∞,T
g,0 = (1, 9) mol/m3, h = 0.1 s.
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Figure 3.9: Organic aerosol made of 1-hexacosanol and pinic acid with initial composition-
vector bT

0 = (3 · 10−8, 7 · 10−8) mol. The activation occurs at t = 0.4633 s. Left: evolution
of bn, n = 0, 1, 2, . . ., the corresponding supporting tangent plane evolves after leaving the
contact with the left convex region on the graph of g. Right: time evolution of yn

1 and yn
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n = 0, 1, 2, . . ..
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Figure 3.10: Organic aerosol made of water and 1-hexacosanol with initial composition-
vector bT

0 = (9.9 · 10−8, 0.1 · 10−8) mol. The deactivation occurs at t = 0.0221 s. Left:
evolution of bn, n = 0, 1, 2, . . . and the corresponding supporting tangent planes. Middle:
zoomed-in view of the deactivation. Right: evolution of yn

1 and yn
2 , n = 0, 1, 2, . . ..

The initial composition vector b0 is located in the right area 1 and the approximations bn,
n = 0, 1, 2, . . .moves from right to left. Hence the simulation encounters first a deactivation
at t = 0.542 s and second, an activation at t = 4.517 s. The error between the boundary
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points and the discontinuity points are given by

• for the deactivation: |0.3485 − 0.3453| = 0.0032,

• for the activation: |0.0936539099− 0.0936539076| = 2.3 · 10−9.
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Figure 3.11: Organic aerosol made of water and glutaraldehyde with initial composition-
vector bT

0 = (9.5 · 10−8, 0.5 · 10−8) mol. The deactivation occurs at t = 0.542 s and the
activation at t = 4.517 s. Left: evolution of bn, n = 0, 1, 2, . . ., and the corresponding
supporting tangent planes. Middle: zoomed-in view of the deactivation. Right: evolution
of yn

1 and yn
2 , n = 0, 1, 2, . . ..

3.5.2 Numerical results in two dimensions

The second class of numerical examples stands for s = 3. The gas-aerosol system is
made of pinic acid, 1-hexacosanol and water. In Figure 3.12 two different phase diagrams
are illustrated for this gas-aerosol system. The difference between both phase diagram
resides on the interaction parameters that define the energy function g leading actually
to two different models for the objective function g. For the phase diagram on the left,
the interaction parameters are derived from vapor-liquid equilibrium data of [51]. For the
other phase diagram, the parameters are derived from liquid-liquid equilibrium data of [64].
The phase diagram on the left has the same shape as the Figure 1.4 with extremely small
bottom left area 1 and bottom area 2, whereas the second phase diagram has two areas 1
that are common. So the first phase diagram is classical and the second is not classical.
Let the first example be called example VL and the second, example LL in reference to the
respective data that generate g.

For the numerical results presented in this subsection the color notation on the phase
diagram is as follows when the phase simplices and the composition-vectors bn are plotted:

• green: the solution of the PEP defined at bn has one inactive inequality constraint,

• blue: the solution of the PEP defined at bn has two inactive inequality constraints,
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Figure 3.12: Phase diagrams for the system pinic acid/ 1-hexacosanol/ water with two
different sets of interaction parameters: (left) from vapor-liquid equilibrium data [51],
(right) from liquid-liquid equilibrium data [64].

• red: the solution of the PEP defined at bn has three inactive inequality constraints.

If the single-phase points xα, α = 1, 2, 3, are plotted on the phase diagram, then the color
notation means

• �: the single-phase point x1,

• •: the single-phase point x2,

• �: the single-phase point x3.

First examples are concerned with the comparison of the warm-start and the cold-start
strategies on both phase diagrams.

Warm-start vs cold-start

In order to compare the warm-start to the cold-start strategies and to quantify the gain
provided by the warm-start strategy, let us consider a fixed artificial trajectory on the
phase diagram and look at the number of correct solutions as well as the computation
times of each strategy.

The trajectory starts from the bottom left corner of the phase diagram and zigzags
until the top left corner as depicted in Figures 3.13 or 3.14. On this trajectory the
composition-vectors bn are fixed and equidistant from eachother. Hence if n̄ is the number
of composition-vector situated on the first row of the trajectory, then the distance between
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2 vectors bn and bn+1 along the axis Ox is equal to |bn1 − b
n+1
1 | = 1

n̄+1
and the total number

of bn on the trajectory is n̄(n̄+1)
2

. Four different values of n̄ are considered: 10, 20, 40 and
80; given respectively a total number of composition vectors: 55, 210, 820 and 3240.

Since the composition-vectors bn, n = 1, . . . , n̄(n̄+1)
2

, are fixed, the fixed-point algorithm
is not used. Only the primal-dual interior-point method is employed to compute the phase
equilibrium problem defined for the successive bn, n = 1, . . . , n̄(n̄+1)

2
. Thus the efficiency

of the warm-start and cold-start strategies are fully revealed.
In addition to the warm-start and cold-start procedures for the initialization of the

interior-point method, a technique of backwards check is implemented in order to improve
the robustness of the algorithm. Suppose that the number of inactive inequality constraints
changes at bn. The backwards check consists in verifying the correctness of the solution of
the last optimization problem (i.e. at bn−1) by solving this last optimization problem with
the solution of the actual problem (i.e. at bn) as the warm-start. If the solution is different
from the first resolution, then the algorithm returns back to the previous optimization
problems with the warm-start strategy until the solution of the new computation coincides
with the former solution. Hence this technique is useful to correct the solution when the
activation or deactivation is detected too late. In order to estimate the need and the
cost of this technique, the trajectory is solved without and with the backwards check.
Summarizing, four different methods are exploited for the computation of the successive
optimization problems:

1. warm-start: the initialization procedure for the interior-point method is the warm-
start strategy described in Section 3.1.2.

2. warm-start & back: in addition to the warm-start strategy, the backwards check is
applied as soon as the number of inactive inequality constraints changes. Suppose this
number changes for bn. Once the backwards check is done, the simulation restarts
at bn+1 with a warm-start based on the solution at bn.

3. cold-start: the initialization of the primal-dual interior-point method for the succes-
sive PEP is done according to the cold-start strategy described in Section 2.2.3.

4. cold-start & back: in addition to the cold-start strategy, the backwards check is
applied as soon as the number of inactive inequality constraints changes. Suppose
this number changes for bn. Once the backwards check is done, the simulation
restarts at bn+1 with a cold-start.

Thanks to the phase diagrams of Figure 3.12 one can check the correctness of the
solution for each bn, n = 1, . . . , n̄(n̄+1)

2
. The number and percentage of correct solutions

for each method and each n̄ are registered in Tables 3.1 and 3.2. Furthermore the mean
number of iterations of the primal-dual interior-point method and the CPU times are
considered to compare the warm-start to the cold-start strategies. These comparisons
allow to quantify the computational gain issued from the warm-start. The computational
cost of the backwards check may also be estimated by the comparison of the CPU times
of each method.
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n̄
=

10

warm-start 36 65.45 25.71 0.09
warm-start & back 49 89.09 27.05 0.15

cold-start 54 98.18 68.20 0.22
cold-start & back 55 100.00 68.29 0.32

n̄
=

20

warm-start 137 65.24 26.00 0.34
warm-start & back 177 84.29 24.41 0.47

cold-start 203 96.67 68.28 0.84
cold-start & back 210 100.00 68.30 0.96

n̄
=

40

warm-start 530 64.63 25.65 1.26
warm-start & back 730 89.02 23.83 1.54

cold-start 809 98.66 68.22 3.26
cold-start & back 817 99.63 68.24 3.47

n̄
=

80

warm-start 2023 62.44 25.34 4.92
warm-start & back 2928 90.37 23.51 6.24

cold-start 3146 97.10 68.25 12.86
cold-start & back 3225 99.54 68.27 13.48

Table 3.1: Number of correct solutions, percentage of correct solutions, mean number of
iterations for the primal-dual interior-point method (i.p.m.) and CPU time for the phase
diagram with interaction parameters stemmed from the vapor-liquid equilibrium data of
[51].

The number and percentage of correct solutions, the mean number of iterations for
the primal-dual interior-point method and the CPU times for the system with interac-
tion parameters stemmed from the vapor-liquid equilibria (see the phase diagram in Fig-
ure 3.12 (left)) are summarized in Table 3.1. One can observe first in this table that the
most efficient method, with almost 100% of correct solutions, is the cold-start strategy with
the backwards check. The least efficient is the warm-start strategy alone. Nevertheless its
percentage of correct solutions is not too bad with 64.44% in average. The warm-start &
back method is far better than the warm-start method with 88.19% of correct solutions in
average.

To understand which points bn on the zigzag trajectory induce incorrect solutions for
each method, the solutions in the case n̄ = 20 are presented in Figure 3.13. For the
warm-start method most of the incorrect solutions are situated in the upper part of the
phase diagram. Indeed once the last activation occurs, all the forthcoming vectors bn on
the trajectory are in the state with one inactive constraint and are encouraged to remain
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Figure 3.13: Solutions of the bn, n = 1, . . . , n̄(n̄+1)
2

with n̄ = 20 for the method warm-start,
warm-start & back and cold-start. Graphs (a)-(b)-(c): vectors bn on the phase diagram
stemmed from the vapor-liquid equilibrium data with the colored repartition: • when one
inequality constraint is inactive, • when two inequality constraints are inactive and • when
all inequality constraints are inactive. Graphs (d)-(e)-(f): vectors bn on the phase diagram
stemmed from the vapor-liquid equilibrium data with the colored repartition: • when the
solution is correct, • otherwise.
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in this state with the warm-start. The warm-start method seems also to have difficulties
for the bn situated in area 3. The solutions have a tendency to stay in the state with
two inactive constraints and the deactivation is often missed. If the backwards check is
added to the method, then most of the wrong solutions in the area 3 are corrected. The
remaining errors are situated near the boundary of area 3 which is a region that generates
numerical difficulties (the algorithm has a tendency to activate the inequality constraints).
Furthermore in the upper part of the phase diagram, the repartition between the state with
one or two inactive constraints seems to be correct. However regarding the Figure 3.13 (e),
most of these points are considered as wrong even if they are situated in an area 2. The
reason is that the single-phase points generating the phase simplex are incorrect. With
regards to the cold-start method, one can observe that the incorrect solutions are located in
the neighborhood of the phase boundaries which are difficult regions for the optimization.

The numerical results for the energy function g defined from the liquid-liquid equilib-
rium data are presented in Table 3.2 and Figures 3.14 and 3.15. This example is more
difficult to compute than the latest because two convex areas are in common. In this case
the convex areas ∆2,1 and ∆2,2 are common. Suppose that the constraint 1 is inactive and
2 is active. The associated vector x2 tends to converge to x1 instead of encouraging the
deactivation of y2 since x1 and x2 belong to the same convex area.

Regarding the results of Table 3.2 the observation is that the warm-start & back method
is the best and the cold-start & back method makes errors. The warm-start method is still
the less efficient and the cold-start gives similar results as cold-start & back.

Let us consider the representations of Figures 3.14 and 3.15 to understand the differ-
ences with the example VL and where are located on the zigzag trajectory the bn for
which the solution of the PEP is wrong. The case n̄ = 10 is represented on both figures.
Figure 3.14 illustrates the solution of the successive PEP for each method. Figure 3.15
shows the correctness of the successive solutions with the colored repartition: blue circle
when the solution is correct and a red circle otherwise.

For the four methods the solution of the PEP defined at bn located in the area 3 are
almost all incorrect. Generally these wrong solutions remain with two inactive constraints
and the deactivation of the last active constraint is missed. For the warm-start method,
the other wrong solutions are situated near the phase boundaries, the solution remaining
a single-phase point instead to deactive an active constraint.

For the cold-start and cold-start & back methods, the other wrong solutions are located
near the phase boundary between the right area 2 and the common area 1. For the vectors
bn lying in this region the primal-dual interior-point method has a tendency to encourage
the vectors x1 and x2 to converge to bn if their initialization is badly chosen, meaning too
far from the phase simplex at bn. Consequently the solution is a single-phase point and the
deactivation is missed. This situation is illustrated in Figure 3.16 (left). In the warm-start
& back method the initialization of the interior-point method is well chosen since the initial
value of x1 and x2 are close to the phase simplex defined at bn (see Figure 3.16 (right)).
Then x1 and x2 converge to the phase simplex of dimension 2.
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number of cor
rec

t solu
tion

s

% of cor
rec

t solu
tion

s

mean
number of it.

for
i.p.m.

CPU tim
e [s]

n
=

10

warm-start 32 58.18 31.42 0.11
warm-start & back 47 85.45 29.30 0.15

cold-start 42 76.36 66.95 0.22
cold-start & back 43 78.18 65.69 0.29

n
=

20

warm-start 124 59.05 30.00 0.38
warm-start & back 144 68.57 29.05 0.52

cold-start 145 69.05 68.03 0.83
cold-start & back 135 64.29 68.05 0.97

n
=

40

warm-start 497 60.61 29.14 1.44
warm-start & back 753 91.83 30.33 2.16

cold-start 657 80.12 68.11 3.38
cold-start & back 697 85.00 68.11 3.93

n
=

80

warm-start 1970 60.80 29.78 5.70
warm-start & back 2979 91.94 29.79 7.94

cold-start 2591 79.97 68.06 12.68
cold-start & back 2744 84.69 68.04 16.31

Table 3.2: Number of correct solutions, percentage of correct solutions, mean number of
iterations for the primal-dual interior-point method (i.p.m.) and CPU time for the phase
diagram with interaction parameters stemmed from the liquid-liquid equilibrium data of
[64].
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Figure 3.14: Solutions of the bn, n = 1, . . . , n̄(n̄+1)
2

with n̄ = 10 for the methods warm-
start (a), warm-start & back (b), cold-start (c) and cold-start & back (d). The vectors bn

on the phase diagram stemmed from the vapor-liquid equilibrium data follow the colored
repartition: • when one inequality constraint is inactive, • when two inequality constraints
are inactive and • when all inequality constraints are inactive.
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Figure 3.15: Solutions of the bn, n = 1, . . . , n̄(n̄+1)
2

with n̄ = 10 for the methods warm-
start (a), warm-start & back (b), cold-start (c) and cold-start & back (d). The vectors bn

on the phase diagram stemmed from the vapor-liquid equilibrium data follow the colored
repartition: • when the solution is correct, • otherwise.
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Figure 3.16: Cold-start (a) and warm-start (b) strategies in the initialization of the interior-
point method for a composition-vector bn (black circle) located near the phase boundary
between area 2 and area 1. The initialization of x1 and x2 are respectively represented by
a blue square and a red circle. The phase simplex at bn is depicted with a dotted black
line.

In conclusion the warm-start & back method has proved to be competitive in the
example VL and the best method for the example LL. Let us observe now the computational
cost in using this method.

First from Tables 3.1 and 3.2 the mean number of iterations for the primal-dual interior-
point method is 67.87 for the cold-start & back method and 27.16 for the warm-start &
back method in average. Hence the warm-start strategy allows to decrease the number
of iterations for the interior-point method by 60%. This gain is also represented in the
difference between the CPU times of the warm-start & back and cold-start & back methods.
Although the CPU times for both examples and four methods are very small. The maximal
time is equal to 16.31 s which is quite fast.

In Figure 3.17 (a) and (b), the CPU time versus n̄ is plotted in the log-log scale for
both examples. The plots have a second order behaviour as n̄ increases and one can remark
that the methods using the cold-start strategy are slower than the others. Furthermore by
observing the small difference between the cold-start and cold-start & back methods, and
warm-start and warm-start & back methods, one can conclude that the backwards check
is not time-consuming. In Figure 3.17 (c) and (d), the normalized discrepancy in CPU
times defined by | t−tB

tB
| where t is the CPU time for the methods without the backwards

check and tB is the CPU time with the backwards check, is plotted. This discrepancy is
almost constant and one can deduce that the backwards check is responsible for 16.28% of
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the CPU times for the cold-start strategy, and 23.63% of the CPU time for the warm-start
strategy.

Examples on the phase diagram VL

In a second part, we perform simulations on the example VL whose phase diagram is
classical and depicted in Figure 3.12 (left).

Numerical results show the time evolution of the variables yα, α = 1, 2, 3, λ, b, c∞g and
csurf

g along the time. For inequality constraints yα with α = 1, 2, 3, or equivalently for the
number of moles in each liquid phase, the colored repartition follows the color code for xα,
α = 1, 2, 3, namely

• �: the inequality constraint y1,

• •: the inequality constraint y2,

• �: the inequality constraint y3.

With regards to the vectors b, λ, c∞g and csurf
g , their components are associated to the

chemical species present in the aerosol. For this section, the colored repartition is defined
by

pinic acid (�), hexacosanol (�) and water (•).

The first example has the following initial conditions

• composition-vector: bT
0 = (1.5 · 10−8, 8.0 · 10−8, 0.5 · 10−8) mol,

• gas concentration-vector: c
∞,T
g,0 = (3.5, 3, 3.5) mol/m3,

• time step: h = 0.015 s.

Hence the initial composition-vector b0 is located in the area 1 associated to the con-
straint 2 and the initial gas concentration-vector lies in the area 2 on the right. Figure 3.18
represents respectively the time evolution of the approximations bn, n = 0, 1, 2, . . ., the
associated phase simplices and xn

α, n = 0, 1, 2, . . ., α = 1, 2, 3, on the phase diagram of
the example VL. One can see that the simulation encounters first the deactivation of the
constraint y3 = 0, then the deactivation of the constraint y1 = 0, and finally the activation
of y3 > 0.

Thanks to the colored repartition one can observe in Figure 3.18 (left) that the phase
equilibrium associated to each bn, n = 0, 1, 2, . . ., follows the phase diagram. Moreover the
Figure 3.18 (middle) shows that the successive phase simplices computed for each bn coin-
cide with the phase boundaries on the phase diagram. The last figure in Figure 3.19 (right)
presents the time evolution of the vector xn

α, α = 1, 2, 3. For a better view of the evolution
of xn

1 and xn
3 a zoomed-in view is proposed in Figure 3.19.

The constraint yn
2 > 0 is inactive during all the simulation. Hence xn

2 belongs to the
successive phase simplices of the simulation. When bn is a single-phase point, bn = yn

2x
n
2 ,
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Example VL Example LL
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Figure 3.17: CPU times for the computation of the 4 methods on both examples. (a)-(b):
CPU times in log-log scale with (−) for the function n̄2, (−•−) for the warm-start method,
(−�−) for the warm-start & back method, (−�−) for the cold-start method and (−⋆−)
for the cold-start & back method. (c)-(d): normalized discrepancy between the CPU times
of the warm-start methods with and without the backwards check (− • −), and of the
cold-start methods with and without the backwards check (−�−).
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Figure 3.18: Example VL with the initial conditions bT
0 = (1.5 · 10−8, 8.0 · 10−8, 0.5 ·

10−8) mol and c
∞,T
g,0 = (3.5, 3, 3.5) mol/m3. Left: time evolution of bn, n = 0, 1, 2, . . . on

the phase diagram. Middle: time evolution of the phase simplices on the phase diagram.
Right: time evolution of the single-phase points xn

α, α = 1, 2, 3 and n = 0, 1, 2, . . ., on the
phase diagram.
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Figure 3.19: Example VL with the initial conditions bT
0 = (1.5 · 10−8, 8.0 · 10−8, 0.5 ·

10−8) mol and c
∞,T
g,0 = (3.5, 3, 3.5) mol/m3. Zoomed-in view of the time evolution of xn

3

(left) and xn
1 (right), n = 0, 1, 2, . . ., on the phase diagram.

and xn
2 and bn are equal on the phase diagram (since the normalized values are plotted on

the phase diagram). Once the number of inactive constraints at the equilibrium is greater
than 2, xn

2 follows the phase boundaries that lie on the boundary of ∆2,2. The vectors xn
2

on the phase diagram of Figure 3.18 (right) follows this behaviour.
With regards to xn

1 and xn
3 , both associated constraints are active at t = 0 s. As

long as these constraints are active, the vectors xn
1 and xn

3 , n = 0, 1, 2, . . . are defined as
the minimizer of the distance between the supporting tangent hyperplane and (xn

i , g(x
n
i )),

i = 1, 3. When bn comes closer to the deactivation point, the vectors xn
1 and xn

3 tend to the
discontinuity located on the phase boundaries. This situation is observable in Figure 3.19.

Figure 3.20 shows the time evolution of yn
α, α = 1, 2, 3, λn, csurf,n

g , bn, Rn and c∞,n
g . The
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evolution of yn
α, α = 1, 2, 3, is illustrated on the graph (a). The time evolution indicates

that initially y0
2 > 0 and y0

1 = y0
3 = 0 and then at t1 = 0.0717 s, yn

3 becomes positive,
at t2 = 0.3181 s, yn

1 becomes positive and finally at t3 = 2.68 s, yn
3 is null again. This

evolution follows the phase diagram exactly and one can observe the discontinuity in yn
α,

α = 1, 2, 3 at t1, t2 and t3. These discontinuities are also present in the time evolution of
λn (graph (b)) and csurf,n

g (graph (c)).
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Figure 3.20: Example VL with the initial conditions bT
0 = (1.5 · 10−8, 8.0 · 10−8, 0.5 ·

10−8) mol and c
∞,T
g,0 = (3.5, 3, 3.5) mol/m3. Time evolution of (a) the number of moles

yn
α of each liquid phase α = 1, 2, 3; (b) the components of the Lagrange multiplier λn; (c)

the gas concentration of each species at the surface of the aerosol csurf,n
g,i , i = 1, 2, 3; (d)

the composition of each species bni , i = 1, 2, 3; (e) the radius of the aerosol and (f) the gas
concentration of each species far from the particle c∞,n

g,i , i = 1, 2, 3.

On graphs (b) and (c) one can observe furthermore that λn and csurf,n
g are constant as all

3 inequality constraints are inactive. This fact illustrates the relation λ = −∇g(xα), ∀α ∈
I and these variables are constant in area 3 since xI

α are constant in this area.
The plots on graphs (d)-(f) of Figure 3.20 represent the time evolution of bn, Rn and

c∞,n
g . These evolutions do not lose their regularity at t1, t2 and t3. Furthermore the
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evolution of bn is complementary with the time evolution of c∞,n
g . Hence the total mass in

the system is conserved. Thanks to the evolution of the radius, one knows that the aerosol
particle is growing on this example.

The simulation presented in Figure 3.21 shows a trajectory of bn, n = 0, 1, 2, . . . that
evolves near the phase boundary between the areas 1 and 2. The initial conditions of this
example are

• composition-vector: bT
0 = (2.8 · 10−8, 7.0 · 10−8, 0.2 · 10−8) mol,

• gas concentration-vector: c
∞,T
g,0 = (0.02, 7.3, 1.68) mol/m3,

• time step: h = 0.015 s.

The representations in Figure 3.21(a)-(b) show a time evolution of bn, n = 0, 1, 2 . . . and
the corresponding phase simplices that follow the phase diagram. The time evolution of
yn

α, α = 1, 2, 3, n = 0, 1, 2 . . ., depicted in Figure 3.21 (c) emphasizes the difficulty of this
example by the weak variation in yn

3 during the time interval of the deactivation of this
latter (namely between the time t1 = 0.6173 s and t2 = 2.2663 s.)

Figure 3.21(d)-(e)-(f) are zoomed-in view of the trajectory bn, n = 0, 1, 2, . . . near the
phase boundary between the areas 1 and 2. On these graphs one can observe that the phases
are correctly computed, as shown by the correct color code in the Figure. Furthermore
the computed discontinuity points are very close to the phase boundary and thus good
approximations. Finally in Figure 3.21(e) the fractional time step needed to reach the
discontinuity point is clearly depicted.

The last example for the phase diagram VL is illustrated in Figure 3.22 in order to show
the robustness of the algorithm in extreme situations. This example has the particularity
to be subject to several activations/deactivations in a short time interval by crossing the
region on the phase diagram that is at the intersection of areas 1, 2 and 3. The initial
conditions for this example are

• composition-vector: bT
0 = (1.5 · 10−8, 8.0 · 10−8, 0.5 · 10−8) mol,

• gas concentration-vector: c
∞,T
g,0 = (2.85, 4.2, 1.95) mol/m3,

• time step: h = 0.015 s.

The graphs (a), (b) and (c) in Figure 3.22 depict the time evolution of bn, n = 0, 1, 2, . . .,
the phase simplices and xn

α, n = 0, 1, 2, . . ., α = 1, 2, 3 respectively. Hence a first deactiva-
tion occurs at t1 = 0.3672 s, a second deactivation at t2 = 0.4633 s immediately followed
by an activation at t3 = 0.4889 s. The time evolution of yn

α, α = 1, 2, 3 and n = 0, 1, 2, . . .
is proposed in Figure 3.22 (d) with a zoomed-in view of yn

3 when this constraint is deac-
tivated (Figure 3.22 (e)). The last picture in Figure 3.22 proposes a zoomed-in view of
bn, n = 0, 1, 2, . . . in the vicinity of the intersection between the areas 1, 2 and 3. Let us
note the perfect match of the colored repartition (and consequently of the successive phase
simplices) in this region.
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Figure 3.21: Example VL with the initial conditions bT
0 = (2.8 · 10−8, 7.0 · 10−8, 0.2 ·

10−8) mol and c
∞,T
g,0 = (0.02, 7.3, 1.68) mol/m3. Time evolution of (a) bn, n = 0, 1, 2, . . .

on the phase diagram, (b) the phase simplices on the phase diagram; (c) the number of
moles yn

α, α = 1, 2, 3 and n = 0, 1, 2, . . .. The graphs (d),(e) and (f) are a zoomed-in view
of the trajectory of the bn, n = 0, 1, 2, . . . near the phase boundary between the areas 2
and 1, near the deactivation and near the activation respectively.

108



3.5. NUMERICAL RESULTS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mole fraction of pinic acid pinic acidwater

m
ol

e 
fr

ac
tio

n 
of

 h
ex

ac
os

an
ol

hexacosanol

2

2

3

1

1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mole fraction of pinic acid pinic acidwater

m
ol

e 
fr

ac
tio

n 
of

 h
ex

ac
os

an
ol

hexacosanol

2

2

3

1

1

(a) (b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mole fraction of pinic acid pinic acidwater

m
ol

e 
fr

ac
tio

n 
of

 h
ex

ac
os

an
ol

hexacosanol

2

2

3

1

1
0 0.2 t1 t2    t3 0.6 0.8 1.0

0

0.5

1

1.5

2

x 10
−7

time (s)

(c) (d)

t1 0.4 t2     t3 0.55

0

2

4

6

8

10

12

x 10
−10

time (s)
0.19 0.2 0.21 0.22 0.23 0.24 0.25

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65

0.66

mole fraction of pinic acid

m
ol

e 
fr

ac
tio

n 
of

 h
ex

ac
os

an
ol

2

2

3

1

(e) (f)

Figure 3.22: Example VL with the initial conditions bT
0 = (1.5 · 10−8, 8.0 · 10−8, 0.5 ·

10−8) mol and c
∞,T
g,0 = (2.85, 4.2, 1.95) mol/m3. Time evolution of (a) bn, n = 0, 1, 2, . . .

on the phase diagram, (b) the phase simplices on the phase diagram; (c) the mole-fraction
vectors xn

α, α = 1, 2, 3 and n = 0, 1, 2, . . ., on the phase diagram; (d) the number of moles
yn

α, α = 1, 2, 3 and n = 0, 1, 2, . . .. The graphs (e) and (f) are respectively zoomed-in views
of (e) the number of moles yn

α, α = 1, 2, 3 and n = 0, 1, 2, . . ., and (f) the trajectory of bn,
n = 0, 1, 2, . . ..

109



CHAPTER 3. AN OPTIMIZATION-BASED NUMERICAL METHOD

This example and the previous one prove the efficiency and robustness of the optimization-
based numerical method on a phase diagram of the classical type presented in Figure 1.4.
In the next class of examples let us work on a non classical phase diagram.

Examples on the phase diagram LL

The first example considered on the non classical phase diagram LL has the initial condi-
tions

• composition-vector: bT
0 = (1.0 · 10−8, 4.0 · 10−8, 5. · 10−8) mol,

• gas concentration-vector: c
∞,T
g,0 = (2.0, 1.0, 7.0) mol/m3,

• time step: h = 0.1 s.

The results of the simulation are presented in Figure 3.23. The picture (a) in Figure 3.23
depicts the evolution of bn, n = 0, 1, 2, . . . on the phase diagram and one can remark that
the simulation starts in the area 2 and then enters in the area 3 but the color code of the
vectors bn, n = 0, 1, 2, . . . is still blue, meaning that the deactivation of the first constraint
is not detected. This situation is confirmed in Figure 3.23 (b) where the time evolution of
the phase simplices is depicted. Even if the time step is decreased, the deactivation is still
missed and the solution bifurcates into a branch of local minima or saddle-points.

To understand why the deactivation is not detected, let us observe Figure 3.23 (c) which
represents the time evolution of xn

α, α = 1, 2, 3 and n = 0, 1, 2, . . .. The variable x1 should
indicate the deactivation of the constraint y1 = 0 by converging to the bottom left vertex
of the area 3 (i.e. under the area 2 on the right) as b comes closer to the phase boundary
between the area 2 on the left and the area 3. However Figure 3.23 (c) indicates that
xn

1 , n = 0, 1, 2, . . . , tends to xn
2 as bn tends to the deactivation point. The blue squares

that represent the evolution of xn
1 , n = 0, 1, 2, . . ., are successively in the area 2 on the

right, close to xn
2 , and in the corner of the phase diagram. This alternance is justified by

the Algorithm 3.2.1 and the remark 3.2.2. If the sequence built in the Algorithm 3.2.1
converges to xn

2 , then xn
1 is set to the initial point x0

1 located in the bottom left corner of
the phase diagram. At the next time step, the sequence starts from the corner and iterates
until the Hessian is not positive definite. The point xn+1

1 is then set to the last correct
iterate of the sequence that is located here in the area 2 on the right. For the next time
step, the sequence starts from this point and converges to the inactive phase xn+2

2 . The
point xn+2

1 is then set to x0
1. Since the constraints 1 and 2 share the same convex areas, xn

1

always converges to xn
2 with this initialization. Let us change this initialization by a point

located closer to the deactivation point

x
0,T
1 = (0.7, 3.0 · 10−8, 0.29999997).

The results of the simulation with this new initialization is illustrated in Figure 3.24. In
this case the deactivation is detected at t1 = 1.6684 [s] and correctly computed: the color
code is respected and the phase simplices follow the phase boundaries of the phase diagram.
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Figure 3.23: Example LL with the initial conditions bT
0 = (1.0·10−8, 4.0·10−8, 5.·10−8) mol

and c
∞,T
g,0 = (2.0, 1.0, 7.0) mol/m3 when x0

α, α = 1, 2, 3 are initialized in the corner of the
phase diagram. Time evolution of (a) bn, n = 0, 1, 2, . . .; (b) the phase simplices; (c) the
molar-fraction vectors xn

α, α = 1, 2, 3 and n = 0, 1, 2, . . .; (d) the number of moles yn
α,

α = 1, 2, 3 and n = 0, 1, 2, . . ..

Finally let us compare the plots of Figure 3.23 (d) and Figure 3.24 (d) that represent
the time evolution of yn

α, α = 1, 2, 3 and n = 0, 1, 2, . . .. On the first plot, only yn
2 and yn

3 ,
n = 0, 1, 2, . . . evolve whereas on the second plot all variables evolve in time. Furthermore
let us remark that the deactivation of yn

1 = 0 has an influence on the evolution of yn
2 and
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Figure 3.24: Example LL with the initial conditions bT
0 = (1.0·10−8, 4.0·10−8, 5.·10−8) mol

and c
∞,T
g,0 = (2.0, 1.0, 7.0) mol/m3 when x0

3 is initialized closer to the bottom left vertex
of the area 3. Time evolution of (a) bn, n = 0, 1, 2, . . .; (b) the phase simplices; (c) the
molar-fraction vectors xn

α, α = 1, 2, 3 and n = 0, 1, 2, . . .; (d) the number of moles yn
α,

α = 1, 2, 3 and n = 0, 1, 2, . . ..

yn
3 . In addition to the loss of regularity at t1, these two variables have a different evolution

from the plot of Figure 3.23 (d). Consequently the deactivation of the constraint influences
the whole system.
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The next examples on the non classical phase diagram LL are concerned with simulation
that starts in the common area 1 and enters in the area 2 located on the right. The initial
conditions for the first example are

• composition-vector: bT
0 = (9.0 · 10−8, 0.5 · 10−8, 0.5 · 10−8) mol,

• gas concentration-vector: c
∞,T
g,0 = (4.0, 2.0, 4.0) mol/m3,

• time step: h = 0.001 s.

In this example the deactivation is detected in the time interval [0.167, 0.168]. The com-
putation of the deactivation time indicates that the time interval is not correct since the
computed fractional time step is negative. The algorithm returns back over 14 time steps
and the new time interval is then defined by [0.154, 0.155]. In this interval, the computation
of the discontinuity time succeeds. The discontinuity time is equal to tn+1 = 0.154106 s
and the discontinuity point is given by

bT,n = (9.72 · 10−8, 0.72 · 10−8, 3.26 · 10−8).

The next step in the numerical resolution is the computation of the other variables at
the discontinuity time and then the restart of the simulation with the new number of
inactive constraints. This procedure fails for this example. The reason is that the interior-
point method returns a solution that is a single-phase point at tn+1. Furthermore even
if the second inequality constraint is artificially set to inactive, the interior-point method
continues to return single-phase solution at tn+2, preventing the simulation from restarting.

A representation of this example is given in Figure 3.25 where the time evolution
of bn, n = 0, 1, 2, . . . is illustrated until the deactivation. The zoomed-in view in Fig-
ure 3.25 (right) shows that the computed deactivation time and point are good approxi-
mations. Observing the trajectory of bn, n = 0, 1, 2, . . ., on the phase diagram, one can
understand the difficulty for the algorithm to restart from the discontinuity point: the
trajectory hits the phase boundary nearly perpendicularly to the phase simplices defined
in area 2, and the phase simplex at the discontinuity point is in fact given by x1 = x2. Yet
no solution exists to enforce the simulation to restart.

The last example on the phase diagram LL illustrates another simulation that starts
in area 1 and enters in area 2. Unlike in the previous example, the trajectory of bn,
n = 0, 1, 2, . . . does not come perpendicularly to the phase simplices defined in area 2. The
situation is illustrated in Figure 3.26. The initial conditions are

• composition-vector: bT
0 = (7.5 · 10−8, 2.0 · 10−8, 0.5 · 10−8) mol,

• gas concentration-vector: c
∞,T
g,0 = (3.0, 3.0, 4.0) mol/m3,

• time step: h = 0.001 s.
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Figure 3.25: Example LL with the initial conditions bT
0 = (9.0·10−8, 0.5·10−8, 0.5·10−8) mol

and c
∞,T
g,0 = (4.0, 2.0, 4.0) mol/m3. Left: time evolution of bn, n = 0, 1, 2, . . . on the phase

diagram. Right: a zoomed-in view near the phase boundary between the areas 1 and 2.

The simulation succeeds and the computed deactivation time is equal to t = 0.059677
s. However let us make two remarks. The first remark concerns the time evolution of the
mole-fraction vectors xn

α, α = 1, 2, 3 depicted in Figure 3.26 (c). At the deactivation point
the new inactive index is α = 3, whereas the convex area ∆2,3 is located at the bottom
left corner of the phase diagram. The vector xn

3 jumps out from its convex area, which
is normally forbidden by the Algorithm 3.2.1. The constraint that should deactivate is in
fact y2 = 0, but the point xn

2 remains at its initial position during the whole simulation.
Hence, the simulation succeeds, nevertheless it does not have the expected behaviour. The
second remark is about the behaviour of yn

1 , n = 0, 1, 2, . . . after the deactivation of yn
3 : the

approximations yn
1 change completely their evolution at the discontinuity time and start

to decrease.

In conclusion these examples highlight limitations of the optimization-based numerical
method on a non classical phase diagram. The first difficulty comes from the algorithm
that computes the values of xᾱ, ᾱ ∈ A. This algorithm should ensure the convergence of
xA

ᾱ to the minimizer of the distance in its convex area, but xA
ᾱ may converge to a global

minimizer if the convex area that contains this minimizer is common to ∆
′

s,ᾱ. The point xA
ᾱ

may also jump out from ∆
′

s,ᾱ. The second limitation is due to the interior-point algorithm
presented in [4, 5] that cannot keep a new constraint ᾱ inactive if the associated vector xᾱ

is to close to another vector xα, α ∈ I. The constraint ᾱ is activated and the simulation
cannot restart correctly from the deactivation.
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Figure 3.26: Example LL with the initial conditions bT
0 = (7.5·10−8, 2.0·10−8, 0.5·10−8) mol

and c
∞,T
g,0 = (3.0, 3.0, 4.0) mol/m3. Time evolution of (a) bn, n = 0, 1, 2, . . .; (b) the phase

simplices; (c) the molar-fraction vectors xn
α, α = 1, 2, 3 and n = 0, 1, 2, . . .; (d) the number

of moles yn
α, α = 1, 2, 3 and n = 0, 1, 2, . . ..

Theoretical example

In Section 3.4 we have seen that when all constraints are inactive the exact solution b and
the exact time of activation t∗ when an inequality constraint is activated are known and
a priori error estimates can be established. Let us consider four different trajectories on
the phase diagram VL to illustrate the error on the computation of discontinuity points
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between the approximated and exact solutions for each example. The trajectories are
depicted in Figure 3.27.
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Figure 3.27: Four trajectories on the phase diagram VL starting from area 3 and evoluting
to one of the areas 2 with different angles.

Figure 3.28 illustrates for each trajectory the error on the computation of the discon-
tinuity time and point in a log-log scale. The graph on the left presents the error between
the exact discontinuity t∗ and the computed discontinuity time tn+1. Each colored plot
refers to a trajectory on the phase diagram whereas the black line stands for the function
h2. Then one can deduce that the error in time is of second order.
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Figure 3.28: Error on the computation of the discontinuity point in the case of an activation
in log-log scale. Left: error on the activation times |t∗ − tn+1|. Middle: error on the
reduced composition-vector at tn+1 ‖d(tn+1) − dn+1‖2. Right: error on the activation
points ‖d(t∗) − dn+1‖2.

Figure 3.28 (middle) depicts the error between the computed discontinuity point and
the exact trajectory b taken at the computed discontinuity time tn+1 in the Euclidean
norm. As for the previous graph the black line stands for the function h2. The conclusion
is the same as before: the error is of second order.

The last graph in Figure 3.28 is concerned by the error between the computed dis-
continuity point and the exact discontinuity point at the exact discontinuity time in the
Euclidean norm. For this graph the black line depicts the function h3. This last error is
thus of order 3 and one can conclude that the computation of the activation is well adapted
to the Crank-Nicolson method since the errors are of second order.

3.5.3 Numerical results in higher dimensions

For gas-aerosol systems with s > 3, no phase diagram is available. However let us consider
first two examples with s = 4 that can be represented on a tetrahedron. For the numerical
results of this section the colored repartition is the same as before with a yellow color for
the phase simplex whose dimension is equal to 4 or the fourth inequality constraint y4.

The gas-aerosol system that is considered is made of pinic acid, 1-hexacosanol, water
and n-propanol, and the interaction parameters that define the energy function g are
taken from [51]. The first example is presented in Figure 3.29 and the corresponding initial
conditions are

• composition-vector: bT
0 = (0.5 · 10−8, 7.5 · 10−8, 1 · 10−8, 1 · 10−8) mol,

• gas concentration-vector: c
∞,T
g,0 = (4.0, 0.5, 4.0, 1.5) mol/m3,

• time step: h = 0.005 s.

117



CHAPTER 3. AN OPTIMIZATION-BASED NUMERICAL METHOD

The initial-composition vector b0 is situated at the bottom right corner of the tetrahedron
presented in Figure 3.29. The resolution of the PEP at b0 gives a single-phase point. A
first deactivation is computed at t1 = 0.000523 s. A second deactivation is detected at the
time step 136 but with the backwards check the simulation has to go back to the time step
105 to compute the deactivation time. The calculated discontinuity time is then equal to
t2 = 0.521991 s. Finally an activation is detected and it occurs at t3 = 1.318174 s.
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Figure 3.29: Example whose initial conditions are bT
0 = (0.5 · 10−8, 7.5 · 10−8, 1 · 10−8, 1 ·

10−8) mol and c
∞,T
g,0 = (4.0, 0.5, 4.0, 1.5) mol/m3. Time evolution of (a) bn, n = 0, 1, 2, . . .;

(b) the phase simplices and (c) yn
α, α = 1, 2, 3, 4 and n = 0, 1, 2, . . ..

Illustration of the results are given in Figure 3.29 where the time evolution of bn,
n = 0, 1, 2, . . ., the phase simplices and yn

α, α = 1, 2, 3, 4 and n = 0, 1, 2, . . ., are represented
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on each graph respectively. For a better understanding of the trajectory of bn on the
tetrahedron, the projection of the trajectory is given on each face of the tetrahedron.
Concerning the evolution of the phase simplices in Figure 3.29 (b), the vectors bn, n =
0, 1, 2, . . ., are illustrated by black circles when they are not single-phase points. Hence one
can observe the continuous time evolution of the phase simplices on the tetrahedron which
allows us to accept the numerical results. Finally the graph of Figure 3.29 (c) shows the
loss of regularity of yn

α, α ∈ I, at each discontinuity time.
The second example is presented in Figure 3.30 and the corresponding initial conditions

are

• composition-vector: bT
0 = (0.1 · 10−8, 0.1 · 10−8, 9.3 · 10−8, 0.5 · 10−8) mol,

• gas concentration-vector: c
∞,T
g,0 = (7.0, 2.0, 0.5, 0.5) mol/m3,

• time step: h = 0.005 s.

This second example has an initial vector b0 situated near the top of the tetrahedron
and the initial phase equilibrium is given by a phase simplex of dimension 3. During
the simulation two activations occur: at t1 = 0.613664 s and then at t2 = 3.517124 s.
The numerical results of this example are represented in Figure 3.30. As for the previous
example, the evolution of the phase simplices is continuous and allows to conclude the
accuracy of the simulation.

For gas-aerosol system with s > 4 the representation of the results on the phase diagram
is not easy. However one can observe the CPU times in order to evaluate the efficiency of
the optimization-based numerical method. In Table 3.3 the CPU times of 2 examples with
s = 18 and h = 0.01 s are proposed. In the first example the solution is a single-phase
point at t = 0 s and then a deactivation occurs at t = 0.0743 s. The initial solution of
the second example has four inactive inequality constraints. A first inequality constraint
is activated at t = 0.0067 s. Then a second activation occurs at t = 0.7847 s.

ex. 1 code fixed point mindist act. deact. backwards total disc.
time [s] 1218.43 732.71 18.26 0.38 0.73 1.11

% 60.1 1.5 0 0.1 0.1
ex. 2 code fixed point mindist act. deact. backwards total disc.

time [s] 1474.36 901.44 14.13 0.89 0.89
% 61.1 1. 0.1 0.1

Table 3.3: Computational cost of the numerical resolution for 2 examples with s = 18.
Legend is as follows: code: total time; fixed point: time for the fixed-point algorithm;
mindist: time for the computation of xα, α ∈ A; act.: time for the computation of the
activation; deact.: time for the computation of the deactivation; backwards: time spent
in going backwards in the trajectory; total disc.: total time for the computation of the
discontinuities (i.e act.+deact.+backwards).
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Figure 3.30: Example whose initial conditions are bT
0 = (0.1 ·10−8, 0.1 ·10−8, 9.3 ·10−8, 0.5 ·

10−8) mol and c
∞,T
g,0 = (7.0, 2.0, 0.5, 0.5) mol/m3. Time evolution of (a) bn, n = 0, 1, 2, . . .;

(b) the phase simplices and (c) yn
α, α = 1, 2, 3, 4 and n = 0, 1, 2, . . ..

The CPU times presented in Table 3.3 illustrate respectively the total time of execution,
the time for the fixed-point algorithm, the time for the computation of xα, α ∈ A, the time
for the computation of the activation time and points, the time for the computation of the
deactivation time and points, the time spent in going backwards in the trajectory and the
total time for the computation of the discontinuity time and points (i.e the addition of the
last three times). This table shows that 60% of the CPU time is spent in the fixed-point
algorithm and the others CPU times are very short in comparison to the time dedicated to
the fixed-point method. The time spent in the fixed-point algorithm is mainly due (∼ 60%)
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to the computation of θα = g(xα)+λTxα, α ∈ A in the active set identification procedure.
This procedure allows to update the active set in the primal-dual interior-point method
and is also a criterion for the detection of a deactivation since θAα represents the distance
between (xA

α , g(x
A
α )) and the supporting tangent plane. Let us remind that the vector xA

α

is fixed in the compuation of θAα . The value of xA
α is updated at each time step of the

numerical method via the Algorithm 3.2.1. Following the computation of xA
α , the distance

between (xA
α , g(x

A
α )) and the supporting tangent plane is checked. Thus the criterion in

the active set identification procedure is similar to this last criterion and may be omitted.
The examples 1 and 2 are solved without the computation of θα, α ∈ A in the active

set identification procedure. The solution for each example is similar to the previous
simulation. The CPU times for the new simulation are summarized in Table 3.4. The
CPU times in the fixed-point algorithm are considerably decreased and the total CPU
times for the simulation is less than 5 minutes, which is relatively short for examples with
s = 18. Furthermore the total disc. CPU time in Table 3.4 proves the efficiency of the
technique that computes the discontinuity time and points.

ex. 1 code fixed point mindist act. deact. backwards total disc.
time [s] 232.15 100.34 18.48 0.06 0.1 0.16

% 43.2 8. 0. 0. 0.
ex. 2 code fixed point mindist act. deact. backwards total disc.

time [s] 273.95 125.92 14.11 0.12 0.12
% 46. 5.2 0. 0.

Table 3.4: Computational cost of the numerical resolution for 2 examples with s = 18.
Legend is as follows: code: total time; fixed point: time for the fixed-point algorithm;
mindist: time for the computation of xα, α ∈ A; act.: time for the computation of the
activation; deact.: time for the computation of the deactivation; backwards: time spent
in going backwards in the trajectory; total disc.: total time for the computation of the
discontinuities (i.e act.+deact.+backwards).

In Table 3.5 the CPU times for the previous examples with s = 3 and s = 4 are
presented. The CPU times for the whole simulation is still short with less than 2 s for
examples with s = 2 and than 1 minute for examples with s = 4. Furthermore the
time dedicated to the computation of the activation/deactivation time and points is a
short percentage of the whole simulation. Hence the goal to build a fast technique to
model the gas-aerosol system is reached. Furthermore the numerical resolution proved
itself to be efficient on classical phase diagrams. When the phase diagram contains common
convex areas, the method encounters some difficulties to deactivate inactive inequalities
and restart the simulation due to the numerical method for the optimization problems,
namely the interior-point method, and the initialization of the variables xα, α ∈ A, in the
computation of the minimal distance criterion.
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ex. Figure 3.18 code fixed point mindist act. deact. backwards total disc.
time [s] 0.50 0.22 0.01 0. 0. 0.0 0.01

% 44.5 2 0.1 0.3 0.1 0.5
ex. Figure 3.21 code fixed point mindist act. deact. backwards total disc.

time [s] 1.24 0.66 0.03 0. 0. 0.01 0.01
% 52.9 2.4 0.1 0.2 0.5 0.8

ex. Figure 3.29 code fixed point mindist act. deact. backwards total disc.
time [s] 21.59 9.75 0.35 0.01 0.01 1.98 2.

% 45.2 1.6 0. 0.1 9.2 9.3
ex. Figure 3.30 code fixed point mindist act. deact. backwards total disc.

time [s] 50.27 27.46 1.40 0.01 0.01
% 54.8 2.8 0. 0.

Table 3.5: Computational cost of the numerical resolution for examples with s = 3, 4.
Legend is as follows: code: total time; fixed point: time for the fixed-point algorithm;
mindist: time for the computation of xα, α ∈ A; act.: time for the computation of the
activation; deact.: time for the computation of the deactivation; backwards: time spent
in going backwards in the trajectory; total disc.: total time for the computation of the
discontinuities (i.e act.+deact.+backwards).
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Chapter 4
A numerical method based on differential

algebraic systems

Let us recall the set of equations that models the gas-aerosol system: find b,xα : (0, T ) →
Rs

+ and R, yα : (0, T ) → R+, α = 1, . . . , p satisfying

d

dt
b(t) = j

(

b(t),xI
α(t), R(t)

)

, b(0) = b0

R(t) =

(

3

4π

s
∑

i=1

mc,ibi(t)

ρi

) 1
3

,

{xα(t), yα(t)}p
α=1 = argmin

{x̄α,ȳα}p
α=1

p
∑

α=1

ȳα g(x̄α) (4.0.1)

s.t.

p
∑

α=1

ȳαx̄α = b(t),

eT x̄α = 1, x̄α > 0, ȳα ≥ 0, α = 1, . . . , p,

where T is the final time of integration, b0 is a given initial composition-vector and the
flux j is defined by

j(b(t),xI
α(t), R(t)) = H(R(t))

(

btot −Nb(t) −
1

RcT
exp

(

∇g(xI
α(t)) + ln(po

g)
)

)

.

Let us remind that the exponent I is added to specify that α ∈ I is such that yα > 0
(inactive constraint).

In Chapter 3 the system (4.0.1) has been solved with a fixed-point approach which
coupled the Crank-Nicolson scheme for the ordinary differential part and a primal-dual
interior-point method for the minimization problem. This first method consists in a dy-
namic motion of the phase equilibrium problem and follows the chemical meanings of the
variables b, R, xα and yα, α = 1, . . . , p, by enforcing these latter to remain positive. A
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new approach is developed here, based on the mathematical observation: if the number
of inactive inequality constraints is fixed, the set (4.0.1) can be treated as a differential
algebraic system of equations (DAE).

The presentation of this new approach follows the same structure as in Chapter 3,
namely

(i) the resolution of the DAE stemmed from (4.0.1) when the number of inactive inequal-
ity constraints is fixed;

(ii) the development of criteria for the detection of the discontinuities generated by the
activation or deactivation of an inequality constraint;

(iii) the computation of the discontinuity time and points;

(iv) the definition of the new DAE in accordance with the number of inactive constraints.

Hence let us begin with the formulation and the resolution of the differential algebraic
system under the assumption that the number of inactive constraints is fixed.

4.1 Numerical method for a fixed number of inactive

constraints

This section is devoted to the resolution of (4.0.1) with a fixed number of inactive inequal-
ity constraints. In this case, the regularity of the variables xα and yα, α = 1, . . . , p is
guaranteed.

4.1.1 The differential algebraic equations

The minimization problem in (4.0.1) consists in the computation of the convex envelope
(see Section 1.7). Therefore if a constraint ᾱ is active (i.e. if yᾱ(t) = 0), then the variables
yᾱ and xᾱ can be removed from the optimization algorithm without affecting the solution.
When considering only the inactive constraints, (4.0.1) includes an optimization problem
with equality constraints only:

d

dt
b(t) = j

(

b(t),xI
α(t), R(t)

)

, b(0) = b0

R(t) =

(

3

4π

s
∑

i=1

mc,ibi(t)

ρi

)
1
3

,

{yα(t),xα(t)}α∈I(t) = argmin
{ȳα,x̄α}α∈I(t)

∑

α∈I(t)

ȳα g(x̄α) (4.1.1)

s.t.
∑

α∈I(t)

ȳαx̄α = b(t),

eT x̄α = 1, x̄α > 0, ȳα ≥ 0, α ∈ I(t).
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The solution of (4.0.1) is then equivalent to the solution of (4.1.1), together with yα(t) =
0, ∀α ∈ A(t). This implies that the variables xA

α do not appear in (4.1.1) and therefore
are not updated in the computation of the convex envelope (since the supporting tangent
plane is not tangent to the energy function at those points). The sole condition on xA

α is
the normalization constraint eTxA

α = 1.

By replacing the minimization problem by the KKT conditions, (4.1.1) becomes

d

dt
b(t) = j

(

b(t),xI
α(t), R(t)

)

0 = yα(t) (∇g(xα(t)) + λ(t)) + ζα(t)e, α ∈ I(t),

0 = g(xα(t)) + λT (t)xα(t), α ∈ I(t),

0 =
∑

α∈I(t)

yα(t)xα(t) − b(t),

0 = eTxα(t) − 1, α ∈ I(t),

0 = R(t) −

(

3

4π

s
∑

i=1

mc,ibi(t)

ρi

)
1
3

,

(4.1.2)

where λ ∈ Rs and ζα ∈ R, α ∈ I(t), are the Lagrange multipliers associated to the equality
constraints.

Multiplying the second equation of (4.1.2) by xT
α(t) and using the homogeneous property

of g (xT
∇g(x) = g(x)), the second equation becomes

0 = yα(t)
(

g(xα(t)) + xT
α(t)λ(t)

)

+ ζα(t)xT
α(t)e, ∀α ∈ I(t).

Then the third and fifth equations of (4.1.2) imply

0 = yα(t) · 0 + ζα(t), ∀α ∈ I(t).

In conclusion the variable ζα equals to 0 when α ∈ I(t) and can be removed from (4.1.2).
Finally the second equation is divided by yα(t) since yα(t) > 0, ∀α ∈ I(t). The system
(4.1.2) is then reformulated as

d

dt
b(t) = j

(

b(t),xI
α(t), R(t)

)

0 = ∇g(xα(t)) + λ(t), α ∈ I(t),

0 =
∑

α∈I(t)

yα(t)xα(t) − b(t),

0 = eTxα(t) − 1, α ∈ I(t),

0 = R(t) −

(

3

4π

s
∑

i=1

mc,ibi(t)

ρi

) 1
3

,

(4.1.3)
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the third equation of (4.1.2) being redundant. The second equation means that the gradient
of g at the points xα, α ∈ I, are all equal to −λ and consequently ∇g(xα) = ∇g(xβ),
∀α, β ∈ I.

Let YT (t) =
(

bT (t),xI,T
1 (t), . . . ,xI,T

pI
(t), yI1 (t), . . . , yI

pI
(t),λT (t), R(t)

)

be a N -vector,

N = s + spI + pI + s + 1, that contains all the unknowns of (4.1.3). The system (4.1.3)
can be written as

M
dY

dt
(t) = F(Y(t)), (4.1.4)

where the function F is the right hand side of (4.1.3), namely

F(Y(t)) =



















































j
(

b(t),xI
α(t), R(t)

)

∇g(xI
1 (t)) + λ(t)

...
∇g(xI

pI
(t)) + λ(t)

∑

α∈I(t)

yα(t)xα(t) − b(t),

eTxI
1 (t) − 1

...
eTxI

pI
(t) − 1

R(t) −

(

3

4π

s
∑

i=1

mc,ibi(t)

ρi

)
1
3



















































.

and the matrix M =

(

Is 0

0 0

)

with Is, the s× s identity matrix.

The system (4.1.4) is completed by the initial condition Y(0) = Y0. The first s
components of Y0 (related to the variable b) are given by the initial condition b0 in
(4.0.1). The initial value of the (algebraic) variables xI

α, y
I
α, λ and R must satisfy the

consistency conditions Fa(Y0) = 0, where Fa is the subvector of F defined by the N − s
last components of F. In particular, the value of R at t = 0 is immediately given by the
last equation of the DAE system. For the other variables, the solution of the condition
Fa(Y0) = 0 corresponds to the solution of the minimization problem in (4.0.1) for a given
concentration-vector b0. The primal-dual interior-point method proposed in Chapter 2
allows to determine λ, xα and yα, α ∈ I for given b0. Hence there exist consistent initial
values that solve Fa(Y0) = 0, for given b0.

The system (4.1.4) is a system of differential algebraic equations of index one, that
couples the differential variable b and the algebraic variables (xI

α, y
I
α,λ, R). Such systems

are widely studied in the literature (see e.g. [16, 47, 49, 50]). A 3-stage implicit Runge-
Kutta method RADAU5 of order 5 [49, 50] is used here for the resolution of (4.1.4). A
short presentation of the Runge-Kutta methods, and especially the RADAU5 method, is
addressed in next section.
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4.1.2 Runge-Kutta methods and the RADAU5 method

For this section let us consider first the system of ordinary differential equations

y
′

(x) = f(x,y(x)), (4.1.5)

and apply then the theory of the Runge-Kutta methods to the differential algebraic equa-
tions of (4.1.4). Note that the notations used for this first part are local.

A q-stage implicit Runge-Kutta method to approximate yn+1 is the one step method
defined by

Zi = yn + h

q
∑

j=1

aij f(xn + cjh,Z
j), i = 1, . . . , q, (4.1.6)

yn+1 = yn + h

q
∑

j=1

bj f(xn + cjh,Z
j), (4.1.7)

where {aij}
q
i,j=1, {bj}

q
j=1 and {cj}

q
j=1 are given coefficients, h = xn+1 − xn is the step size

and yn is an approximation of the solution y(xn) at time xn. Relation (4.1.6) forms a
nonlinear system of equations for the internal stages values Zi, i = 1, . . . , q.

According to the values of the coefficients {aij}
q
i,j=1, {bj}

q
j=1 and {cj}

q
j=1, different

Runge-Kutta methods are defined. Butcher in [15] has introduced the representation of
these coefficients in a table

c1 a11 . . . a1q

...
...

. . .
...

cq aq1 . . . aqq

b1 . . . bq

If the coefficients of a q-stage implicit Runge-Kutta method satisfy

aqj = bj , j = 1, . . . , q,

the method is called stiffly accurate [87]. In ordinary differential equation theory, in order
to determine if a method is stable, one needs to study the Dahlquist test equation

y
′

= λy, yn = 1.

Setting z = hλ and using the Runge-Kutta scheme (4.1.6)-(4.1.7) for the test equation,
one can write one step of the method as

yn+1 = R(hλ)yn,

where the function R is called the stability function. Moreover let us define the set

S = {z ∈ C s.t. |R(z)| ≤ 1},

called the stability domain.
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Definition 4.1.1. A method whose stability domain satisfies

S ⊃ C
− = {z | Re z ≤ 0}

is called A-stable.

One can also define the L-stability

Definition 4.1.2. A method is called L-stable if it is A-stable and if in addition

lim
z→∞

R(z) = 0.

Butcher gives conditions on the coefficients {aij}
q
i,j=1, {bj}

q
j=1 and {cj}

q
j=1 for the

method to be of order q [15, 16, 49].

Theorem 4.1.1. If the coefficients {aij}
q
i,j=1, {bj}

q
j=1 and {cj}

q
j=1 of a Runge-Kutta method

satisfy

B(q) :
∑q

i=1 bic
k−1
i = 1

k
, k = 1, . . . , q;

C(η) :
∑q

j=1 aijc
k−1
j =

ck
i

k
, i = 1, . . . , q, k = 1, . . . , η;

D(ζ) :
∑q

i=1 bic
k−1
i aij =

bj

k
(1 − ckj ), j = 1, . . . , q, k = 1, . . . , ζ ;

with q ≤ η + ζ + 1 and q ≤ 2η + 2, then the method is of order q.

Ehle introduced in [31] methods based on the Radau quadrature formulas to determine
{aij}

q
i,j=1, {bj}

q
j=1 and {cj}

q
j=1. The Radau methods are quadrature formulas of maximal

order with one endpoint as a prescribed node [49, 50]. The formulas for the interval [0, 1]
with q stages and a fixed right endpoint have nodes cj, j = 1, . . . , q, which are zeros of

dq−1

dxq−1

(

xq−1(x− 1)q
)

.

Hence the coefficients {cj}
q
j=1 are determined. The coefficients {bj}

q
j=1 are chosen such

that the quadrature formula satisfies B(q).

Butcher named this method as process of type II. Furthermore with the help of the
conditions C(η) and D(ζ) he was able to give values to the coefficients {aij}

q
i,j=1 and to

construct Runge-Kutta methods of order 2q. Unfortunately none of his methods turned out
to be A-stable. Ehle [31] (and independently Axelsson [8]) took up the ideas of Butcher and
found A-stable methods by imposing condition C(q). These methods are called RadauIIA
and the following theorem holds

Theorem 4.1.2. The q-stage RadauIIA method is A-stable and of order 2q − 1.

128



4.1. NUMERICAL METHOD FOR A FIXED NUMBER OF INACTIVE CONSTRAINTS

The proof of this theorem can be found in [49]. The coefficients for the 3-stage RadauIIA
method are
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(4.1.8)

The stability function for the 3-stage RadauIIA method is given by

R(z) =
1 + 2

5
z + 1

20
z2

1 − 3
5
z + 3

20
z2 − 1

60
z3
.

Then limz→∞R(z) = 0 and one deduces the L-stability of the method. Finally the 3-stage
RadauIIA method is also stiffly accurate since

a3j = bj , j = 1, . . . , 3.

With all these properties Hairer and Wanner show in [49] that the RadauIIA is an efficient
implicit Runge-Kutta method to solve the ordinary differential system (4.1.5). They have
implemented this method of order 5 with in addition a step size control. Their code is
called RADAU5 [49, 50]. The resolution method of RADAU5 consists first in substituting
the internal variables Zi by

zi = Zi − yn,

in order to reduce the influence of round-off errors. Then the relation (4.1.6) becomes with
q = 3

zi = h
3
∑

j=1

aijf(xn + cjh,y
n + zj), i = 1, . . . , 3. (4.1.9)

The relation (4.1.7) for the stiffly accurate method RADAU5 reads

yn+1 = z3 + yn.

For the resolution of (4.1.9) Hairer and Wanner suggest the simplified Newton method.
Details of the method can be found in [49], Section IV.8, and is not presented here.

Finally since the Runge-Kutta method is a collocation method, it provides a cheap
numerical approximation to y(tn + θh) for the whole integration interval 0 ≤ θ ≤ 1. The
dense output approximation (collocation polynomial) computed at the nth step tn is denoted
by Un(tn + θhn). The collocation method based on Radau points is of order 2q − 1, and
the dense output of order q. The error between Un(tn + θhn) and y(tn + θhn) is therefore
composed of the global error at tn plus the local error contribution which is bounded by
O((hn)q+1).
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4.1.3 Numerical method for differential algebraic equations

In the previous subsection, Runge-Kutta methods were presented for the resolution of a
system of ordinary differential equations. Here is developed how these methods can also
be applied for the resolution of differential algebraic equations such as in (4.1.4). The
idea is to apply the Runge-Kutta method to differential equations of singular perturbation
type and then to consider in the resulting formulas the limit ε → 0, if ε expresses the
perturbation [50, 82]. Hence let us begin this section by considering the following singular
perturbation problem

y
′

= f(y,w), (4.1.10)

εw
′

= g(y,w). (4.1.11)

The corresponding reduced problem is the differential algebraic equations

y
′

= f(y,w), (4.1.12)

0 = g(y,w). (4.1.13)

The q-stage implicit Runge-Kutta methods applied to the system (4.1.10)-(4.1.11) yields

Zi = yn + h

q
∑

j=1

aij f(Zj ,Wj), i = 1, . . . , q, (4.1.14)

εWi = εwn + h

q
∑

j=1

aij g(Zj ,Wj), i = 1, . . . , q, (4.1.15)

yn+1 = yn + h

q
∑

i=1

bi f(Z
i,Wi), (4.1.16)

εwn+1 = εwn + h

q
∑

i=1

bi g(Zi,Wi). (4.1.17)

Now let us suppose that the matrix (aij) is invertible (which is the case for the RadauIIA
method). From (4.1.15) one gets for i = 1, . . . , q

hg(Zi,Wi) = ε

q
∑

j=1

ωij(W
j −wn).

where ωij are the elements of the inverse of (aij). Inserting this relation into (4.1.17) gives

εwn+1 = εwn + ε

q
∑

i,j=1

bi wij (Wj − wn).

The parameter ε can be simplified and the definition of wn+1 becomes independent of
ε. Then by taking the limit as ε tends to 0, the system (4.1.14)-(4.1.17) with the new
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definition of wn+1 becomes

Zi = yn + h

q
∑

j=1

aij f(Zj ,Wj), i = 1, . . . , q, (4.1.18)

0 = g(Zi,Wi), i = 1, . . . , q, (4.1.19)

yn+1 = yn + h

q
∑

i=1

bi f(Z
i,Wi), (4.1.20)

wn+1 =

(

1 −

q
∑

i,j=1

bi ωij

)

wn +

q
∑

i,j=1

bi ωij Wj. (4.1.21)

Then the solution of the DAE (4.1.12)-(4.1.13) is given by the solution of the above system.
Furthermore for the stiffly accurate method such as RadauIIA, the numerical solution
(yn+1,wn+1) satisfies the equation (4.1.13). The RADAU5 method of Hairer and Wanner
also contains the resolution of the differential algebraic system.

Now let us go back to the system (4.1.4). Thanks to the definition of the matrix M , this
system can be written as (4.1.12)-(4.1.13) with y = b, wT = (xT

1 , . . . ,x
T
pI
, y1, . . . , ypI ,λ

T , R),

f(y,w) = j(b,xI
α, R) and g = Fa. Hence the RADAU5 method can be used for the nu-

merical solution of (4.1.4).
In the sequel, the dense output formula for specific components of Y are used and the

corresponding component is specified by its index. For instance, the dense output for the
variables yᾱ at tn is denoted by Un

yᾱ
(tn + θhn) for θ ∈ [0, 1].

As soon as the set of inactive constraints is fixed, the RADAU5 algorithm is used.
The coupling of this algorithm with an efficient procedure to compute any change in the
set of inactive constraints allows to track the activation/deactivation of constraints that
correspond to losses of regularity of the trajectories.

4.2 Detection of discontinuity times and points

Unlike in the optimization-based numerical method, the detection of the discontinuity
points, or equivalently of the activation/deactivation of a constraint, is achieved only at
each time step tn and all detection criteria are based on checking the sign of a particular
quantity. In the sequel, the cases of an activation (yα(t) > 0 → yα(t) = 0) and of a
deactivation (yα(t) = 0 → yα(t) > 0) of a constraint are distinguished.

4.2.1 Activation of an inequality constraint

Let us remind that the activation of an inequality constraint corresponds to the minimal
time t such that the transition yα(t) > 0 → yα(t) = 0 occurs.

When the number of active constraints is fixed and (4.1.4) is solved with the RADAU5
method, all physical and chemical senses of the variables are omitted. Therefore the
variables yα may take negative values (which is a nonsense from a chemical point of view
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since the quantity yα represents a number of moles). The criterion to detect the presence
of the activation of an inequality constraint is therefore to check at each time step tn+1 if

∃ ᾱ ∈ I(tn+1) such that yn
ᾱ > 0 and yn+1

ᾱ < 0. (4.2.1)

In that case, the conclusion is that there exists a time τ ∈ (tn, tn+1) for which the inequality
constraint yᾱ(τ) = 0 is activated.

4.2.2 Deactivation of an inequality constraint

A deactivation occurs when there exists an index ᾱ ∈ A such that yᾱ(t) = 0 → yᾱ(t) > 0.
However, the variables yᾱ and xᾱ, ᾱ ∈ A, do not appear in (4.1.3) or (4.1.4) (the only
condition on xᾱ is the normalization condition eTxᾱ = 1). The criterion to ”add” such
variables into (4.1.4) for the next time step is therefore independent of the resolution
of the differential algebraic system at the previous time step as it was the case for the
optimization-based numerical method. Thus the detection criterion is similar and consists
in computing at each time step the vector xα, α ∈ A, as the point in ∆

′

s,α that minimizes
the distance between the supporting tangent plane and (xα, g(xα)). If we denote by dn(x)
the signed distance between (x, g(x)) and the supporting tangent plane at time tn, then
the criterion to detect the presence of the deactivation of an inequality constraint is to
check at each time step tn+1 if

∃ ᾱ ∈ A(tn+1) such that dn(xn
ᾱ) > 0 and dn+1(xn+1

ᾱ ) < 0, (4.2.2)

where xn
ᾱ, x

n+1
ᾱ ∈ ∆

′

s,ᾱ are the point that respectively minimize dn(·) and dn+1(·) in the

convex area ∆
′

s,ᾱ.

In that case, there exists a time τ ∈ (tn, tn+1) for which the inequality constraint
yᾱ(τ) = 0 is deactivated.

For a given supporting tangent plane, the Algorithm 3.2.1 presented in Subsection 3.2.2
is used to determine the signed distance, together with the point xA

α that satisfies the
minimal distance.

4.3 Computation of the discontinuity times and points

Let us assume in the following that an inequality constraint is activated/deactivated in the
time interval [tn, tn+1]. The computation of the exact time of discontinuity follows [47, 62]
and introduces the partial time step as an (unknown) additional variable, together with
the additional event function equation.

Let us denote by W the function describing the event location. This function depends
directly on the dense output Un defined on the interval [tn, tn+1]. Let us denote by τ ∈
[tn, tn+1] the time τ = tn+hn, which is the root of the functionW . The problem corresponds
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therefore to finding (Yn+1 , hn), satisfying:

M(Zi − Yn) = hn

q
∑

j=1

aij F(Zj), ∀i = 1, . . . , q, (4.3.1)

M(Yn+1 − Yn) = hn

q
∑

j=1

bj F(Zj), (4.3.2)

W (Un(tn + hn)) = 0. (4.3.3)

Following [47], a splitting algorithm is advocated, that couples the RADAU5 algorithm
together with a bisection method. It is summarized as follows.

Algorithm 4.3.1. At each time step tn such that an activation/deactivation is detected in
[tn, tn+1], consider the system (4.3.1)-(4.3.3) and solve it as follows:

(i) compute hn
0 = θhn as the root of W (Un(tn + θhn)) = 0, where Un(t) is the dense

output obtained from the solution of (4.3.1)-(4.3.2);

(ii) for k = 0, 1, . . . until convergence

(a) solve (4.3.1)-(4.3.2) with hn = hn
k ; this yields a dense output Un

k(tn + θhn
k) for

θ ∈ [0, 1];

(b) with Un replaced by Un
k compute hn

k+1 with a bisection method applied to (4.3.3);

(iii) terminate the iterations with a step of (4.3.1)-(4.3.2).

The convergence criterion is based on the difference between two successive step lengths
hn

k , i.e. |hn
k+1 − hn

k | < εc, where εc is a given prescribed tolerance.

The addition of the time step as an unknown in (4.3.1)-(4.3.3) [47] allows to avoid the
numerical error due to the dense output formula and to recover the full accuracy of the
method. Furthermore the choice of the splitting algorithm for the resolution of (4.3.1)-
(4.3.3) allows for a simple implementation, because the subsystem (4.3.1)-(4.3.2) is solved
anyway at each step of the time stepping procedure.

The event function W is defined explicitly for the case of an activation and a deactiva-
tion.

The case of the activation of a constraint

A constraint is activated if there exists ᾱ ∈ I(tn) such that corresponds to yn
ᾱ > 0 and

yn+1
ᾱ < 0. Hence a natural definition for W is to set W (Un(tn +hn)) = Un

yᾱ
(tn +hn) where

Un
yᾱ

is the component of Un relative to the variable yᾱ.
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The case of the deactivation of a constraint

When there exists ᾱ ∈ A(tn) such that the distance between (xn+1
ᾱ , g(xn+1

ᾱ )) and the
supporting tangent plane defined by the normal vector λn+1 is negative, set

W (Un(tn + hn)) = g(xλ
ᾱ(tn + hn)) + U

n,T
λ (tn + hn)xλ

ᾱ(tn + hn) (4.3.4)

with eTxλ
ᾱ(tn + hn) − 1 = 0,

where Un
λ is the subvector of Un relative to the variable λ and xλ

ᾱ is the point that minimizes
the distance to the supporting tangent plane defined by the normal vector Un

λ(tn+hn). The
expression of W resumes the definition of the distance d between the graph of the energy
function and the tangent plane but, unlike in (3.2.4), Un

λ(tn + hn) is also an unknown in
(4.3.4). Hence during the bisection steps of the Algorithm 4.3.1 for each Un

λ(tn + θhn
k)

the minimization problem (3.2.4) is solved with Un
λ(tn + θhn

k) instead of λn+1 in order to
determine xλ

ᾱ.
After the computation of the activation or deactivation time, all variables in Y are

reinitialized to their value at time t = τ thanks to (iii) in Algorithm 4.3.1. The differential
algebraic system (4.1.3) (or (4.1.4)) is then updated by moving the index ᾱ from the set
I(τ) into the set A(τ) or vice-versa. The complete algorithm is summarized as follows

Algorithm 4.3.2 (Summary of Complete Algorithm). For a fixed number of inactive
inequality constraints, solve (4.1.4) with the RADAU5 algorithm. At each time step tn+1:

(i) Verify if an inactive constraint has to be activated by checking the sign of yn+1
ᾱ for

all ᾱ ∈ I(tn+1). If so, stop RADAU5 and compute the time of activation τ with the
Algorithm 4.3.1, and the new size of (4.1.4). Restart the time-discretization scheme
RADAU5 at t = τ without checking for a deactivation of constraints.

(ii) Verify if an active constraint has to be deactivated by computing ∀α ∈ A(tn+1),
xn+1

α as the minimizer of the distance to the supporting tangent plane with the Al-
gorithm 3.2.1 and checking if the distance is negative. If so, stop RADAU5 and
compute the time of deactivation τ with the Algorithm 4.3.1, and the new size of
(4.1.4). Restart the time-discretization scheme RADAU5 at t = τ .

The adaptive time-step procedure avoids that both activation and deactivation happen
during one time step.

Remark 4.3.1. When r > 1, the computation of the point satisfying the minimal distance
to the supporting tangent plane in Algorithm 3.2.1 strongly depends on the topology of the
energy function g. In order to improve the robustness of the algorithm and avoid to miss a
time of deactivation, the number of inactive constraints obtained by the RADAU5 algorithm
may be compared with the number of actual inactive constraints computed by using the
interior-point method described in Chapter 2. The robust version of the algorithm returns
back a few time steps when a mismatch is detected.
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4.4 Numerical Results

The same numerical examples as for the optimization-based numerical method are consid-
ered. The graphical representation and the associated color code of the results are identical
to the one presented in Chapter 3. The numerical parameters typically used are as follows:
εc = 10−7 and for the RADAU5 method the absolute and relative error tolerances are
respectively equal to 10−13 and 10−7.

4.4.1 Numerical results in one dimension

The chemical system composed of pinic acid (C9H14O4) and 1-hexacosanol (C26H54O) at
temperature 298.15 K and pressure 1 atm is considered (s = 2).

Figure 4.1 (left) shows the time evolution of the vector b on the phase diagram ∆1. For
more visibility the approximations bn are lying on an axis situated just above the phase
diagram. The phase diagram is given by

∆1 = [0, 0.06656724]∪ ]0.06656724, 0.463349192[∪ [0.463349192, 1],

The initial point b0 is situated in the left convex region of the phase diagram and one
constraint is inactive (y1 > 0 and y2 = 0), then bn moves from left to right. The cor-
responding iterates g(bn), moving on the convex envelope of g, and the corresponding
supporting tangent planes are also represented.

The time evolution of the bn, n = 0, 1, . . ., with the color distinction follows the phase
diagram correctly. First approximations are single-phase points, and the corresponding
tangent planes are tangent to the curve g at only one point and lie below g. When b comes
closer to the deactivation, the tangent planes come near a second contact point with g. At
the moment of the deactivation the supporting plane is tangent to g at 2 points (x1,1 =
0.0665672398 and x2,1 = 0.463349192). These two points are accurate approximations
of the points situated at the boundaries of the area on ∆1 where both constraints are
inactive. A zoomed-in view of the deactivation on g is proposed in Figure 4.1 (middle).
After the deactivation, the points g(bn) follow the convex envelope of g. Furthermore
the tangent planes touch g at two points and are confused with the convex envelope of g.
Figure 4.1 (right) illustrates the time evolution of yn

1 and yn
2 , n = 0, 1, . . ., and exhibits

a discontinuity of the derivatives at time t = 0.372487544 s when the second inequality
constraint is deactivated, for both of the variables.

Figure 4.2 uses the same notations as in Figure 4.1 to illustrate the time evolution of the
bn (left), and yn

1 and yn
2 (right) when one inequality constraint is activated, namely when

bn moves from the middle of ∆1 to the extreme right of the phase diagram. The color of
the diamonds representing the approximations bn follows the phase diagram. Furthermore
the point bn for which the activation occurs is located on the frontier of ∆1 between the
area 2 and the area 1. After the activation, the tangent planes get released from g and
remains below g.
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Figure 4.1: Organic aerosol made of 1-hexacosanol and pinic acid with initial composition-
vector bT

0 = (0.01 · 10−7, 0.99 · 10−7) mol. Left: evolution of bn, n = 0, 1, 2, . . ., the
corresponding supporting tangent plane evolves until making contact with the graph of
g. Middle: zoomed-in view of the deactivation. Right: time evolution of yn

1 and yn
2 ,

n = 0, 1, 2, . . ..
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Figure 4.2: Organic aerosol made of 1-hexacosanol and pinic acid with initial composition-
vector bT

0 = (3 ·10−8, 7 ·10−8) mol. Left: evolution of bn, n = 0, 1, 2, . . ., the corresponding
supporting tangent plane evolves after leaving the contact with the left convex region on
the graph of g. Right: time evolution of yn

1 and yn
2 , n = 0, 1, 2, . . ..

In Figures 4.3 and 4.4 two other examples are illustrated. The difficulty of the first
example is the small size of the left area 1 on the phase diagram which is given by

∆1 = [0, 0.206110058 · 10−11]∪ ]0.206110058 · 10−11, 0.898380832[∪ [0.898380832, 1].
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Figure 4.3: Organic aerosol made of water and 1-hexacosanol with initial composition-
vector bT

0 = (9.9 · 10−8, 0.1 · 10−8) mol. The deactivation occurs at t = 0.0220509482 s.
Left: evolution of bn, n = 0, 1, 2, . . . and the corresponding supporting tangent planes.
Middle: zoomed-in view of the deactivation. Right: evolution of yn

1 and yn
2 , n = 0, 1, 2, . . ..
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Figure 4.4: Organic aerosol made of water and glutaraldehyde with initial composition-
vector bT

0 = (9.5 · 10−8, 0.5 · 10−8) mol. The deactivation occurs at t = 0.542032077 s
and the activation at t = 4.51698170 s. Left: evolution of bn, n = 0, 1, 2, . . . and the
corresponding supporting tangent planes. Middle: zoomed-in view of the deactivation.
Right: evolution of yn

1 and yn
2 , n = 0, 1, 2, . . ..

The second example consists of an energy function g whose convex envelope is very close
to g. The corresponding phase diagram is

∆1 = [0, 0.0936539076]∪ ]0.0936539076, 0.345326525[∪ [0.345326525, 1].

In both figures the initial composition-vector is located in the right extremity of ∆1

and the approximations bn, n = 0, 1, 2, . . ., move to the left during the simulation. The
approximations bn follow the phase diagram correctly as well as their images g(bn) with
the convex envelope of g. Moreover the Gibbs tangent plane criterion is satisfied for the
whole simulation of each example.
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Let zb denote the points on the phase diagram situated at the frontier between the
areas 1 and 2, and call these points boundary points. For instance the boundary points
of the phase diagram ∆1 associated to the first example are 0.06656724 and 0.463349192.
Moreover let xb denote the point whose image through the projection P is equal to zb,
namely: zb = Pxb. The point xb is also called boundary point.

In Table 4.1 the computed discontinuity points are listed for each example. Since in the
fourth example a deactivation and an activation occur, two discontinuity points are given.
The exact discontinuity point (i.e. those from the exact solution) hit one of the boundary
point of the phase diagram, depending on the trajectory of b. Hence the error between the
computed and exact discontinuity points can be estimated by calculating the discrepancy
between the computed discontinuity point and the appropriate boundary point. This error
(in the Euclidean norm) is listed in the third column of Table 4.1. The range of the
discrepancy is from 10−13 to 10−10. Thus the computation of the discontinuity point is
done accurately in all examples. Furthermore the evolution of bn is correct and the Gibbs
tangent plane criterion is always satisfied.

Example discontinuity point d error ‖b− xb‖2

Figure 4.1 0.0665672395 7.06·10−11

Figure 4.2 0.463349193 6.66·10−10

Figure 4.3 0.898380832 4.84·10−13

Figure 4.4 0.345326525 2.85·10−11

0.0936539078 2.87·10−10

Table 4.1: The reduced discontinuity point d = Pb and the error between the computed
discontinuity point b and the boundary point xb in the Euclidian norm.

In conclusion the method based on differential algebraic systems is more accurate than
the optimization-based method for the case s = 2. Another comparison between both
methods can be established by analyzing the number of time steps needed for the simula-
tion. This number is illustrated in Table 4.2 for each method and each example. The step
size selection of RADAU5 significantly decreases the number of time steps and makes the
second approach more efficient.

Example opt.-based method DAE-based method

Figure 4.1 100 19
Figure 4.2 30 11
Figure 4.3 30 14
Figure 4.4 100 42

Table 4.2: Number of time steps executed by the optimization-based resolution method
and the method based on the differential algebraic systems on each example.
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4.4.2 Numerical results in two dimensions

The chemical system composed of pinic acid (C9H14O4), 1-hexacosanol (C26H54O) and
water (H2O) at temperature 298.15 K and pressure 1 atm is considered (s = 3). The
solution b and its numerical approximation are represented on a two-dimensional simplex
∆2 [3, 52, 55]. As in Section 3.5 two classes of interaction parameters are considered,
leading to two different phase diagrams depicted in Figure 3.12. The regions of the simplices
with respectively one, two or three deactivated constraints are numbered by 1, 2, 3 on the
simplices. Let us begin with the numerical examples on the phase diagram VL generated
by the interaction parameters of [51].

Examples on the phase diagram VL

Figure 4.5 illustrates the solution of the initial value problem whose initial conditions are
given by

• composition-vector: bT
0 = (1.5 · 10−8, 8.0 · 10−8, 0.5 · 10−8) mol,

• gas concentration-vector: c
∞,T
g,0 = (3.5, 3, 3.5) mol/m3,

• initial time step: h0 = 0.1 s.

Figure 4.5 (left) shows two simulated trajectories of b, one with tracking of discontinu-
ities (colored line) and the other without the tracking (black line). The colored trajectory
undergoes two deactivations and one activation of constraints, whereas the black one stands
for approximations bn that wrongly remain single-phase points during the whole simula-
tion.

Figure 4.5 (left) demonstrates that the tracking of such events strongly influences the
solution of the initial value problem. Figure 4.5 (middle) is a zoomed-in view on the phase
diagram that illustrates how the trajectories move away from each other after the first
deactivation. Eventually both trajectories converge to the unique stationary solution of
the closed gas-aerosol system. Figure 4.5 (middle) emphasizes the importance to detect
and compute the discontinuity points accurately.

Figure 4.5 (right) illustrates the evolution of yn
α, α = 1, 2, 3 and n = 0, 1, 2, . . ., the

number of moles relative to each liquid phase xn
α present in the aerosol. At t = 0 s,

y0
1 = y0

2 = 0 and y0
3 > 0, and two constraints are activated (i.e. the particle only contains

the third liquid phase). Then constraints are activated/deactivated and the trajectory of
yn

α, α = 1, 2, 3 and n = 0, 1, 2, . . ., present jumps of the derivatives at each event.
Figures 4.6 and 4.7 illustrate two other examples on the phase diagram VL. The tra-

jectory of bn for the first example evolves close to the phase boundary between the areas 1
and 2, whereas the second example is concerned with a trajectory that crosses the region
on the phase diagram situated at the intersection between the areas 1, 2 and 3. The initial
conditions for each example are given by
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Figure 4.5: Left: evolution of bn, n = 0, 1, 2, . . ., on the phase diagram of the particle
without the tracking of the discontinuity points (black line) and with the tracking (colored
line). Middle: zoomed-in view. Right: time evolution of the number of moles relative to
each liquid phase present in the particle.

Figure 4.6
b0 c∞g,0 h0

2.8 · 10−8 0.02
7.0 · 10−8 7.3 1.0
0.2 · 10−8 1.68

Figure 4.7
b0 c∞g,0 h0

1.5 · 10−8 2.85
8.0 · 10−8 4.2 0.01
0.5 · 10−8 1.95

As for the optimization-based method, the numerical results for both examples are
consistent with the respective phase diagrams. Moreover comparing these numerical results
with those of the first method, one can deduce a reduction in the number of time steps
needed in the simulation for the second method.

140



4.4. NUMERICAL RESULTS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mole fraction of pinic acid pinic acidwater

m
ol

e 
fr

ac
tio

n 
of

 h
ex

ac
os

an
ol

hexacosanol

2

2

3

1

1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mole fraction of pinic acid pinic acidwater

m
ol

e 
fr

ac
tio

n 
of

 h
ex

ac
os

an
ol

hexacosanol

2

2

3

1

1

(a) (b)

0 t1 1 2 t2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
−7

time (s)
0 0.05 0.1 0.15 0.2 0.25 0.3

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

m
ol

e 
fr

ac
tio

n 
of

 h
ex

ac
os

an
ol

mole fraction of pinic acid

2

1

(c) (d)

0.168 0.169 0.17 0.171 0.172 0.173

0.675

0.6755

0.676

0.6765

0.677

0.6775

0.678

m
ol

e 
fr

ac
tio

n 
of

 h
ex

ac
os

an
ol

mole fraction of pinic acid

2

1

0.094 0.095 0.096 0.097 0.098 0.099 0.1
0.77

0.771

0.772

0.773

0.774

0.775

0.776

0.777

m
ol

e 
fr

ac
tio

n 
of

 h
ex

ac
os

an
ol

mole fraction of pinic acid

2

1

(e) (f)

Figure 4.6: Example VL with the initial conditions bT
0 = (2.8·10−8, 7.0·10−8, 0.2·10−8) mol

and c
∞,T
g,0 = (0.02, 7.3, 1.68) mol/m3. A deactivation occurs at t1 = 0.61742613 s and an

activation at t2 = 2.26623802 s. Time evolution of (a) bn, n = 0, 1, 2, . . . on the phase
diagram, (b) the phase simplices on the phase diagram; (c) the number of moles yn

α,
α = 1, 2, 3 and n = 0, 1, 2, . . .. The graphs (d), (e) and (f) are zoomed-in views of the
trajectory of the bn, n = 0, 1, 2, . . . near the phase boundary between the areas 2 and 1.
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Figure 4.7: Example VL with the initial conditions bT
0 = (1.5·10−8, 8.0·10−8, 0.5·10−8) mol

and c
∞,T
g,0 = (2.85, 4.2, 1.95) mol/m3. The deactivations occur at t1 = 0.367736798 s and

t2 = 0.463307013 s, and the activation at t3 = 0.488743211 s. Time evolution of (a) bn,
n = 0, 1, 2, . . . on the phase diagram, (b) the phase simplices on the phase diagram; (c)
the mole-fraction vectors xn

α, α = 1, 2, 3 and n = 0, 1, 2, . . ., on the phase diagram; (d) the
number of moles yn

α, α = 1, 2, 3 and n = 0, 1, 2, . . .. The graphs (e) and (f) are respectively
zoomed-in views of (e) the number of moles yn

α, α = 1, 2, 3 and n = 0, 1, 2, . . ., and (f) the
trajectory of bn, n = 0, 1, 2, . . ..

142



4.4. NUMERICAL RESULTS

Examples on the phase diagram LL

Let us consider some examples on the phase diagram LL. The initial conditions of the first
example are

• composition-vector: bT
0 = (1.0 · 10−8, 4.0 · 10−8, 5.0 · 10−8) mol,

• gas concentration-vector: c
∞,T
g,0 = (2.0, 1.0, 7.0) mol/m3,

• initial time step: h = 0.001 s.

The simulation starts from the left area 2 and enters in the area 3 as it is depicted in
Figure 4.8 (a). However the color of the trajectories bn, n = 0, 1, 2, . . . in Figure 4.8 (a)
and the evolution of the phase simplices in Figure 4.8 (b) show that the deactivation of
the constraint 1 is not detected. The evolution of xn

1 , n = 0, 1, 2, . . ., is represented in
Figure 4.8 (c) and one can observe that xn

1 tends to xn
2 instead of the activation point

situated at the bottom left corner of the phase simplex of dimension 3. Consequently no
deactivation can be detected and the method based on differential algebraic systems fails
on this example as the first method did.

Let us change the initialization of x1 as it has been done for the first method, namely

x
0,T
1 = (0.7, 3.0 · 10−8, 0.29999997),

and run the simulation again. The results are given in Figure 4.9. With this new initial-
ization the deactivation is detected and correctly computed.

Now let us study a second example. The initial conditions are

• composition-vector: bT
0 = (9.0 · 10−8, 0.5 · 10−8, 0.5 · 10−8) mol,

• gas concentration-vector: c
∞,T
g,0 = (4.0, 2.0, 4.0) mol/m3,

• initial time step: h = 0.001 s.

The optimization-based method succeeded in the computation of the deactivation but
failed in the restart of the simulation, the interior-point method activating the freshly
inactive inequality constraint. The numerical results with the second method are illustrated
in Figure 4.10. The deactivation is correctly detected and computed. Furthermore the
simulation restarts and is consistent with the phase diagram. The method is then more
efficient on such example, namely when the solution bn starts in area 1 and comes right in
front and nearly perpendicular to the phase simplices of area 2. Finally let us also note the
extremely large slope of the trajectories yn

1 and yn
2 , n = 0, 1, 2, . . . after the deactivation

time.

143



CHAPTER 4. A NUMERICAL METHOD BASED ON DAE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mole fraction of pinic acid pinic acidwater

m
ol

e 
fr

ac
tio

n 
of

 h
ex

ac
os

an
ol

hexacosanol

2

2

3

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mole fraction of pinic acid pinic acidwater

m
ol

e 
fr

ac
tio

n 
of

 h
ex

ac
os

an
ol

hexacosanol

2

2

3

1

(a) (b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mole fraction of pinic acid pinic acidwater

m
ol

e 
fr

ac
tio

n 
of

 h
ex

ac
os

an
ol

hexacosanol

2

2

3

1

0 5 10 15 20 25 30
0

1

2

3

4

5

6
x 10

−7

time (s)

(c) (d)

Figure 4.8: Example LL with the initial conditions bT
0 = (1.0·10−8, 4.0·10−8, 5.0·10−8) mol

and c
∞,T
g,0 = (2.0, 1.0, 7.0) mol/m3 when x0

α, α = 1, 2, 3 are initialized in the corners of the
phase diagram. Time evolution of (a) bn, n = 0, 1, 2, . . .; (b) the phase simplices; (c) the
molar-fraction vectors xn

α, α = 1, 2, 3 and n = 0, 1, 2, . . .; (d) the number of moles yn
α,

α = 1, 2, 3 and n = 0, 1, 2, . . ..
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Figure 4.9: Example LL with the initial conditions bT
0 = (1.0·10−8, 4.0·10−8, 5.0·10−8) mol

and c
∞,T
g,0 = (2.0, 1.0, 7.0) mol/m3 when x0

3 is initialized closer to the bottom left vertex
of the area 3. Time evolution of (a) bn, n = 0, 1, 2, . . .; (b) the phase simplices; (c) the
molar-fraction vectors xn

α, α = 1, 2, 3 and n = 0, 1, 2, . . .; (d) the number of moles yn
α,

α = 1, 2, 3 and n = 0, 1, 2, . . ..
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Figure 4.10: Example LL with the initial conditions bT
0 = (9.0 · 10−8, 0.5 · 10−8, 0.5 · 10−8)

and c
∞,T
g,0 = (4.0, 2.0, 4.0). Time evolution of (a) bn, n = 0, 1, 2, . . .; (b) the phase simplices;

(c) the molar-fraction vectors xn
α, α = 1, 2, 3 and n = 0, 1, 2, . . .; (d) the number of moles

yn
α, α = 1, 2, 3 and n = 0, 1, 2, . . ..
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Theoretical example

In the particular case when all yα are strictly positive, the exact solution b and the exact
time of activation t∗ when an inequality constraint is activated, are known [18, 19]. Four
different examples are considered starting all from the area 3 and going to one of the areas
2. All trajectories are represented in Figure 3.27 of Section 3.5. Figure 4.11 illustrates
the error on the computation of activation points between the approximated and exact
solutions for each example. It shows that the error on both the time and location of the
activation is negligible, up to machine precision and algorithm tolerance, and validate the
accuracy of this second method based on differential algebraic systems.
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Figure 4.11: Error on the computation of the activation/deactivation of inequality con-
straints: the case of the activation of a constraint. Error on the time of activation |t⋆ − tn+1|
(left); ‖d(tn)−dn‖2 (middle) and error on the location of activation ‖d(t⋆)−dn‖2 (right).

4.4.3 Numerical results in higher dimensions

When s = 4, no phase diagram is available. However the numerical results may still be
visualized on a tetrahedron. Let us consider a gas-aerosol system made of pinic acid, 1-
hexacosanol, water and n-propanol. In Section 3.5 two examples have been presented. Let
us reconsider both examples and add a new one. The numerical results are respectively
given in Figure 4.12, Figure 4.13 and Figure 4.14, and the corresponding initial conditions
are

Figure 4.12
b0 c∞g,0 h0

0.5 · 10−8 0.02

1.0
7.5 · 10−8 0.5
1.0 · 10−8 4.0
1.0 · 10−8 1.5

Figure 4.13
b0 c∞g,0 h0

0.1 · 10−8 7.0

1.0
0.1 · 10−8 2.0
9.3 · 10−8 0.5
0.5 · 10−8 0.5

Figure 4.14
b0 c∞g,0 h0

8.5 · 10−8 0.5

1.0
0.5 · 10−8 4.5
0.5 · 10−8 4.0
0.5 · 10−8 1.0
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For each example the time evolution of bn, yn
α, α = 1, 2, 3, 4 and n = 0, 1, 2, . . ., and

the phase simplices look consistent with the results obtained in Chapter 3 and the ac-
tivations/deactivations are correctly computed. The last example was not presented in
Section 3.5. The reason is that the optimization-based method could not restart from
the first deactivation because of the interior-point method that directly activates the new
inactive inequality constraint.

When s is greater than 5, the phase diagrams can no more be visualized. In the
following let us compare the CPU times for different values of s. Table 4.3 summarizes
the computational times for several examples that were run with an Intel processor of 2.4
GHz and with 2 GB of RAM memory. The first 3 examples are the studied examples on
the phase diagram VL, the 3 following examples are the above-mentioned examples with
s = 4, and the last two are with s = 18 of Chapter 3. The presented CPU times illustrate
respectively the total time of execution, the time for the detection of events, the time for
the computation of the activation, the time spent in going backwards in the trajectory,
the time for the computation of the deactivation and the total time for the detection and
computation of the discontinuities.

Table 4.3 shows that the larger s, the more expensive the tracking of discontinuity
points. However, the percentage of the computational cost for the tracking remains stable
as s becomes larger. For all examples the number of iterations in the splitting Algo-
rithm 4.3.1 is equal to 3 in average and the number of iterates for the bisection in the
deactivation case is equal to 30 in average.

Comparing with the optimization-based method, the total CPU times is strongly re-
duced for this second method. This decrease essentially comes from the different methods
to solve the optimization-constrained differential equations when the number of inactive
constraints is fixed. Indeed the CPU time for the first method is mainly due to the fixed-
point algorithm whereas the CPU time for the second method derives from the detection
and the computation of the discontinuities.
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Figure 4.12: Example whose initial conditions are bT
0 = (0.5 · 10−8, 7.5 · 10−8, 1 · 10−8, 1 ·

10−8) mol and c
∞,T
g,0 = (4.0, 0.5, 4.0, 1.5) mol/m3. Time evolution of (a) bn, n = 0, 1, 2, . . .;

(b) the phase simplices and (c) yn
α, α = 1, 2, 3, 4 and n = 0, 1, 2, . . ..
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Figure 4.13: Example whose initial conditions are bT
0 = (0.1 ·10−8, 0.1 ·10−8, 9.3 ·10−8, 0.5 ·

10−8) mol and c
∞,T
g,0 = (7.0, 2.0, 0.5, 0.5) mol/m3. Time evolution of (a) bn, n = 0, 1, 2, . . .;

(b) the phase simplices and (c) yn
α, α = 1, 2, 3, 4 and n = 0, 1, 2, . . ..

150



4.4. NUMERICAL RESULTS

00.20.40.60.81

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

00.20.40.60.81

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(a) (b)

0.13 1.56 4 6.87 8 10

0

1

2

3

4

5

6

x 10
−7

time (s)
0.13 0.5 1

0

0.5

1

1.5

2

x 10
−7

time (s)

(c) (d)

Figure 4.14: Example whose initial conditions are bT
0 = (8.5 ·10−8, 0.5 ·10−8, 0.5 ·10−8, 0.5 ·

10−8) mol and c
∞,T
g,0 = (0.5, 4.5, 4.0, 1.0) mol/m3. Time evolution of (a) bn, n = 0, 1, 2, . . .;

(b) the phase simplices and (c) yn
α, α = 1, 2, 3, 4 and n = 0, 1, 2, . . .. The graph (d) is a

zoomed-in view of yn
α, α = 1, 2, 3, 4 and n = 0, 1, 2, . . ..
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ex. on Figure 4.5 code detect act. backwards deact. total disc.
temps [s] 0.10 0.01 0.02 0.02 0.03 0.08

% 5.3 15.2 16.0 25.3 61.8
ex. on Figure 4.6 code detect act. backwards deact. total disc.

temps [s] 0.10 0.02 0.01 0.00 0.04 0.07
% 24.2 7.5 2.5 37.5 71.7

ex. on Figure 4.7 code detect act. backwards deact. total disc.

temps [s] 0.10 0.02 0.02 0.01 0.01 0.06
% 19.9 19.9 13.4 8.0 61.2

ex. on Figure 4.12 code detect act. backwards deact. total disc.
temps [s] 0.48 0.06 0.04 0.14 0.07 0.31

% 13.4 7.4 30.1 14.8 65.7
ex. on Figure 4.13 code detect act. backwards deact. total disc.

temps [s] 0.54 0.08 0.12 0.05 0.25
% 14.4 21.8 9.2 45.4

ex. on Figure 4.14 code detect act. backwards deact. total disc.
temps [s] 0.46 0.09 0.07 0.04 0.13 0.33

% 19.4 14.3 9.4 28.6 71.7

ex. 1, s = 18 code detect act. backwards deact. total disc.
temps [s] 7.15 3.05 0.27 1.84 5.16

% 42.7 3.8 25.8 72.3
ex. 2, s = 18 code detect act. backwards deact. total disc.

temps [s] 13.00 5.34 5.74 11.08
% 41.1 44.2 85.3

Table 4.3: Computational cost of the algorithm for system with s = 3, 4, 18. Legend is as
follows: code: total time; detect: time for the detection of events; act.: computation of
activation time; backwards: time spent in going backwards in the trajectory for checking
purposes; deact.: computation of deactivation time; total disc.: total time for detection
and computation of events.
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This thesis is concerned by the modeling and the numerical simulation of a system com-
posed by organic aerosol particles surrounded by a gas phase. The aerosol particles have
been supposed to be all identical and the chemical species constituting the particles have
been assumed to be present in the surrounding gas. This gas-aerosol system is closed and
the processes between the gas and the particles are the evaporation and the condensation
solely. The time evolution of the composition of the aerosol particles, their size and repar-
tition in liquid phases, as well as the concentration of the gas at the surface of the particles
and far from the particles, have been studied.

The modeling of the gas-aerosol system has led to optimization-constrained differential
equations. The differential part comes from the modeling of the mass flux between the
aerosol particles and the surrounding gas. The optimization problem is the mathematical
transcription of the phase equilibrium problem which determines the phases repartition
in each aerosol particle. This minimization problem contains mixed constraints and a
nonconvex nonlinear objective function. The objective function is the molar Gibbs free
energy of a particle.

The coupling of the differential equations and the minimization problem induces losses
of regularity in the primal variables of the optimization problem. These losses occur when
an inequality constraint is activated or deactivated. Consequently, in addition to the
development of a numerical method that solves the optimization-constrained differential
equations, techniques for the detection and computation of the times at which the losses
of regularity occurred (discontinuity times) and the solution defined at this discontinuity
time (discontinuity points) have been established. Two approaches have been proposed.
Both methods follow the same strategy: at each time step tn of the simulation

1. solve the optimization-constrained differential equations over the time interval [tn, tn+1]
for a fixed number of inactive inequality constraints in the optimization problem;

2. check if an inequality constraint has to be activated or deactivated in [tn, tn+1] with
detection criteria. If a detection criterion is satisfied,

(a) compute the discontinuity time and points,
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(b) adapt the optimization-constrained differential equations with the new number
of inactive constraints.

The procedure is executed until the final time of integration or the concentration equilib-
rium between the gas and the particle is reached.

Both approaches are sharing the same detection criteria. The activation of an inequality
constraint is detected by observing the time evolution of the variables yα(t), α ∈ I(t);
whereas for the deactivation of a constraint, the observed quantity is the distance between
the supporting tangent plane and the points (xα(t), g(xα(t)), α ∈ A(t). A slight difference
in the detection criteria exists between the 2 approaches. For the first approach, the
detection of an activation has been tested at each inner iteration of the resolution of the
optimization problems. For the second approach the satisfaction of this criterion has been
checked only at each time step. Let us note that the variables yα(t), α ∈ I(t) have been
directly computed by both approaches, whereas the variables xα(t), α ∈ A(t) have required
an additional work. This work has been executed at each time step and consisted in setting
xα(t), α ∈ A(t) as the minimizer of the distance between the supporting tangent plane
and the point (xα(t), g(xα(t)).

The first approach is in the line with the resolution of the optimization problem pro-
posed by Amundson et al. in [4, 5]. In order to keep the efficient primal-dual interior-point
method of Amundson et al., the first method consists in a splitting between the differen-
tial and the optimization parts of the optimization-constrained differential equations. In
the splitting, the ordinary differential equations have been solved with the Crank-Nicolson
scheme. In order to decrease the computational cost, a warm-start strategy has been
added for the initialization of the successive optimization problems. With this approach
the meaning of the variables xα and yα, α = 1, . . . , p, has been preserved and the vari-
ables yα, α = 1, . . . , p, have remained nonnegative. This fact implies on the one hand
that the activation of the constraint ᾱ was detected if the relation 0 ≤ yα(t) < ǫy held,
where ǫy is a given threshold. On the other hand the continuous nonnegativeness of yα,
α = 1, . . . , p, prevents from using interpolation techniques for the computation of the
discontinuity times. An extrapolation technique based on the works of Esposito and Ku-
mar [33] has been employed to determine the fractional time step needed to reach the
discontinuity.

In the extrapolation technique the time derivative of the variable yᾱ is required, if ᾱ
denoted the activating constraint. The variable yᾱ has been the result of the optimization
problem. Hence the derivative d

dt
yᾱ has been first transformed via the chain rule in order

to come out the partial derivatives ∂yᾱ

∂bi
and d

dt
bi, i = 1, . . . , s. Second a sensitivity analysis

of the optimization problem defined at the time step just before the activation has allowed
to know the exact value of the partial derivatives ∂yᾱ

∂bi
, i = 1, . . . , s [36]. The derivatives

d
dt
bi, i = 1, . . . , s have been approached by a linear interpolation. Thus the main work in

the extrapolation technique has consisted in the computation of the derivatives ∂yᾱ

∂bi
, i =

1, . . . , s. Thanks to the sensitivity analysis the computational cost of this work is not high
(in terms of CPU time). For the computation of the deactivation time the extrapolation
technique with the sensitivity analysis has also been employed. The extrapolated function
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in that case was the distance between the supporting tangent plane and the minimum of
the energy function.

This first approach is not provided with a step size selection and uses second order
schemes for the resolution of the ordinary differential equations and the computation of
the discontinuity time and points. Nevertheless the method is fast (less than 5 minutes for
the simulation of a gas-aerosol system made of 18 chemical components). The warm-start
strategy in addition with the backwards check have considerably increased the efficiency of
this first method. Difficulties have however been encountered for gas-aerosol system whose
phase diagram was not classical, namely when some convex areas ∆

′

s,α, α = 1, . . . , p, of
the phase diagram are similar. In that case some simulations have not succeeded because
of one of the following reasons

• the deactivation of the constraint ᾱ is missed because of the convergence of xᾱ to the
inactive vector xα, α ∈ I, whose convex area ∆

′

s,α is identical to ∆
′

s,ᾱ. The vector
xᾱ should converge to the global minimum of the distance function.

• The deactivation of the constraint ᾱ is correctly computed but the simulation does not
restart since the primal-dual interior-point method has activated the freshly inactive
constraint ᾱ.

In the second approach the physical and chemical senses of the variables have been left
asides and the optimization-constrained differential equations is considered as a differential
algebraic system, after replacement of the optimization problem by its KKT conditions.
The fifth-order implicit Runge-Kutta method, RADAU5, has been employed to solve the
differential algebraic system. The detection criteria are similar to the first approach with
the slight difference that now yα may become negative. The computation of the disconti-
nuity time is different. The technique consists to add the fractional time step needed to
reach the discontinuity as an unknown in the differential algebraic system and solve the
resulting system with a splitting idea in order to use the RADAU5 method again.

This second approach uses a fifth-order scheme to solve the differential algebraic sys-
tem and computes the discontinuity exactly. In comparison to the first approach, this
method is more efficient. The second approach is also faster. Indeed the CPU times of
all numerical examples are smaller with this approach (only 13 s for the example with 18
chemical components). However the method has encountered similar difficulties for gas-
aerosol system whose phase diagram was not classical by missing the deactivation. This
fact is normal since the detection criteria are similar. But unlike for the first approach,
the method restarts after the computation of the discontinuity points and time.

In conclusion the second approach is more efficient than the first one. The first approach
can be improved by adding a step size selection, but it will be difficult to increase its order.
Indeed to increase its order, the order of the method that computes the discontinuity
time has to be increased. This requires to approximate the derivatives of yα of higher
order, which is very difficult. The second approach can also be improved by replacing the
bisection method in the algorithm that computes the discontinuity time. Indeed after one
step of the algorithm, one knows that the discontinuity time is in the neighborhood of the
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right extremity of the considered time interval. The bisection method forces to move in
the middle of the time interval and then converges to the right extremity. An improvement
could be to use the bisection method once and then use the Newton method with the
solution of the bisection as the initialization.

The Achilles’ heel of each approach is the detection of the deactivations on non classical
phase diagrams. The deactivations may be missed because the variables xᾱ, ᾱ ∈ A do not
realize the minimum of the distance between the supporting tangent plane and (xᾱ, g(xᾱ)).
In the computation of xᾱ, ᾱ ∈ A, the iterates in the algorithm converge to the inactive
vector xα, α ∈ I instead of converging to the global minimizer of the distance function.
In the numerical examples concerned by this difficulty one has observed that if the initial-
ization of the algorithm is chosen more appropriately, the iterates converge to the global
minimizer and the deactivation is detected. But since no information on the topology of
the energy function and the phase diagram is a priori known, the initialization is either the
last iterate of the previous time step or in a corner of the phase diagram. Consequently
we are sure that each vector xα belongs to its corresponding convex area ∆

′

s,α on the
phase diagram. An idea to improve the efficiency of the detection criterion is to determine
roughly the topology of the phase diagram before the simulation. The approximation of
the local minimizers of the energy function defines the new initialization of the vector xα,
α = 1, . . . , p. This technique must not be time or memory-consuming. Our first idea is to
use global optimization such as particle swarm optimizers [14, 25, 103]. The goal of global
optimization is to determine the global minimum of a minimization problem, whereas our
goal is to determine the local minima of the energy function g on the phase diagram. Then
adaptations in the parameters should be done.

In the gas-aerosol system, all organic aerosol particles are considered identical. The
next step in the modeling is to integrate a population of aerosol particles in the system.
Caboussat and Leonard in [20, 21] work in this direction. They present a model that
follows the first approach by using a fixed-point algorithm. Following the results of this
thesis, a resolution with the second approach shall be investigated.
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type C (scientific option). I was then admitted in the mathematics section at the Swiss
Federal Institute of Technology (EPFL) in Lausanne. In March 2005 I received a master
of mathematical sciences after having completed my master thesis under the supervision
of Prof. Jacques Rappaz and Dr. Michel Flueck. From April to October 2005 I have
worked on the air quality project, called UHAERO, with the Profs Jiwen He and Alexandre
Caboussat at the University of Houston, USA. Since October 2005 I have been pursuing
my research on the UHAERO project at EPFL and working as an assistant in the Chair
of Numerical Analysis and Simulation for Prof. Jacques Rappaz. My research theme is
ordinary differential equations and constrained optimization problems.

167


