
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

acceptée sur proposition du jury:

Suisse
2009

Prof. P. Ienne, président du jury
Prof. D. Thalmann, directeur de thèse

Dr S. Coquillart, rapporteur
Prof. A. Frisoli, rapporteur

Prof. A. Ijspeert, rapporteur

Two-Handed Haptic Feedback in
Generic Virtual Environments

Renaud OTT

THÈSE NO 4342 (2009)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 19 mARS 2009

À LA FACULTÉ INFORmATIQUE ET COmmUNICATIONS

LABORATOIRE DE RÉALITÉ VIRTUELLE

PROGRAmmE DOCTORAL EN INFORmATIQUE, COmmUNICATIONS ET INFORmATION

“If I have eight hours to chop down a tree,
I’d spend six sharpening my axe.”

Abraham Lincoln

Abstract

SINCE we hear about Virtual Reality as a discipline that could potentially provide ben-
efits to many applications. Basically, the principle of Virtual Reality consists in stim-

ulating user senses in order to give the impression to be in another place which they can
discover and interact with. Today, most virtual reality systems create realistic visual and
auditive environments. However the interaction with these environments can not be con-
sidered as natural. Indeed, we often use devices such as mouse, keyboard or joystick to
move or manipulate them. These paradigms of interaction are in fact metaphors, which are
not similar to reality. In some situations they are practical and efficient. However, the lack
of intuitiveness sometimes makes them limited or simply ineffective.

To overcome this, researchers can use Haptic Devices. They are designed to simulate
what is commonly called the “sense of touch”, which includes more specifically, tactile,
pain sense, thermal sense, and proprioception. Proprioception is knowledge gained by the
perception of the relative member’s position of the human body. In this thesis, we partic-
ularly focus on the simulation of proprioception. There are two advantages of such haptic
devices. First, they can give the user more information on the nature of virtual objects
(size, weight, finish, rigidity, etc..). Second, they can provide interaction paradigms that
are closer to reality (three-dimensional interaction in a three-dimensional world). However,
haptic device mechanics is complex. Moreover, proprioception is a sense that covers the
entire body which is a rather large surface. For this reason, haptic devices usually apply
force feedback on a very small portion of the body, such as fingertip. In addition to this
hardware constraint, haptic research also faces software constraints. Indeed, a haptic appli-
cation requires many computer resources in order to perform collision detection, dynamic
animation of objects, and force feedback computation. Moreover, this should be done at a
refresh rate that is much higher than the visualization for producing a convincing result.

In the first part of this thesis, we propose to increase realism and complexity of haptic
applications. To achieve this goal, we use a state-of-the-art commercial device which al-
lows to acquire the posture and position of both hands, and to apply forces on the fingertips
and wrists. We propose techniques to calibrate and improve the comfort of these kinds
of devices in order to integrate them into Virtual Environments. However, a two-handed
haptic device do not presents only advantages. Indeed, It is much more complicated to
compute forces on two hand models, than on a single point or fingertip. For this reason,
in this thesis, we propose a framework to optimize this computation. Thanks to it, we can
create Virtual Environments in which an object is graspable and dynamically animated by

v

vi

the laws of physics. When the object is seized by both hands, the haptic rendering engine
realistically computes the forces on both exoskeletons. The efficiency of our rendering
permits to apply these techniques to complex environments that have a significant number
of objects. But the existing visual Virtual Environments are much more detailed than the
ones seen in common haptic applications. In this thesis, we aim at reducing this gap. One
of the problems is that these quality environments usually do not include specific haptic
object properties, such as mass or material. We thus propose a software allowing even
non-professional to quickly and easily add this information to an environment. Our results
show that this haptic rendering engine does not suffer from the large quantity of objects.
They demonstrate that we have an efficient framework for integrating a two-handed haptic
interface into a generic virtual environment.

In the second part, we evaluate the potential of these kinds of Virtual Reality systems
in more detail. While most applications can in theory take advantage of haptic devices,
the practice shows that it is not always the case. Indeed, with experience, some metaphor-
ical interaction paradigms remain more powerful than realistic ones. We thus present and
study the integration of our two-handed haptic interface in a variety of applications. Evalu-
ations show that depending on the application, it is not appropriate to reproduce reality: in
teleoperation, for instance, simulating a virtual haptic steering wheel is less efficient than
providing a force gesture interface. On the other hand, in virtual learning, the power of
two-handed haptic manipulation is fully exploited and presents great advantages over stan-
dard techniques.

Keywords: Virtual Reality, Haptic Feedback, Computer Haptics, 3D Interaction,
Virtual Grasping, Collision Detection, Dynamic Animation, 3D Modeling.

Résumé

DEPUIS de nombreuses années, on entend parler de la Réalité Virtuelle comme étant
une discipline ouvrant de nombreuses perspectives pour notre société. La Réalité

Virtuelle peut en effet potentiellement apporter des avantages à plusieurs types d’appli-
cations. Le principe de la Réalité Virtuelle consiste à soustraire l’homme du monde réel
en lui proposant un autre monde - dit virtuel - dans lequel il peut agir. Le fait d’agir est
très important car c’est ce qui rend le spectateur acteur. Etant donné que la perception du
monde réel est réalisée par nos sens, il apparaît normal d’exciter directement ces mêmes
sens pour proposer un monde virtuel. Ainsi, aujourd’hui, la plupart des systèmes de Réa-
lité Virtuelle permettent de créer de manière relativement réaliste un environnent visuel
et sonore, comme on peut le voir dans les jeux vidéos par exemple. Mais l’interaction
avec ces environnements ne peut souvent pas être qualifiée de réaliste. En effet, on utilise
souvent des périphériques comme la souris, le clavier ou les manettes de jeux pour se dé-
placer ou interagir. Ces paradigmes d’interaction sont en fait des métaphores, qui ne sont
pas conforme à la réalité. Si dans certaines situations elles sont pratiques, elles peuvent au
contraire aussi s’avérer peu efficace car non-intuitives ou tout simplement limitées.

Pour pallier cela, les chercheurs utilisent, quand ils le peuvent, des périphériques hap-
tiques. Ces derniers ont pour but de simuler ce qui est communément appeler le sens du
“toucher”, qui englobe, plus précisément, la sensation du contact, de la douleur, de la tem-
pérature, et la proprioception qui est la connaissance acquise par la perception de la po-
sition des membres du corps humain. Dans cette thèse, nous nous intéressons plus parti-
culièrement à la simulation de la proprioception. L’avantage des périphériques haptiques
est double : d’une part ils permettent de donner à l’utilisateur un supplément d’informa-
tion sur la nature des objets virtuels (taille, poids, état de surface, rigidité, etc.), et d’autre
part ils permettent de proposer des paradigmes d’interaction qui sont plus proches de la
réalité (interaction tridimensionnelle dans un monde tridimensionnel). Cependant, les pé-
riphériques haptiques sont généralement des machines dont la mécanique est complexe, et
la proprioception s’applique le corps entier ce qui représente une énorme surface. C’est la
raison pour laquelle un périphérique haptique donné ne couvre généralement qu’une toute
petite partie du corps humain comme le bout du doigt. En plus d’une barrière matérielle, les
chercheurs en Haptique doivent faire face à des considérations logicielles contraignantes.
En effet, une application haptique nécessite de nombreuses ressources informatiques : il
faut détecter des contacts, animer des objets virtuels, calculer des valeurs de forces, et ce,
à une cadence bien supérieure à celle nécessaire pour les afficher.

Dans la première partie de cette thèse, nous proposons d’augmenter le réalisme et la

vii

viii

complexité des applications haptiques. Pour ce faire, nous utilisons une machine qui est à
la pointe de la technologie, en permettant de connaître la posture et la position des deux
mains, et d’appliquer des forces au niveau des doigts et des poignets. Nous proposons
des techniques pour calibrer et améliorer le confort de ce type de machine dans le but de
l’intégrer dans des environnements virtuels manipulables. Ces caractéristiques matérielles
exceptionnelles présentent cependant un inconvénient au niveau logiciel : il est bien plus
complexe de calculer des forces sur deux mains que lorsqu’on utilise une machine ponc-
tuelle. C’est la raison pour laquelle nous proposons dans cette thèse des algorithmes ainsi
que des techniques pour optimiser les calculs. Grâce à ceux-ci, nous avons la possibilité
de programmer des environnements virtuels dont les objets sont animés dynamiquement
selon les lois de la physique. L’utilisateur peut ainsi les saisir, les manipuler et les lancer.
Lorsqu’un même objet est saisi par les deux mains, le moteur de rendu calcule correcte-
ment les forces pour que les deux exosquelettes haptiques agissent conjointement. Dans un
deuxième temps, compte-tenu de la vitesse de rendu due aux optimisations, nous propo-
sons d’appliquer cette technique à des environnements complexes composés d’un nombre
d’objets conséquents. Etant donné que la plupart des environnements de qualité n’incluent
pas des informations spécifiques nécessaires au rendu haptique, telles que la masse ou le
type de matériau des objets, nous proposons un logiciel d’édition permettant à quiconque
de rajouter rapidement et facilement ce type d’information. Les tests montrent que notre
moteur de rendu haptique ne souffre pas de la grande quantité d’objets. Ainsi, nous pou-
vons conclure que nous avons proposé un cadre de travail logiciel efficace pour intégrer
des interfaces haptiques dans le but de rendre tangible des environnements virtuels qui ne
sont pas spécifiques à l’Haptique.

Dans une seconde partie, nous nous intéressons de plus près à l’utilité et aux possibili-
tés offertes par ce type de système de Réalité Virtuelle. Bien que la plupart des applications
puisse en théorie tirer parti de ce genre de système, la pratique montre que ce n’est pas
tout le temps le cas. En effet, certains paradigmes d’interaction métaphoriques se révèlent,
après apprentissage, plus puissants que des paradigmes réalistes. Ainsi, la seconde partie de
cette thèse se concentre sur quelques types d’applications, et présente des intégrations de
système haptique à deux mains. Des évaluations montrent que suivant l’application ciblée,
il ne convient pas de reproduire des objets réalistes, mais de penser de nouvelles inter-
faces. Ceci est peut-être le cas de la téléopération ou du prototypage. Tandis que d’autres
applications telles que l’apprentissage virtuel, tirent vraiment parti de la puissance des pé-
riphériques haptiques a deux mains.

Mots-Clef : Réalité Virtuelle, Retour de Force, Rendu haptique, Interaction 3D, Ma-
nipulation Virtuelle, Détection de collisions, Animation virtuelle, Modélisation.

Remerciements

EN PREMIER lieu, je tiens à remercier chaleureusement le Professeur Daniel Thalmann.
Avant même de le connaitre personnellement, il m’a transmis sa passion pour l’in-

formatique graphique. C’est en découvrant ses cours en ligne il y a une dizaine d’années
qu’il m’a incité sans le savoir à poursuivre des études dans ce domaine, puis à rechercher
un stage dans son laboratoire. Il m’a ensuite proposé ce sujet de thèse si intéressant sur les
interfaces haptiques, et donc donné par la même occasion l’opportunité de concrétiser un
rêve. Je lui en serais toujours reconnaissant.

Je remercie aussi sincèrement le Docteur Frédéric Vexo, qui a eu très tôt confiance en
moi, et qui m’a donné le coup de pouce et la volonté nécessaire au démarrage de cette thèse.
Celle-ci n’aurait probablement jamais vu le jour s’il n’avait pas été là. Pour les mêmes
raisons, je tiens à remercier le Docteur Mario Gutiérrez. Grâce à ces deux personnes, j’ai
pu avoir l’opportunité de comprendre très vite ce qu’était le monde de la recherche. Ils ont
su me transmettre les bases techniques pour écrire des articles et valider scientifiquement
des expériences. D’autre part, ils ont été des amis avec qui j’ai eu le plaisir de partager les
bons et les mauvais moments. Merci.

J’ai une pensée pour les reviewers de cette thèse, Docteur Sabine Coquillart, Professeur
Antonio Frisoli, et Professeur Aucke Ijspeert, ainsi que pour le Président de mon jury,
Professeur Paolo Ienne. J’ai beaucoup apprécié la pertinence de leurs questions, et leurs
commentaires furent très utiles pour augmenter la qualité de cette thèse. Je remercie aussi
Helena, Sylvain et Mathieu pour avoir corrigé mes horribles fautes d’anglais !

Ma reconnaissance va également à tous ceux qui ont travaillé avec moi ; ceux sans qui
ce travail de thèse aurait été beaucoup plus long et difficile. Il y a d’abord Vincent De
Perrot, que je n’arriverais jamais à féliciter ni à remercier suffisamment pour son excellent
travail de master. Il m’a permis notamment d’effectuer une grande avancée pendant ma
thèse en implémentant le modèle de la main et le Haptic Scene Creator. Je pense aussi à
mon plus vieux copain de travail au laboratoire, Achille Peternier, qui, en me donnant accès
à son excellent moteur graphique MVISIO, m’a permis de me concentrer uniquement sur
le rendu haptique. Je remercie aussi Mehdi El Gaziani, pour avoir travaillé sur le Haptic
Juggler (et sur bien d’autres choses), ainsi que Mireille Clavien pour son modèle 3D de la
main. Enfin, j’ai une pensée pour Donald Knuth et Leslie Lamport, qui ont offert LATEX au
monde du logiciel libre, et aussi pour l’équipe de ���������� pour SVN.

Pendant ces quatre années de thèse, j’ai pu côtoyer deux générations de VRLabiens.
Je remercie tout d’abord les “vieux” : Etienne, Benoit, Pablo, Bruno, Pascal, Sofiane, Pa-

ix

x

trick. Merci de m’avoir convaincu ! Ensuite je remercie bien entendu tous les “actuels” du
labo : Sylvain, Xavier, Achille, Patrick, Mathieu, Damien, Helena, Jonathan, Barbara, Dani,
Schubert, Ehsan, Anders, etc. Je pense aussi à Josiane Bottarelli et à Olivier Renault pour
tout plein de choses qu’il serait difficile d’énumérer ici (la liste serait bien trop longue !),
ainsi qu’à Ronan Boulic pour ses conseils avisés.

Je pense aussi à tous mes autres amis de l’EPFL avec qui j’ai partagé de nombreux
repas, cafés, séances sportives et fou-rires : Pierre, Jean-Jou, Alex, Andrea, Gaël, François,
mais aussi Roland, Vincent, l’autre Alex, Nikki, Mila, et j’en oublie certainement encore
beaucoup (cette liste n’est bien entendu pas exhaustive. Si vous n’êtes pas dedans : je vous
remercie aussi).

Je remercie aussi ma famille, notamment mon papa et Loyce qui, grâce aux bons restos
de la région, m’ont bien engraissé chaque semaine ! Et merci surtout pour m’avoir donné
l’opportunité de continuer des études : j’en ai bien profité !

Et je pense enfin à tous mes vieux “amis”, Nana, Ju, Raph, Raf, Antoine, Arno, Chup,
etc. Je n’ai pas beaucoup été là pendant 4 ans, mais vous ne m’avez pas oublié. Merci !

Enfin, merci Ale d’exister... Je t’aime.

Je dédie cette thèse à ma grand-mère...

Contents

I Preambule 1

1 Introduction 3
1.1 Motivations . 3
1.2 Approach . 4
1.3 Contributions . 4
1.4 Document Structure . 5

2 Haptics and Virtual Reality 7
2.1 Haptic Hardware . 7

2.1.1 Haptic Modality . 8
2.1.1.1 Tactile and Thermal Feedback 8
2.1.1.2 Proprioception . 9

2.1.2 Effect location on the body . 9
2.1.2.1 Finger . 10
2.1.2.2 Wrist . 10
2.1.2.3 Arm . 11
2.1.2.4 Rest of the body . 12

2.1.3 Workspace . 12
2.1.4 Mechanics . 13

2.1.4.1 Underactuation . 14
2.1.4.2 Impedance vs. Admittance 14

2.1.5 Other parameters of classification 14
2.2 Virtual Reality Applications using Haptics 15

2.2.1 Teleoperation . 15
2.2.2 Graphical User Interfaces . 15
2.2.3 Training . 15
2.2.4 Games . 16
2.2.5 Other Applications . 16

2.3 Haptic Software . 16
2.4 Two-handed Haptic feedback . 17

2.4.1 Whole-Hand Interaction Techniques 18
2.4.2 Two-handed Interface . 18

2.5 Conclusion . 19

xi

xii CONTENTS

3 Two-Handed Interactive System 21
3.1 Definition of Needs . 21
3.2 Hardware Description . 22

3.2.1 CyberGloves R©, ... 22
3.2.2 ... CyberGrasp, ... 23
3.2.3 ... CyberTrack, ... 23
3.2.4 ... and CyberForce ... 24
3.2.5 ... : The Haptic Workstation !! . 24

3.3 Software Control . 26
3.3.1 Haptic Software Requirements . 26
3.3.2 The MHaptic framework . 27

II Realistic Haptic Interaction 29

4 Haptic WorkstationTM Registration 31
4.1 Gathering Inputs and Affecting Outputs 31
4.2 Haptic WorkstationTM Calibration . 34

4.2.1 CyberGlove registration . 34
4.2.2 CyberTrack registration . 37
4.2.3 CyberForce calibration . 39
4.2.4 CyberGrasp calibration . 40
4.2.5 User Interface . 41

4.3 User Comfort Improvement . 41
4.3.1 Identification of uncomfort . 42
4.3.2 Evaluation of comfort . 42
4.3.3 Anti-Gravity Software . 44

4.3.3.1 Problem Statement . 44
4.3.3.2 Solution principle . 44
4.3.3.3 Force field computation 44
4.3.3.4 Realtime exoskeleton weight compensation 45

4.3.4 Tests Results . 46
4.4 Summary . 48

5 Realistic Two-Handed Haptic Manipulation 49
5.1 MHaptic Architecture . 49

5.1.1 Modules Organization . 50
5.1.2 Modules synchronization . 51

5.1.2.1 Hardware Abstraction Layer 52
5.1.2.2 The Haptic Node . 53

5.2 Collision detection . 54
5.2.1 Basics . 55

5.2.1.1 Intersection of two geometries 55
5.2.1.2 Collision detection in a complex scene 56

5.2.2 Conclusion . 57

CONTENTS xiii

5.3 Dynamic animation . 58
5.4 Implementation of Physics . 59
5.5 Haptic Hand Model . 60

5.5.1 Approach and implementation . 60
5.5.1.1 Direct Mapping . 60
5.5.1.2 Mass Spring Hand Hand 63

5.5.2 Force feedback Computation . 67
5.5.3 Benefits for manipulation using two-hands 68

5.6 Summary . 70

6 Manipulation in Generic Virtual Environments 73
6.1 Parametrization of springs, damper and surfaces 74

6.1.1 The Coulomb Friction and the Restitution 74
6.1.2 The Mass Spring Damper model of the Hand 76

6.2 Parametrization of the Haptic Virtual Environment 77
6.2.1 Needs and specifications . 78
6.2.2 Implementation of the GUI . 79

6.2.2.1 Multiple viewports rendering and navigation 80
6.2.2.2 Creating geometry and body of an object 80
6.2.2.3 Editing materials . 82
6.2.2.4 Immediate physics simulation of the system 82

6.2.3 Advanced functionalities of the Haptic Scene Creator 82
6.2.3.1 Vertex selection and Copy-pasting 83
6.2.3.2 Fitting collision primitives using Principal Component

Analysis . 84
6.2.3.2.1 Fitting boxes 85
6.2.3.2.2 Fitting capsules 85
6.2.3.2.3 Fitting spheres 86
6.2.3.2.4 Fitting planes 86

6.2.3.3 Convex shapes and penetration maps 86
6.2.4 Haptic Scene Creator Evaluation 87

III Applications 89

7 Realistic Manipulation 91
7.1 Two-handed Haptic Manipulation in Mixed-reality Environments 92

7.1.1 Related Works . 93
7.1.2 System Architecture . 94

7.1.2.1 See-Through Head Mounted Display 94
7.1.2.2 Tracking Device . 95
7.1.2.3 Assembly Training System 95

7.1.3 Results and Evaluation of the System 96
7.1.3.1 Experimentations . 96
7.1.3.2 Evaluation and Recommandations 98

xiv CONTENTS

7.1.4 Conclusion . 99
7.2 Realistic two-handed Haptic Manipulation 99

7.2.1 Soft Objects Manipulation . 99
7.2.2 Interaction with complex Virtual Environment 100

8 Unrealistic Human-Computer Interactions 103
8.1 Interaction Paradigm for Teleoperation . 104

8.1.1 A Teleoperation System . 104
8.1.2 Teleoperation scenario: a robot “grand-prix” 105

8.1.2.1 The protocol . 106
8.1.2.2 Evaluation parameters and analysis 107
8.1.2.3 Measuring intuitiveness 107
8.1.2.4 Overall evaluation . 107

8.1.3 Alternative mediator interfaces . 108
8.1.3.1 First Approach: Having virtual elements which look like

reality . 109
8.1.3.2 Second Approach: Adding visual feedback to enhance

control . 110
8.1.3.3 Third Approach: Adding assisted-direction to interface

elements . 111
8.1.3.4 Fourth Approach: Gestures-based interface 112

8.1.4 Discussion of results . 113
8.2 Teleoperation of an unmanned aerial Vehicle 114

8.2.1 Another teleoperated vehicle: the R/C Blimp 114
8.2.2 The Virtual Cockpit . 116
8.2.3 Results . 117

IV Synthesis 119

9 Conclusion 121
9.1 Summary . 121
9.2 Contributions . 122

9.2.1 Two-Handed Haptic Feedback Rendering 122
9.2.2 Applications of Two-handed Haptics in Virtual Reality 123

9.3 Perspectives . 124
9.3.1 Results Improvement . 124
9.3.2 The Future of two-handed Haptics 124

Bibliography 125

Appendices 135
The Haptic Scene file format . 137
Programming with MHaptic . 141
HSC User Manual . 145

CONTENTS xv

User Manual of the Haptic Scene Creator . 145
Getting started with the Haptic Scene Creator 145
Overview of the interface . 146
Loading and saving data files . 147
Navigation in the virtual environment . 147
Adding haptic properties to an object . 148
Modifying primitives with the arcball . 150
Copy-pasting . 151
Adding materials . 151
Immediate simulation of the system . 151
Performance hints . 152

List of Figures

2.1 The Sensory Homunculus: this distorted human drawing reflects the rela-
tive space that body parts occupy on the somatosensory cortex. 8

2.2 Three example of tactile Display. On the left, an array of pins (McGill
University). On the center, bending actuators (McGill University). On
the right, a tactile and thermal device (Human-Robot Interaction Research
Center, KAIST) . 9

2.3 The Phantom R© family. From left to right: Phantom Omni, Phantom Desk-
top and Phantom Premium. 10

2.4 The Force Dimension Delta on the left and the Immersion CyberGrasp on
the right. 11

2.5 On the left, a SPIDAR system. On the right, a CyberForce combined with
the CyberGrasp. 11

2.6 Two arm exoskeletons made at PERCRO, Scuola Superiore Sant’Anna,
Italia. (Reproduced with Permission) . 12

2.7 The “Rutgers Ankle” Rehabilitation Interface on the left, and the “Food
Simulator” on the right. (Reproduced with Permission) 13

3.1 On the left: Sensor’s location of the CyberGlove R©. On the Right: The
glove with the CyberGraspTM exoskeleton 23

3.2 The CyberForceTM exoskeleton . 24
3.3 The Haptic WorkstationTM exoskeleton, and its workspace 25
3.4 A common Virtual Reality System with the Haptic WorkstationTM 25

4.1 Network communication diagram. 33
4.2 The four hand’s postures used in the CyberGlove R© calibration tool. 36
4.3 Comparison between real hand and virtual hand after calibration. 36
4.4 The exoskeletons reference frames when starting up the device 37
4.5 Results of the CyberTrack calibration procedure, compared to motion cap-

ture data. 39
4.6 Calibration of the CyberForce. 39
4.7 Calibration of the CyberGrasp . 40
4.8 GUI for connecting and calibrating the Haptic WorkstationTM. 41
4.9 A user in the Haptic WorkstationTM and the measures of the extra weight

of the exoskeleton . 42
4.10 Posture and corresponding biceps activity while using the Haptic Workstation 43

xvii

xviii LIST OF FIGURES

4.11 Forces constraining arm position while force field sampling. 45
4.12 Getting the compensation force at each position of the space 46
4.13 Effect of gravity compensation on muscular activity 47

5.1 General Organization of the MHaptic library. 50
5.2 Functions of the Hardware Abstraction Layer. 52
5.3 The Haptic Node links visual meshes and dynamic actors 53
5.4 Types of bounding volumes . 57
5.5 A BSP-tree above and Spatial Partitioning technique below. 58
5.6 Force feedback Computation based on penetration distance 61
5.7 Where should we apply the force feedback ? 62
5.8 The three Hand models . 63
5.9 The Haptic Hand Model, and its embedded data structures 66
5.10 The computation of the forces for the CyberForceTM, and CyberGraspTM . 71
5.11 The implicit force estimation process done by the mass-spring system . . . 71

6.1 Real Scene on the left and Realtime Rendered image on the right using the
CryEngine 2 made by Crytek. 73

6.2 Friction helps us to grasp objects . 75
6.3 Comparison between Autodesk R© 3DS Max user interface on the left and

the HSC user interface on the right . 78
6.4 The Finite State Machine is the core of the Haptic Scene Creator 80
6.5 The toolbar contains all available commands of the Haptic Scene Creator . 81
6.6 Multiple viewports rendering in CAD systems: Maya on the left and Light-

Wave 3D on the right . 81
6.7 The dynamic simulation of the system in the Haptic Scene Creator. The

designer can launch balls on the dynamic objects. 83
6.8 PCA applied on an oriented box . 85
6.9 PCA applied on a capsule . 85
6.10 A convex hull approximating a table (top) and a penetration map approxi-

mating a pan (bottom) . 87
6.11 The augmentation of the 3D House. 88

7.1 A Mixed-Reality industrial training environment [115] 92
7.2 General scheme of the four hardware modules of our application 94
7.3 Photo taken from the user point of view, and augmented with what is dis-

played in the HMD . 95
7.4 Photo of the devices used to build our Mixed-Reality system 96
7.5 Distance between Real and Virtual environments measured by the first test

(35 measures). 97
7.6 Manipulation and Interaction with a haptic house. 102

8.1 Controlled World on the left, Mediator World on the right. 104
8.2 The robot Grand-Prix . 106
8.3 Rating scale for teleoperation systems. 108
8.4 Alternative mediator interfaces. 109

LIST OF FIGURES xix

8.5 Mapping between hands, virtual controls and robot engines and short-cut
used to create a gesture-based interface. 112

8.6 Overall results of the driving tests. 113
8.7 Photo of the R/C blimp. 115
8.8 Actuators of the blimp: aerodynamic stabilizers, left/right motor, motors

for changing helixes plane and speed. 115
8.9 The Blimp’s Virtual Cockpit. 117

Part I

Preambule

1

Chapter 1

Introduction

AS EARLY AS 1965, Ivan Sutherland, who is considered to be the father of computer
graphics, defined the “Ultimate Display” [109]: “It consists in a room within which

the computer can control the existence of matter. A chair displayed in such room would
be good enough to sit in.” This seminal paper introduced the key concept of complete
sensory input and output using specific hardware capable of stimulating human senses in
a similar way than in reality. However, most of the existing human-computer interactive
systems have primarily focused on the graphical and auditory rendering of information,
so much that some of them render the virtuality nearly as well as the reality. Nowadays,
Ivan Sutherland is able to see the virtual chair he was dreaming about, but he will still
experience some problems if he tries to sit on it.

1.1 Motivations

Haptic feedback is an attractive augmentation to visual display. The better virtual objects
look, the greater is the desire of touching or manipulating them. These interactions enhance
the level of understanding of complex data sets. Whenever we discover a new real object
that does not seem dangerous, we instinctively want to hold it, touch it and feel it. The
same instinct appears in Virtual Environments. However, the difficulty is considerable
when dealing with the complexity of creating such stimuli. Therefore, no generic complete
output tool exists that can be integrated easily into a virtual environment.

Two different obstacles can be distinguished in the creation of such a virtual haptic in-
teractive system. The first one is to design the hardware device able to convey the desired
sensory stimuli. To date, haptic peripherals usually propose to interact with a single fin-
gertip. Even though it may seem to be a really small portion compared to the entire body,
it nevertheless provides a much information, together with an efficient interaction. How-
ever these advantages have a cost. Indeed the second difficulty to overcome is to drive this
hardware according to visual display and user state. Basically touching means going into
contact with the objects and manipulating means moving, animating them. The collision

3

4 CHAPTER 1. INTRODUCTION

detection and the dynamic animation both requires heavy computation. Moreover the time
given for this computation is around the millisecond. Even for a fingertip, it is a complex
problem to handle.

Today, haptic industry proposes devices allowing the user to interact with both hands.
It appears to be really exciting for two reasons. First, when we look at the benefits of using
a single fingertip to interact with a virtual environment, we can imagine that using the two
hands represents a great improvement. Secondly, it give us a new challenge because as the
interaction becomes more complex and takes more computation resources, it increases the
difficulty to handle such devices.

This context motivates two research directions. First, we will investigate how to inte-
grate a two-handed haptic device as an interface for improving the virtual environments,
and then, we will perform a study on the advantages and drawbacks of such device into
applications that commonly use haptic technologies.

1.2 Approach

As we have access to one of the rare two-handed haptic devices, it is easier to perform tests
and validations. The two research directions have been performed together. We started
from the low-level software device control in order to ensure a fast access, we then devel-
oped increasingly high-level tools together with applications in order to finish with a fully
two-handed interactive system. Because such haptic devices are not really common, we
faced problems that have never been raised before. However, we have been able to propose
a solution each time.

1.3 Contributions

In this thesis, we propose various techniques to optimize and improve the simulation of
touch by the means of a two-handed haptic device. We cover the entire software process
needed to maximize interaction and the feeling of immersion.

This includes a study on the connection of a haptic device with the master computer
running the simulation. Since force generation needs a fast refresh rate, we also present
our method to optimize this computation by taking advantage of the new popular multi-
CPU platforms. Then, we deal with the calibration of the device according to the focused
applications. We also propose an interesting solution to improve user comfort when using
the two-handed haptic device during long sessions.

At a higher level, we present our adopted solution to manipulate virtual objects with
two hands. It is physics-based and is thus generic enough to allow a realistic bimanual in-
teraction with many types of objects. The approaches that use scripts or heuristic analysis
to simulate the grasping are efficient. However, they only handle specific cases and are thus
not easily updatable. Moreover, the general approach that we use presents other advantages

1.4. DOCUMENT STRUCTURE 5

in term of force feedback computation or visual quality that are not negligible. However,
the drawback of this physics-based approach is that it uses much more computational re-
sources. Thus, we also propose optimizations in order to guarantee a constant refresh rate
to achieve the desired results.

Moreover, this interesting property of being able to interact with various objects gives
us the opportunity to exploit haptic feedback on a large-scale. We thus propose a study and
the implementation of an authoring tool able to add haptic information to any kind of visual
virtual environment. This need comes from the fact that designers as well as common 3D
modeling software generally do not include haptic properties into their models. We show
that adding this information into an existing environment is not trivial because a detailed
mesh is barely suitable for haptic rendering algorithms. But we successfully address this
issue.

This strong software rendering background allows to find out the potential of general
two-handed Haptics in different kinds of applications. In the last part of this thesis, we
present a teleoperation application, which is based on the remote driving of a mobile robot
using the two-handed haptic interface. It provides interesting results stating that imitating
the real user interface with such a device in this context is not necessarily the most efficient.
We also present a mixed-reality training application, in which the user can manipulate
virtual and real objects and assemble them. Finally, we describe an application allowing
the user to visually and haptically discover a complex virtual environment.

1.4 Document Structure

This thesis is organized as follows. Chapter 2 presents an exhaustive list of haptic hard-
ware devices. The main purpose is in fact to define common hardware properties that are
useful to the understanding of the software. It then presents the main applications in Vir-
tual Reality that take advantage of haptic displays. It also proposes an overview of the
existing haptic frameworks allowing developers to quickly build haptic-enabled applica-
tions. Finally, we examine the state of the art in the two fields of handed interaction and
two-handed Haptics.

The chapter 3 describes the two-handed haptic device that we use in this thesis. This
device is a commercial product. We thus simply analyze each hardware component to
understand how to take the maximum of their capabilities. This chapter also establishes
the software needs that are explained hereafter.

Then, in the second part of this thesis, we deal with the technical solution retained to
achieve a truly bimanual interaction with a generic virtual environment. First, in chapter 4,
we address a common problem when dealing with haptic or tracking devices: the registra-
tion into the Virtual Environments. We explain the chosen solutions according to related
work and context. Finally, we propose in this chapter an elegant solution to a user comfort
issue that is experienced during long sessions. Then, in chapter 5, we mainly focus on the
software control of the hardware. We present our multithreaded framework that allows the

6 CHAPTER 1. INTRODUCTION

fast connection and force computation. It also contains a description of the collision detec-
tion engine used, of the animation, and of the visualization threads. These last components
allow us to establish the basis of the hand model that we designed for interacting with var-
ious generic objects. In chapter 6, we give indications on the parametrization of this hand
model, and present the specifications and the implementation of a powerful authoring tool
intended to add haptic information to an existing environment. The goal is to be able to
quickly develop an application to interact with an existing complex visual environment.

In the third part of this thesis, we perform various studies in terms of two-handed haptic
applications. We separate these studies into two groups. In the first one, described in chap-
ter 7, we examine the applications that need and take advantage of a realistic interaction
paradigm. We present the integration of a two-handed haptic device in a Mixed-Reality
environments made for assembly training. In this context, we study the possibility for a
user to be able to interact with real and virtual objects at the same time. Then, in chapter 8,
we propose a study in the field of teleoperation using unrealistic interaction paradigms.

The last part of this thesis presents the synthesis of our two major contributions. Pri-
marily, we review the ability provided by our system to realistically manipulate and interact
with virtual environments using our hands. Secondly, we state our recommendations con-
cerning the type of user interfaces or metaphors to implement depending on the kind of
applications.

Chapter 2

Haptics and Virtual Reality

THE WORD Haptics has been introduced by psychophysicists in the beginning of the
20th century. It was addressing the touch perception and the manipulation. Then, in

the 1950’s, it has been used for the teleoperation of remote controlled robots that send back
contact force to the operator [52]. Finally, came the idea to substitute the remote controlled
robot by a simulated system, which made the link between Haptics and Virtual Reality.

In this chapter we present the existing work related to the simulation of touch and pro-
prioception in Virtual Reality. At first, in section 2.1, we present a general overview of
common hardware haptic devices with their characteristics. We expect that giving these
examples brings to the reader the knowledge of the terms, concepts and characteristics re-
lated to Haptics. Then, in section 2.2, we present a brief review of some applications that
usually take advantage of haptic feedback. In section 2.3, we present the main existing
software framework allowing developers to build virtual reality applications enabling hap-
tic feedback. And finally, we focus in section 2.4 on the state of the art of the specific
problem of two-handed haptic feedback generation that we will deal with along this thesis.

2.1 Haptic Hardware

Among neurologists, there is no consensus concerning the numbers of senses that the hu-
man being has. Traditional five senses (sight, smell, touch, hearing and taste) do not clearly
represent every human senses. Haptic is of course associated to the sense of touch, but the
impression of touching includes several modalities, including tactition, temperature, pro-
prioception, or even physiological pain (Nociception). In 2.1.1, we present some haptic
devices that stimulates these modalities. We present then proprioceptive haptic devices
according to the stimulated body part (2.1.2), and finally we define workspace (2.1.3), un-
deractuation (2.1.4.1) or impedance/admittance (2.1.4.2). Then, as we are focusing in this
thesis on the proprioception, we will not cover anymore the other modalities.

7

8 CHAPTER 2. HAPTICS AND VIRTUAL REALITY

2.1.1 Haptic Modality

In this section, we present the two main modalities usually studied in Haptics. The re-
ceptors associated with these modalities are not the same. Tactile is perceived though
mechanoreceptors, temperature with thermoreceptors, and proprioception is believed to to
be composed of information from sensory neurons of the inner ear, and of stretch recep-
tors of the muscles and of the ligaments [102]. This variety of receptors increases the
complexity of designing multi-modalities haptic devices.

2.1.1.1 Tactile and Thermal Feedback

The tactile feedback is related with the perception of object’s surface. Human beings are
able to feel the difference between pressures on the skin, but some parts, like the hands
or the lips, are significantly much more sensitive than others. The drawing on figure 2.1
presents an homonculus whose part’s size are proportional to their tactile perception.

Figure 2.1: The Sensory Homunculus: this distorted human drawing reflects the relative
space that body parts occupy on the somatosensory cortex.

Thus, most of the tactile displays focus on the fingertips. Several mechanical methods
are used to stimulate them. Among them, the array of pins or of benders depicted in
figure 2.2), is one of the most common, and appears to be the most efficient of his gender.
Each of the pins moves independently at the normal of the human skin. To produce a real
impression of feeling a specific object, the density and performance of the pins have to be
adapted to the performance of the human tactile perception system. A common density
is around one pin per square millimeter. Then, the size of the array varies usually from
3×3 pin to hundredth × hundredth. A detailed survey on tactile devices has been made by
Benali et al. [12].

2.1. HAPTIC HARDWARE 9

Thermoception is the sense by which an organism perceives external temperature. As
for tactile perception, thermorececptors are also located in the skin. The computerized
stimulation can be provided using radiation (IR and microwave), convection (air and liquid)
or conduction (contact), or some combination of those [68, 13]. However, most of the
thermal devices are based on conduction through Peltier cells [50, 38], and are only output
devices: they do not send back the local temperature. Usually, the thermal devices are
coupled with other mechanisms that have tactile or proprioceptive features [118], and it is
rare to find exclusively thermal haptic devices in the literature.

Figure 2.2: Three example of tactile Display. On the left, an array of pins (McGill Uni-
versity). On the center, bending actuators (McGill University). On the right, a tactile and
thermal device (Human-Robot Interaction Research Center, KAIST)

In this thesis, we do not focus on thermal nor tactile feedback because they are usu-
ally implemented as output devices, and cannot be used as input devices for interaction
purposes.

2.1.1.2 Proprioception

Proprioception comes from the Latin proprius, which means “one’s own” and perception.
It is sometimes referred to the term kinesthesia, which is the sense of the relative position of
the parts of the body. Unlike hearing or vision senses, which usually register environmental
information, kinesthesia registers information about the body and the self. This is partly
due to the fact that kinesthesia involves receptors located within the body, particularly in
our articulations, muscles and tendons.

The haptic devices that are related with this kind of touch modality are described in the
following sections as they are also categorized within the scope they can cover in the body
parts.

2.1.2 Effect location on the body

Skin with its size of nearly 2m2 is a large organ. Moreover, it has an innervation up to
hundreds of receptors per square centimeter. Thus, it is obviously difficult to design a
device able to stimulate the entire body. A device like this would be too invasive and

10 CHAPTER 2. HAPTICS AND VIRTUAL REALITY

probably really expensive. This is why proprioceptive haptic devices focus on an small
subset of the body.

2.1.2.1 Finger

Many haptic devices track and stimulate one or more fingers because they are the most
controllable and sensitive body parts. Fingers also allow to perform difficult interactions in
the real world; for example, grasping small objects, writing or feeling materials.

One of the haptic devices most widespread is the SensAble Phantom R© family pre-
sented on figure 2.3. They provide from 3 to 6 DOF positional sensing and 3 DOF force
feedback. The end effector could be a stylus or a thimble gimbal. These devices have a
workspace varying from 16cm×12cm×7cm for the Phantom Omni R©, to 80cm×60cm×
40cm for the Premium 3.0.

Figure 2.3: The Phantom R© family. From left to right: Phantom Omni, Phantom Desktop
and Phantom Premium.

Other devices with specifications comparable to the Phantom R©, are produced by Force
Dimension. Located in Switzerland, this company proposed two products in 2008: the
Delta, and the Omega shown on figure 2.4. The Delta.6 has 6 DOF tracking and could also
provide force and torque on 6 DOF. The maximal force is around 20 N.

Under this category, we can also cite the CybergraspTM, which is a hand exoskeleton
that provides 0.5 DOF force feedback on the five fingers. A more detailed description of
this device is provided in section 3.2.2.

Finally, we have to mention a pure input device, which is extensively used in haptic
interactions: the Dataglove. The goal of a Dataglove is to measure the hand posture in
order to reproduce it in a virtual environment. In [107], Sturman et al. presents a detailed
survey of this kind of glove, and their application.

2.1.2.2 Wrist

Among the devices that are intended to act in the wrist, we can cite the CyberForce force
feedback exoskeleton. It uses the CyberGraspTM support extension, and applies the force

2.1. HAPTIC HARDWARE 11

Figure 2.4: The Force Dimension Delta on the left and the Immersion CyberGrasp on the
right.

Figure 2.5: On the left, a SPIDAR system. On the right, a CyberForce combined with the
CyberGrasp.

at wrist level. More details about this device are given in section 3.2.4.

Another interesting device is the Spidar system [62, 70] of the Tokyo Institute of Tech-
nology, shown on figure 2.5. Due to its unique simple design, proposes a very low inertia,
and could be easily extended to bigger or smaller workspace as shown for instance in the
Stringed Haptic Workbench [111].

2.1.2.3 Arm

Wrist haptic devices apply forces on the wrist, making thus possible to force the user to
move his entire upper limb. However, we do not consider them as arm haptic device: an
arm haptic devices includes the tracking of the position of the elbow and can even constrain
the arm and the forearm into a specific posture.

12 CHAPTER 2. HAPTICS AND VIRTUAL REALITY

Among arm haptic devices, we can cite two examples by PERCRO, in Italy, presented
on figure 2.6. The first one, the Glad-in-Art exos, dates from 1993 and is a 5 DOF ex-
oskeleton. The second one, the Pureform, could be considered as the evolution of the first
one [47]. It has 5 DOF, including 4 actuated ones, and provides up to 100 N force, with
a stiffness of 2×103N/m. Two end-effector configurations exist: with a handle, or with a
two-fingers force feedback exoskeleton.

Figure 2.6: Two arm exoskeletons made at PERCRO, Scuola Superiore Sant’Anna, Italia.
(Reproduced with Permission)

2.1.2.4 Rest of the body

Other parts of the body are also concerned by kinesthetic simulation. A nice example
is shown on figure 2.7. The “Rutgers Ankle” haptic interface provides 3 DOF orientation
sensing combined with a 3 DOF force feedback. This device, together with Virtual Reality-
based exercises, presents interesting results in the rehabilitation of ankle’s injuries [37].

Other example is the Food Simulator[66] of the university of Tsukuba, which is more
well-known because it is one of the rare devices stimulating taste sense using chemical
display. But, it also displays biting forces: a 1 DOF actuator generates a force on the user’s
teeth, and a sensor get the configuration of the mouth.

2.1.3 Workspace

Other characteristic to describe haptic devices is the workspace. The workspace is the space
where the haptic device is able to track and generate force feedback. It should also take
into account positions /postures that are impossible to reach/perform due to the mechanical
configuration of the device. Usually the workspace is measured according to the body
scope where force feedback is applied (finger, wrist, arm, etc), as described in the previous
section.

2.1. HAPTIC HARDWARE 13

Figure 2.7: The “Rutgers Ankle” Rehabilitation Interface on the left, and the “Food Simu-
lator” on the right. (Reproduced with Permission)

For example, the Pantograph, which should be more considered as a tactile device, has
a workspace size equivalent to the maximal finger displacement when the wrist is con-
strained. Thus, in most cases, the user never reaches the limit and do not feel a constrain
movement.

Other devices, such as the Phantom R© DesktopTM, requires the movement of the hand
for interacting. Its workspace (16cm×12cm×12cm) is much more limited than the pos-
sible displacement of the hand using the arm. If such a quantity of movement is required,
two solutions are conceivable. The first one consists in using greater size hardware, like
the Phantom Premium, or to mount the Haptic device on another device that has a mobile
base, as proposed by Lee et al. [75]. A second solution could be to use software control.
This means when the user approaches mechanical limits of the device, the control modes
switches to a displacement of camera instead of a displacement of interaction point [41].

Devices proposing a much bigger workspace, are for example, the human-scale Spidar
systems, called Big-Spidar. This device allows user to move within a workspace of 3m×
3m× 3m [29]. The user is able to simulate a shoot when playing basket ball. However,
he is unable to make a turn around himself because of the string, showing many limits in
terms of rotation of the workspace.

2.1.4 Mechanics

As seen in the previous examples of haptic devices, many mechanical solutions exist when
dealing with the conception of a haptic display. We can distinguish devices working with
strings, or exoskeleton, while some others are magnetic [16]. In this section, we define two
relevant concepts for this work, that are inherent mechanical properties of these devices:
Underactuation and Impedance versus Admittance.

14 CHAPTER 2. HAPTICS AND VIRTUAL REALITY

2.1.4.1 Underactuation

Nowadays, most of the haptic devices have less actuators than sensors. In this case, such
a device is considered as an underactuated haptic device. The reason of this difference is
that a sensor is smaller, weights less, costs less, and is easier to set up than an actuator.
However, having more sensors will just let the user to have more freedom to explore the
environment, but it does not improve the haptic feedback due to the lack od actuators.
An underactuated device could suffer from several drawbacks due to the interactions are
energetically non-conservative, as described by Barbagli et al. in [9]. To overcome these
obstacles, Lécuyer et al. [73] proposed a technique for improving contact perception.

2.1.4.2 Impedance vs. Admittance

Another characteristic of a haptic device is to know if it is passive/impedance or an ac-
tive/admittance device. Basically, an impedance device senses a position and command a
force, whereas an admittance devices sense force and command a position [114]. Usually,
admittance device are more effective to render stiff objects and high forces. An example of
admittance device is the HapticMaster of FCS [36]. With this device, the user is able to hit
a stiff virtual table without having the feeling of bounciness that usually happens with pas-
sive device. According to Van der Linde et al., the stiffness is in the order of 10×103N/m.
However, impedance control devices presents also advantages versus admittance devices,
they are also usually lightweight, backlash free, able to render low mass [1], and cost less.
We often say that admittance and impedance are dual in term of control.

The main problem when controlling passive haptic devices, is that the computation of
the force/torque is not trivial when we want to move the user’s body part attached to the
end-effector. This is because this force/torque, which can be decomposed in components
representing direction, orientation or magnitude, depends of the user himself. We have to
extrapolate if he is resisting ? Is he trying to move in the opposite sense? Or, is he already
moving in the wanted direction? etc. To provide a realistic force feedback, we should
answer to these questions.

2.1.5 Other parameters of classification

Another interesting parameter of classification is the cost. We can find commercially avail-
able device starting at USD200.00$ (in the year 2008) like the Novint Falcon, and others
that cost more than USD300,000.00$. It is a major consideration especially when we focus
on a specific application.

Although it may seem difficult to measure the performances of the interfaces. Hayward
et al. dressed a list of performance measure, which includes the number of degrees of
freedom (including both sensed and actuated DOF), the motion range, the output forces
and torques, the peak end-effector acceleration, the resolution of sensing, the refresh rate,
the inertia and damping [60].

2.2. VIRTUAL REALITY APPLICATIONS USING HAPTICS 15

This section presented several relevant characteristics of haptic devices together with
examples of existing devices. In the next section, we focus on the applications that uses
them.

2.2 Virtual Reality Applications using Haptics

The use of haptic feedback on Virtual Reality applications can significantly improve the
immersion in the Virtual Environments and make them more believable. There are different
application scenarios where haptic feedback has an important impact. In this section we
grouped these scenarios and we describe how haptic feedback is displayed.

2.2.1 Teleoperation

The first application is the “Teleoperation”. In fact, we could not strictly consider tele-
operation as being a kind of Virtual Reality application. However, we recall that Haptics
inherits from teleoperation in the sense that the first haptic interfaces were made for re-
motely controlling a distant robot or vehicle. Atkin et al. [2] define telepresence with this
example: “At the worksite, the manipulators have the dexterity to allow the operator to
perform normal human functions. At the control station, the operator receives sufficient
quantity and quality of sensory feedback to provide a feeling of actual presence at the
worksite”. Today, haptic applications are still related to teleoperation if we consider that
the manipulators given in this example are purely virtual.

2.2.2 Graphical User Interfaces

Another interesting field of research using haptic display concerns the improvement of the
graphical user interfaces [80]. Having haptic feedback is a good way to alert the user that
he is hovering a button or leaving a window. This makes much more sense if we consider
a visually impaired user, or someone not used to manipulate a mouse. At usage, studies
show improvements, in terms of speed for example [63].

In this field, we can also cite the work of Snibbe et al. [104], who presented a set of
techniques for haptically manipulate digital media such as video, music or graphic. These
interfaces focus on intuitiveness: the user knowledge of the reality could be directly applied
to the interface.

2.2.3 Training

Virtual Environments are also extensively used in training. Training consists in increasing
the ability of performing real tasks but in a context which is purely educational (i.e. not
in the final context). There are many situations where it is difficult to perform training

16 CHAPTER 2. HAPTICS AND VIRTUAL REALITY

in real conditions, because it can be dangerous, expensive, or logistically difficult. Some
Virtual training applications are improved with the use of haptic displays. We can cite
the training of pilots: the Boeing flight simulator takes advantage of mobile platforms
and haptic controlled sticks. Training surgeons is also difficult because of the obvious
repercussions in case of mistakes on a real patient. Thus, medical simulation through
Virtual Environments are frequent. Here we can cite specific haptic devices which aims
at simulating laparoscopic surgery [11]. Immersion Corporation proposes many haptic
devices for this purpose.

2.2.4 Games

Of course there are some haptic devices purely developed for entertainment industry. For
example, force feedback joysticks and steering wheel greatly increase the immersion into
computer games. More recently, the Falcon Novint haptic device, which is the cheapest 3
DOF display, is used with many computer games. It should provide a new kind of interac-
tions and will probably give new ideas to computer games developers.

2.2.5 Other Applications

In the previous paragraphes, we have presented some groups of Virtual Reality applications
that are improved by the use of haptic technologies. We could also cite the rehabilitation
[56] [37], the 3D design process [45] [72] [32] or the virtual prototyping [99] [64] [27].

2.3 Haptic Software

Before the year 1993, date of issue of the Phantom R©, almost every existing haptic de-
vices were nearly unique. Then the creation of an adapted haptic software was made on
a per-device basis. The advent of commercial haptic devices, like the Phantom, opened
a new field of research: the creation of haptic software, or haptic APIs (Application Pro-
gramming Interface). In the same way as a computer graphics engine provides a set of
programming tools for stimulating sense of vision using a computer, the haptic software
proposes software methods for the sense of touch.

In this context, we can cite the General Haptic Open Software Toolkit (known as
GHOST). It is a C++ API, that eases the ask of developing touch-enabled application us-
ing a Phantom R©. Basically, it allows to deal with simple, high-level virtual objects with
physical properties like mass or friction. It is a purely haptic rendering engine. Hence,
the developer has to take care himself of the graphical rendering. Later, this library was
replaced with OpenHapticsTM, but as GHOST, it supports only the Phantom R©and is still
limited to haptic rendering.

The Microsoft DirectX framework provides also a kind of Haptic API in DirectInput.

2.4. TWO-HANDED HAPTIC FEEDBACK 17

Its goal is to allow game developers to integrate specific haptic behaviors into a computer
game. It is a high level rendering engine with functions like “Shake” or “Apply force to the
left”, that are not dependant of the device. Then, if the user is playing with a vibrotactile or
force feedback, it is the DirectInput engine that takes cares of the conversion between the
high level haptic sensation into low-level actuator control. This approach is interesting be-
cause it really eases the work of the application programmer. However, it cannot guaranty
the results and it is limited to low DOF devices like steering wheels or joysticks.

Haptic libraries supporting different kinds of hardware are not so common. We can cite
three of them: ReachIn [96], Chai3D [33] and H3D. The first one is a complete framework
that allows the creation of Virtual Environments that combines haptic, audio and visual
feedback. The supported hardware devices are the Phantom, the Force Dimension Delta,
the new Novint Falcon low-cost device, and some others. However, ReachIn has a cost
and is not open source. Thus it could not be extended to other devices by their purchasers.
The second one, Chai3D contains more or less the same functionalities than ReachIn, but
has the advantage to be an open source project. Several haptic researchers are already
working with it. However, it is more focused on single point interaction devices like the
Phantom R©. Finally the third one, H3D, presents the advantage to implement many haptic
renderers, including OpenHaptics or Chai3D renderer, and an implementation of the algo-
rithm of Ruspini presented in [98]. However, it is still difficult to extend it to whole-hand
interaction.

Finally, Immersion R© provides a library called the Virtual Hand Toolkit (VHT). It con-
tains calibration tools, a connection utility, and an API. This software is much more focused
on the whole-hand than other libraries, probably because of the CyberGlove R©, which is
on of their main products. It connects also with tracking devices and has some force feed-
back capabilities. However, the developers of this library focused on the integration with
software like Dassault Systemes Catia, or AutoDesk MotionBuilder, and unfortunately, the
C++ API does not provide the same level of functionalities.

2.4 Two-handed Haptic feedback

As seen in the previous sections, we can distinguish two different kinds of haptic devices
and applications. On one hand, the tools we use in the real life have been physically
reproduced “as is” for interacting with Virtual Environments. For example, we include in
this category the force feedback steering wheel, the laparoscopic surgery simulation tool
or the Rutgers Ankle rehabilitation device. We notice that these devices focus usually on
a single kind of application. It is obvious that the laparoscopic display is barely suitable
for other applications. On the other hand, devices, like the Phantom R©, are not explicitly
designed for a particular application. In the context of virtual manipulation, for example,
these devices present many advantages. The major one is to increase the learning speed
and the performance because 3D haptic interfaces offer the possibility to directly move
and orient virtual objects in the 3D space that is usually proposed to virtual reality users,
providing a gain in both intuitiveness and immersion.

18 CHAPTER 2. HAPTICS AND VIRTUAL REALITY

However, it is possible to go one step further. First, common haptic interfaces are
usually point-based. To integrate the human hand into the Virtual Environment, there is
the necessity to use a glove-based input. Moreover, most of the human real interactions
are accomplished with two hands. In this section, we present a state of the art focusing on
these two points.

2.4.1 Whole-Hand Interaction Techniques

For manipulation tasks, whole-hand input devices present great advantages over the single-
point interfaces. If implemented properly, it is obvious that the best way to interact with
virtual objects is by using a virtual hand [58]. However, this method requires manipulation
models that are more elaborate, and thus represents a more difficult challenge in term of
integration [83]. One of the main difficulty comes from the animation and the detection of
collisions between the virtual hand and the environment. Collision detection in 3D envi-
ronments is a broad topic and haptic rendering is strongly linked with this field. “touching”
is indeed more or less “colliding with the hand”. In terms of collision detection, finding if
a point (the interaction point of a Phantom haptic display) collides or is into other objects
is less difficult than detecting if a hand model collides virtual objects.

One of the first integration has been proposed by Iwata in 1990 [65]. The detection
of contact is made using 16 control points on the hand model. The object is declared
“grasped” when the thumb and another finger is touching the object. This simulation runs
at 4 Hz! In [15], Bergamasco et al. proposed a solution with realtime constraints, and
computing friction and force applied on the virtual object to determine if the object is
captured or not. In these solutions, when an object is grasped, its local frame is linked
to the coordinate system of the hand, implying that both move the same manner. In [22],
Boulic et al. provides solutions for manipulating a grasped object into the hand, allowing
for manoeuvering it with the fingers. But this technique do not provide force feedback.
More recently, Borst and Indugula presented a physically-based approach of the grasping
and manipulation. This technique has the advantage to prevent visual interpenetration, and
to allow fast computation of the force feedback [21].

2.4.2 Two-handed Interface

In practice, to have only one hand able to manipulate objects shows how much the second
hand is important. To understand this fact, we refer as Guiard’s analysis of human skilled
bimanual action [55]:

• First, Users can effortlessly move their hands relative to one another, but it requires
a conscious effort to move a single hand relative to an abstract 3D space. This is the
case when users have only one haptic device.

• Second, using both hands takes advantage of the user’s existing skills. Most tasks we

2.5. CONCLUSION 19

perform in our everyday lives involve using both hands in asymmetric roles, not one
hand in isolation. This is even true for tasks like handwriting.

A key concept of Guiard’s model is that the preferred and nonpreferred hands (de-
pending of left/right-handed) act together, but not by the same manner. This asymmetric
division of the tasks allows the hands to work with improved results , comparing to what
either hand could achieve by itself. For example, Guiard reports that “the writing speed
of adults is reduced by some 20% when instructions prevent the nonpreferred hand from
manipulating the page”. One might also argue that using two hands to operate an interface
only adds complexity and makes an interface harder. But there are many compound tasks
that uses a single cognitive chunk [28].

Several haptic research include the combined use of 3D graphical and haptic systems
for interacting with at least two single-point interfaces. Barbagli et al. present in [8] a
multifinger (2 fingers) haptic interface made with 2 Phantom R©. We can also cite the Spidar
G&G which combines two Spidar at the same time [84]. We already cite ImmersionTMor
Goble et al. [51], who designed a surgery training/planning system. All these systems have
something in common: they do not allow to interact with 2 virtual hands.

2.5 Conclusion

In this chapter, we first presented an overview of existing haptic devices. It allowed us to
define, by the example, words or concepts which will be used in this thesis. We presented
then a review of the main Software Haptic framework, followed by the kind of application
enhanced by the use of haptic interfaces. Finally, we focused on the state of the art in
whole-hand and two-handed interaction.

It allows us to put one’s finger on the fact that there are not a lot of research about truly
two-handed interaction. This is probably due to the lack of two-handed haptic devices. In
this thesis we will try to present first results in this field.

Chapter 3

Two-Handed Interactive System

AT THE END of the previous chapter, we presented research that shows the advantages
of using hands to interact with our near surrounding. Indeed, a hand allows to move

an object in order to examine it on different angles, to grasp an object for using it as a tool,
or to assembly it with another one, or even to throw it. It is obvious that the role of hand is
really important for human beings. Charles Darwin told that human beings could not have
reach its place in the world without the use of his hands [35].

Many Virtual Reality applications tend to simulate a real life situation. But most of
these applications do not simulate properly everything that can be achieved with a hand. In
this thesis, we propose to study a better way to integrate the human hand in Virtual Reality
systems. This could be achieved by using dedicated hardware, combined with efficient
software control. In the first section, we present an evaluation of the hardware needs for
achieving our goals. Then we present the chosen device. And finally, we give a first view
of the software needed to efficiently control a two-handed device.

3.1 Definition of Needs

The role of the hands can be divided into two groups: feeling and interacting. In this
thesis, we will focus mainly on interaction, i.e. on the action that occurs when one or two
hands have an effect upon one or more objects (and vice-versa). To enable the action of the
hands on an object, we need:

• A system for acquiring the posture of the hands. Indeed, the posture is really impor-
tant for manipulation, because it allows specific grasping of particular objects.

• A system for tracking the position and orientation of the hands in the 3D space. The
orientation of the wrist is important and could even be considered as part of hand
posture. If we cannot orient the hand, some objects are impossible to grasp.

• A workspace allowing to reach any position of the space close to the chest.

21

22 CHAPTER 3. TWO-HANDED INTERACTIVE SYSTEM

To enable the second part of the assertion, i.e. the action of an object on the hands
(which is also related to feeling), we need:

• A system for simulating proprioception on the fingers and on the palm. Indeed, the
force feedback prevents user’s fingers to penetrate into the objects. Moreover, it
provides added information about the nature of a virtual object, and finally it eases
the grasping by offering the feeling of contact which is difficult to obtain only with
visual/audio feedback.

• For the same reasons, we need a system for applying force feedback on the hands.

We believe that these are the minimal hardware requirements for performing realistic
two-handed interaction. In the next section, we present the hardware device that suits these
needs.

3.2 Hardware Description

Our choice of device is greatly limited by the hardware needs that we presented in pre-
vious section. Among commercial devices, only one retains our attention: the Haptic
WorkstationTM provided by Immersion R©. It is the only one that offers whole-hand track-
ing together with force feedback. In fact, this workstation is a combination of already
existing haptic devices: the CyberGlove R©, the CyberGrasp, and the CyberForce. In this
section, we present each components individually, and then we present a view of the com-
plete system.

3.2.1 CyberGloves R©, ...

The CyberGlove R© of the Haptic Workstation is the input device for acquiring finger pos-
tures. It is an instrumented glove that provides up to 22 joint-angle measurements, shown
on figure 3.1, by transforming finger motions into real-time digital data.

It features three bend sensors per finger (even for the thumb), four abduction sensors, a
palm-arch sensor, and sensors to measure flexion and abduction of the wrist. Each sensor
is quite thin and flexible enough to be virtually undetectable by the user: they do not resist
to movement.

The angles are measured by the sensors with a resolution of 0.5◦. The sensor raw data
are quite linear as each sensor is calibrated in the factory. Thus, the maximal nonlinearity
is set at 0.6% over the full joint range. Finally, it is possible to gather the data at a refresh
rate of nearly 100 records/second.

3.2. HARDWARE DESCRIPTION 23

Figure 3.1: On the left: Sensor’s location of the CyberGlove R©. On the Right: The glove
with the CyberGraspTM exoskeleton

3.2.2 ... CyberGrasp, ...

The CyberGrasp is an output device for the fingers. It is based on an exoskeleton that
fits over a CyberGlove and and adds resistive force feedback to each finger as presented
on the figure 3.1. As its name suggests it, the objective of the device is to simulate the
proprioception when a user grasps a virtual object.

Grasp forces are produced by a network of tendons routed to the fingertip via the ex-
oskeleton. There are 5 unilateral actuators, one for each finger, and they can be individually
programmed to prevent the user’s fingers from penetrating into a virtual object. CyberGrasp
exerts forces that are roughly perpendicular to the fingertips, whatever their position. The
CyberGrasp cannot constrain the user to close his hands.

The CyberGrasp can produce a 12N force feedback on each finger, and the force can
be set between 0N and 12N with a 12-bit resolution (4096 values). Finally, the weight of
the exoskeleton is around 350g.

3.2.3 ... CyberTrack, ...

The CyberTrack is an input device which provides 6D hand tracking. In fact, it is embedded
into the CyberForce exoskeleton, and the name CyberTrack is only an abstraction of the
device in the software. Thus, we can not consider that it is commercially available, as it
comes with the CyberForce exoskeleton, the real name of the haptic device.

Anyway, this exoskeleton contains six optical encoders, allowing an accurate position
and orientation tracking of a point located on the wrist. The position resolution is between

24 CHAPTER 3. TWO-HANDED INTERACTIVE SYSTEM

Figure 3.2: The CyberForceTM exoskeleton

60μm and 73μm. The orientation resolution is around 0.09◦. The refresh rate of these
values is around 1kHz.

3.2.4 ... and CyberForce ...

Finally, the CyberForce, presented on figure 3.2 is the output device which provides wrist
3D-force feedback. This allows the user to sense the weight and the inertia while picking
up the virtual objects, or to feel the “relative” impenetrable resistance of a simulated table.

The device is an exoskeleton that can produce a maximal force of at least 7 N, depend-
ing on the armature configuration. The generated forces only affect the hand position, – i.e.
it is not possible to oblige the user to rotate his hand–. Based on this consideration, we can
say that the CyberForce is an underactuated device: it has less actuators (3) than degrees
of freedom (6).

3.2.5 ... : The Haptic Workstation !!

The Haptic WorkstationTM is the combination of these four devices (two times for left and
right arms), a seat and an armature to link everything together (see figure 3.3). This allows
right and left whole-hand tracking and force feedback. For each upper limb, there are
22+3+3+5 sensors and 5+3 actuators.

A normally sized user (between 1,50 m and 1,90 m) could not reach the far limit of the
workspace by outstretching the arms. However, it is impossible to bring the hands on the
chest, and to fully extend the right/left arm on the right/left position. Moreover, it is usually

3.2. HARDWARE DESCRIPTION 25

133°

526mm

7
8

2
m

m

Figure 3.3: The Haptic WorkstationTM exoskeleton, and its workspace

tricky to cross the arms because of the exoskeletons. The schema on figure 3.3 presents the
workspace of the Haptic WorkstationTM.

Finally, it is important to tell that the Haptic WorkstationTM, is controlled by two net-
work connected computers (Linux kernel running on Pentium III 1GHz processor). Each
computer is connected to a power amplifier which controls one CyberForce and one Cyber-
Grasp exoskeletons, and to a CyberGlove via RS232. The figure 3.4 presents the schema
of a “basic” VR system integrating the Haptic WorkstationTM. Usually, this configuration
is the one used in this thesis. In the next section, we make a first presentation of the soft-
ware required to create a two-handed interactive system. The software is running on the
Simulation Computer of the figure 3.4.

Haptic Workstation

Left exoskeleton

Right exoskeleton

Simulation Computer (PC)

100Mb/s

Network

ProView

In te rS e n s e

Figure 3.4: A common Virtual Reality System with the Haptic WorkstationTM

26 CHAPTER 3. TWO-HANDED INTERACTIVE SYSTEM

3.3 Software Control

In order to integrate a two-handed haptic device like the Haptic WorkstationTM in Virtual
Reality applications, we need a kind of software driver. Even a mouse needs such piece of
software. In our case, the driver could be considered as a piece of code giving access to the
basic functionalities of the device by proposing functions/methods. Such functionalities
could be, for example, to gather device encoder values or set a torque of one of the motors.
However, this is by far not enough for creating a haptic-enabled Virtual Reality application.

In this thesis, we focus on providing an efficient software solution for using two-handed
haptic devices. One of our goals is to integrate such device into applications in order to
have a complete control over the virtual objects by using only the hands. To achieve this
goal, we perform integration of new and existing techniques/libraries, and we choose to
group them into a single framework. The idea behind, is that a student, a researcher or an
application programmer could be able to get and to use every functionalities proposed in
this thesis, by using only one software package.

In this section, we first analyze what could be exploited from a two-handed haptic
device in Virtual Reality applications. Then we cite and present the components of the
framework.

3.3.1 Haptic Software Requirements

The “driver” of a two-handed haptic device should be able to provide access to its lowest
level. This includes the input values of the datagloves and the positions of the rotary en-
coders of the exoskeleton. It includes also the functions for applying force feedback. As a
haptic device is usually connected via network, RS232, USB or Firewire with the master
computer, the “driver” should embed the connection and the communication protocol.

Then, once these values are properly gathered, the device has to be calibrated according
to the user and to the simulation. We can make the comparison with a computer mouse.
We usually do not know the exact position of the mouse in the real world. But, the values
returned by the mouse are relative to the previous state. If we want to know the exact
position in a specific real coordinate system, we should find the transformation between
mouse input values and the specified coordinate system. Same methods apply on haptic
input devices. On the other side, the calibration of an output haptic device consists in
proposing a way to create force vectors that are in the same space than input data, with
consistent units.

Then, as a virtual reality application is usually working with visual feedback, the hap-
tic software should offer the possibility to easily integrate the haptic device in the virtual
environment. Thus a visual reproduction/model of the haptic end-effector – i.e. the hands
– needs to be created and visually displayed. But displaying a virtual hand does not mean
interacting. For interacting with virtual objects, we need to detect which of them are in
contact with the virtual hand, and then we should animate these objects according to the

3.3. SOFTWARE CONTROL 27

contacts. Moreover, once collisions are detected, we need to compute force feedback and
apply it on the output devices.

We believe that these requirements are mandatory for building a haptic two-handed
interactive system. In the next section, we present the MHaptic framework which allows
us to fulfill them.

3.3.2 The MHaptic framework

The Haptic WorkstationTM comes with the Virtual Hand Toolkit(VHT), which is a soft-
ware framework to connect it, calibrate it, control it and even to integrate it into Virtual
Environments. In theory, it meets the requirements defined in the previous section. How-
ever in practice, some components of this package are not suiting our needs. We found
that the Haptic WorkstationTM could not provide its full potential when using this library.
Moreover, the other haptic frameworks presented in section 2.3 are not properly addressing
the whole-hand haptic interaction case. This convinced us to develop a new framework:
MHaptic.

MHaptic is a framework composed of a library and an application. The name MHaptic
has been chosen because it embeds and works together with the MVisio (Mental VISIOn)
engine, a state of the art visual rendering system which contains many useful features
for VR applications [95]. Moreover, this graphical engine also focus on the pedagogical
aspect of 3D rendering, and thus is easy-to-use without compromising performances [94].
MHaptic is more or less made with the same state of mind than MVisio.

Here is a list of the components of the framework. We give more details on the imple-
mentation in the remainder of this thesis:

• A connection with the Haptic WorkstationTM. This may seem obvious, but the li-
brary has to establish a connection in order to gather input data (hand and finger
positions) and to display force feedback. The connection and the refresh rate should
be as fast as possible. We present it in 4.1 (page 31).

• A calibration module. It allows to quickly reconfigure the devices. It is particularly
useful to adapt the Haptic Workstation to a new user without quitting the application.
We deal with this module in section 4.2 (page 34).

• A User Comfort Improvement module. Being seated in the device could be ex-
hausting after a while. This module increases the amount of utilization time before
the fatigue. We present it in section 4.3 (page 41).

• A Collision Detection engine: this component determines if, where and when some
objects come into contact during the simulation, either with the virtual hands or with
other objects. As previously mentioned, our Haptic WorkstationTM stimulates the
kinesthetic sensory channel. Thus, it is very important to detect all contacts in the
VE in order to apply a fast and correct force-feedback to the user. We present it in
section 5.2 (page 54)

28 CHAPTER 3. TWO-HANDED INTERACTIVE SYSTEM

• A Dynamic Animation Engine. This component is used for two purposes. The first
one is to realistically animate the objects in order to have a believable manipulation
tool. The second one is to ease the force-feedback computation and improve the
graphical rendering of the hands. We will deal with this important feature in section
5.3 (page 58).

• A Force-feedback Computation engine: this ensures the correct computation of
the forces. This part is a critical point since a wrong computation or an insufficient
refresh rate leads to instabilities in the system resulting in lag or vibration. As stated
in [49], such computation loop must run at least at 500Hz in order to be realistic.
This constraint is respected in MHaptic.

• A Scene Authoring Tool: we remark that most of the existing 3D Scenes available
contain only visual data. If we want to reuse these models, we need to provide a tool
for adding haptic properties to the virtual objects. It is presented in section 6.2 (page
77).

In the first part of this thesis, we presented a review of the existing haptic devices.
We also gave a review of the Virtual Reality applications that takes advantage of the force
feedback and 3D interaction provided by kinesthetic devices. We also presented works
related to whole-hand and bimanual interaction, from a cognitive and computer sciences
point of view. It demonstrated a lack of truly two-handed haptic systems. Thus we studied
the needs for naturally interacting with a Virtual Environment using both hands, and chose
the Haptic WorkstationTM as hardware platform.

In the remainder of this thesis, we will present software solutions aimed at integrating
such two-handed devices into Virtual Reality applications. For this reason, we proposed
in this chapter a study of the software requirements and presented MHaptic, a framework
made for this purpose.

Part II

Realistic Haptic Interaction

29

Chapter 4

Haptic WorkstationTM Registration

MOST OF THE HARDWARE DEVICES require a driver or a piece of software for inte-
grating them into computer applications. For example, a screen comes usually with

its specific color profile. For a standard joystick, its neutral position and its end-points have
to be calibrated. The haptic devices follow the same rule.

In this chapter, we present at first the way to get access to the data of a two-handed
haptic device like the Haptic Workstation. Getting the input values (position, orientation or
hand posture) and setting the output values (force feedback) has to be done with realtime
constraints at a high refresh rate. We present the optimizations made for this purpose.
Once we get or set these values, they need to be calibrated. This process in presented in the
second section. Finally, in the third section, we present a solution for increasing the user’s
comfort while using the Haptic WorkstationTM.

4.1 Gathering Inputs and Affecting Outputs

Basically, a exoskeleton-based haptic device have internal registers which contain data rep-
resenting the posture of the exoskeleton. And there are also registers containing the force
or position values to be applied on the motors. Obviously, the first thing to do is to have
access to them. This process has to be executed really quickly because it represents the
upper bound of the haptic refresh rate. In this section, we present a study for optimiz-
ing the gathering of this data into computer memory. It concerns and focuses the Haptic
WorkstationTM, but it could be applied on other devices.

As presented in 3.2.5, our haptic device is composed of two PCs (for left and right
side) which are connected to the Simulation Computer through a dedicated 100Mb/s Eth-
ernet network (see figure 3.4, page 25). A specific network protocol provided with the
library Virtual Hand SDK is used to gather values or to apply force feedback. There are 4
functions, and we need to call them for each arm:

• for updating raw dataglove values (22 floats).

31

32 CHAPTER 4. HAPTIC WORKSTATIONTM REGISTRATION

• for updating raw CyberTrack values (6 floats).

• for setting force values on the two device (8 floats).

• for updating string positions on CyberGrasps (5 floats).

Our goal is to maximize the update rate. Finding the maximal theoretical refresh rate
can be achieved by evaluating the packets size and the speed of the link. Using a network
protocol analyzer named Wireshark1, we studied the behavior of the network. Results are
presented on table 4.1. For each function we measured the size of the packet going from the
computer to the Haptic WorkstationTM, the size of the replied packet, and the time taken to
get the values after a call. We performed these tests 1000 times under the best conditions
–i.e. without data treatment nor simulation, only a loop with function calls–. In the table,
we present only the mean of the times, but we mention that the standard deviation is quite
small (less than 5%), and thus, could be neglected.

Procedure Packet size Time

CyberTrack position update
U 86 bytes

507 μs
D 135 bytes

CyberGlove angle update
U 86 bytes

243 μs
D 278 bytes

Setting Forces
U 155 bytes

268 μs
D 86 bytes

CyberGrasp strings position update
U 86 bytes

248 μs
D 114 bytes

TOTAL 1026 bytes 1337 μs

Table 4.1: Ethernet link between the Haptic WorkstationTM and the computer running the
simulation.

Over a 100 Mbit/s link, if we consider that we have 1026 bytes (8208 bits) to transfer
to get every data, we can have theoretically around 12000 updates per seconds. However,
because these 4 calls takes 1337 μs, we are bounded to only 750 updates per seconds.
Moreover, we remind that we are addressing only one side (left or right) of the device
when dealing with these numbers.

To perform the communication with the two sides of the Haptic WorkstationTM, there
are two solutions. The first one is to sequentially access to the left side, to wait for the
response, and then to do it again with the right side. So in this state, the two-handed haptic
refresh rate falls to 375 Hz. This is too low and need to be optimized. The second one is to
access simultaneously to the two sides. This is illustrated on figure 4.1. The first solution
is the easiest to implement and guarantee that there will not be any packet collision, but
the second solution should be faster... in theory. To implement it, we have indeed to face
two problems: the call to one of the procedure for accessing to the data is a blocking call

1http://www.wireshark.org/ . In June 2006 the project was renamed from Ethereal due to trademark issues.

4.1. GATHERING INPUTS AND AFFECTING OUTPUTS 33

(problem 1); it means that the program waits for the response before continuing with the
following code. Moreover, the packets can collide each other resulting in network flood that
increases the latency (problem 2).the following paragraphs present the chosen solutions.

To solve the problem 1, we have only one solution. It consists in multitasking the
accesses to the left and right device. Basically, we divide the Haptic Thread into two sub-
threads for left and right sides. To avoid synchronization issues resulting in uncontrollable
different refresh rates for both sides, we establish a rendez-vous point at the end of a com-
plete update loop.

This multitasking is the source of the problem 2: on a computer with several cores or
processors, the time noted ε on figure 4.1 has great chances of being null, because the
two subthreads could be running at the same time and have been waiting each other at the
rendez-vous point. This implies that they are both trying to use the Ethernet controller at the
same time. The operating system is able to manage that, but unfortunately not efficiently.
Thus, we have to avoid the case. Although the solution seems to be trivial, – i.e. making
that one of the two subthreads goes to sleep during a fraction of time ε – it appears to
be almost impossible on the Microsoft Operating Systems. On Windows R©, ����������
procedure accept only millisecond argument and is moreover not precise (because it is not a
truly realtime OS). To overcome this issue, we made two subthreads that are not completely
equivalent: on the left arm we perform some computation concerning the force feedback
before the first call to an update procedure, whereas the same computation is performed in
the middle of the loop for the right arm. As this computation approximatively takes 50μs,
it is enough to shift the Ethernet port utilization. We remind also that this solution works
because we have a Full-Duplex 100 Mbit/s Ethernet link.

PC
HW

Left

HW

Right PC
HW

Left

HW

Right

PC

HW

Right

HW

Left

Time
First solution : access left and

right side sequentially

Second solution : access left and

right side at the same time

Cyberglove

update

Cyberglove

update

Cybergrasp

update

Cybergrasp

update

Cyberforce

update

Cyberforce

update

Cybertrack

update

Cybertrack

update

O
n
e
 l
o
o
p

Cyberglove

update

Cyberglove

update

Cybergrasp

update
Cybergrasp

update
Cyberforce

update
Cyberforce

update
Cybertrack

update
Cybertrack

update

O
n
e

lo
o
p

Cyberglove

update

Cyberglove

update

Cybergrasp

update
Cybergrasp

update
Cyberforce

update
Cyberforce

update

ε

ε

Rendez-Vous

Figure 4.1: Network communication diagram.

Using these techniques, we achieved a mean refresh rate of 720 Hz, which is nearly
optimal. We stated indeed earlier in this section that 750 updates per second is the theoret-

34 CHAPTER 4. HAPTIC WORKSTATIONTM REGISTRATION

ical upper bound. The loss of speed is probably due to the computations that may happen
between the network calls.

But we also found that some of the input data (like gloves angle values, or grasp string
positions) where not updated as fast as 750 Hz. This is confirmed by the factory description
of the CyberGlove R©, which states that a maximum of 149 records per second could be
retrieved by RS232 with this device. Thus we do not need to get these data at each haptic
loop. Consequently, we only update gloves values and string position every 6 loops. By
doing so, we do not lose any meaningful data, and we increase the haptic refresh rate to
950 Hz.

To put in a nutshell, we presented in this section some low-level optimizations for
accessing to the Haptic WorkstationTM as fast as possible. We have shown that it is difficult
to address faster this networked haptic device, because we are already near the theoretical
optimal speed. We remind that the optimization concepts presented in this section could be
extended to most of the haptic devices connected via a RS232, Parallel or Ethernet link.

4.2 Haptic WorkstationTM Calibration

Several applications of combined immersive visual and haptic displays greatly beneficiate
from accurate calibration and registration. We can cite for example virtual prototyping,
manipulation training or surgical simulation. Unfortunately, precise registration is difficult
to achieve because of the large number of factors that affect overall system accuracy. In
this section, we deal with the specific calibration of the Haptic Workstation’s devices. We
present the calibration methods used in the rest of the thesis to achieve an efficient two-
handed haptic manipulation system.

The Haptic WorkstationTM is a combination of four devices. Each one need to be
calibrated properly to be fully functional. As we will see it in the next subsection, many
methods exist addressing many kinds of applications.

4.2.1 CyberGlove registration

The human hand is a remarkably complex mechanism and in the year 2008 the instru-
mented glove still appears to be the predilection device to map the real hand posture on a
virtual model. There are different goals when dealing with the calibration of datagloves:

• To reach a perfect matching between many real and virtual hand postures, allow-
ing for gesture recognition for example. This technique could be based on Hidden
Markov Models, like the work of Lee et al. [76], or also on Neural Network algo-
rithm like Xu [117] and even on genetic algorithms [108].

• To provide visual fidelity without aiming at determining exact values of real joint
angles. This technique is often used because visual realism is a strong need in Virtual

4.2. HAPTIC WORKSTATIONTM CALIBRATION 35

Reality. Griffin et al. provides a method using a kinematic chain using least square
regression iteration where the basic idea is to move the four fingertips against the
thumb and to record the trajectory in order to perform the calibration [54].

Moreover to these different objectives, we can also distinguish different methods for
performing the calibration in itself:

• To use only the instrument glove for the calibration and not external devices like
trackers, cameras, etc. Indeed, most of the efficient techniques uses an external sys-
tem to validate the calibration or to check the errors. Fischer et al. [44] used a stereo
vision system to measure the real 3D positions of the fingertips, while also storing
the joint sensor readings of the dataglove. Of course, these calibration protocols of-
fers better performance but are much more difficult set up and thus are limited to
particular applications.

• To minimize the time consumed to perform the complete calibration procedure. Ac-
cording to the literature, we can find methods which takes from few minutes [69] up
to several hours [117].

As we are studying in this thesis two-handed haptic interactions, we will not focus on
reconstructing a virtual hand with the best matching as possible. Indeed achieving visual
fidelity is enough for our needs as we do not plan to recognize gestures or to reach extreme
hand’s postures for grasping objects. Moreover, we prefer to have a fast calibration pro-
cess without needing external peripherals in order to increase the ratio “Time of session”÷
“Time to install the user”.

The CyberGlove R© is made of bend sensors. These sensors have a varying resis-
tance in function of their bending. This resistance is not proportional to the angle, but
Immersion R© calibrates the glove sensors at their factory. Thus, the values returned by the
black box connected to the glove should be proportional to the angles. It means that there
is a linear function between glove angles and gathered values. We assume that this is true,
and in practice, we have verified that the error is not significant.

A linear function has a form y = mx + p, it has only two parameters m and p. The
goal of the calibration is to find them. We need at least two couples (x1,y1) and (x2,y2) to
compute m and p. For a single sensor, the calibration procedure is easy to do. We place the
sensor in two reproducible configurations that are sufficiently different, for example, not
bent (y1 = 0◦), and bent at a right angle (y2 = 90◦), gathering at the same time the values
of the black box (x1 and x2). Then is is trivial to find the m and p coefficient of this sensor.

However, in practice, we do not want to place each sensor in 2 different configuration.
This would take too much time. We thus have isolated 4 different hand postures shown
on figure 4.2. For each sensor, two of these postures are different enough to have a good
estimation of m and p. For example, sensor A is calibrated with postures 1 and 3, whereas
angle B uses postures 1 and 2. Finally, we mention that each time we register the values of a
posture, we store them into the memory. By doing so, we can perform the calibration in the

36 CHAPTER 4. HAPTIC WORKSTATIONTM REGISTRATION

Figure 4.2: The four hand’s postures used in the CyberGlove R© calibration tool.

Figure 4.3: Comparison between real hand and virtual hand after calibration.

4.2. HAPTIC WORKSTATIONTM CALIBRATION 37

order that we want (and not necessarily 1,2,3 and 4), and we can make quick refinements
of a single posture.

Despite the fact that this method is really simple, it is efficient. It takes less than a
minute to fully calibrate the gloves with a user who never worn them. Visually, most of
the postures are reproduced with a reasonable level of fidelity. We present on figure 4.3
comparisons between real and virtual hands after calibration using our method.

4.2.2 CyberTrack registration

The six optical trackers of the Haptic WorkstationTM are factory-calibrated. The Jacobian
that transforms from this 6 degrees of freedom space into a cartesian space is already per-
formed by the hardware. However, this cartesian space is relative to the configuration of
the CyberForce exoskeleton at startup time. Basically, it means that the user has to start
the Haptic Workstation in a predefined position in order to “calibrate” it. The problem is
that it is impossible to reproduce perfectly this position at every startups, and moreover the
trackers of the two exoskeletons are not in the same coordinate system.

The figure 4.4 summarize the situation after a normal startup.

x

y

z

W

x

y

z

x

y

z

Right CyberTrack

CLeft CyberTrack

C

Figure 4.4: The exoskeletons reference frames when starting up the device

First, we can remark that the left and right coordinate systems CRight CyberTrack and
CLeft CyberTrack do not have their origin at the same position. Then, we can see that their axes
are parallel together, and also parallel to the aluminium chassis of the Haptic WorkstationTM.
Finally, we can mention that the unit of these coordinate systems is not according the SI.
We are satisfied with the orientation of the coordinate systems with y for up/down, and x for
left right, because from a user point-of-view, it reminds the OpenGL camera orientation.
Moreover, it means that we do not need to convert the orientation value of the CyberTrack,
but only the position value.

38 CHAPTER 4. HAPTIC WORKSTATIONTM REGISTRATION

Thus, the registration procedure consists in putting the two exoskeletons in the same
orthogonal coordinate system W with SI units, which has been arbitrary set at the position
shown on figure 4.4. It means that, for each exoskeleton, the goal is to solve the unknowns
in the matrix presented in equation 4.1. α represents the scaling and t the translation
transforming raw data into calibrated positions in the coordinate system W . This matrix
has 6 DOF, so we can deduce that at least 6 correspondences PCx −→ PW are necessary to
find the 6 unknowns. As each position has already 3 dimensions ((x,y,z)), we only need
to find two configurations of the exoskeleton that are easily reproducible without error and
whose position in the real world is known (have been measured by us).

PCx =

⎡
⎢⎢⎣

αx 0 0 tx
0 αy 0 ty
0 0 αz tz
0 0 0 1

⎤
⎥⎥⎦×PW,where each αx,αy,αz > 0 (4.1)

In practice, we found that the scaling parameters αx, αy and αz where close to 0.01±
5%. This let us think that the hardware calibration returns positions with a unit length that
is the centimeter. Moreover, we found that the value of αx, αy and αz was not dependent
of the startup procedure. Thus, we can hardcode these values and the goal of CyberForce
registration is only to get tx, ty and tz. This give us the opportunity to drop one of the two
calibration configurations of the exoskeleton.

To validate our registration, we use a PhaseSpace Motion Capture system. This system
is composed of optical cameras and LEDs. Up to 128 LEDs could be tracked in a prede-
fined coordinate system up to a refresh rate of 480 Hz. We calibrate the system using 4
cameras to track a single LED attached to the CyberForce into the same coordinate sys-
tem than the Haptic WorkstationTM. This setup is shown on the picture of the figure 4.5.
Then, we measure pairs of positions gathered from the PhaseSpace and the calibrated Cy-
berTrack. The goal of our calibration is of course to minimize the distance between each
pair of positions. We try to move the hand into the complete workspace, and we also orient
the hand in different positions. We aim to collect a pair each 10 ms during 5 minutes, but
sometimes, occlusions prevent to optically capture the LED. Thus, we finally record “only”
23000 pairs. To interpret this great amount of information, we voxelize a virtual cube in the
workspace, then we randomly pick a pair belonging to each voxel, and finally, we display
the “difference vector” of this pair representing the difference between the CyberTrack and
PhaseSpace positions. We perform this random picking several times. One of the result
that we get is presented on figure 4.5.

The most noticeable conclusion is that the scaling parameters αx, αy and αz that we
previously set to 0.01 are quite correct. If they were not, two difference vectors that are
close should be pointing the more or less same direction, and this effect should affect all
difference vectors. Then, we visually did not remark any pattern affecting every difference
vectors, which could came from a calibration error. Moreover, the mean length of these
difference vectors is around 2 cm, with a standard deviation of 9 mm. We mention also
that an optical tracking system is by nature much more error-prone than the trackers of the
exoskeleton.

4.2. HAPTIC WORKSTATIONTM CALIBRATION 39

0

0.2

0.4

0.6

0.8

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

X Axis

Error Vectors in Workspace

Z Axiss

Y
ax

is
s

0 100 200 300 400 500 600 700
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Measures

Er
ro

r l
en

gt
h

(m
)

PhaseSpace Tracking System

Figure 4.5: Results of the CyberTrack calibration procedure, compared to motion capture
data.

In practice, the results are satisfactory for our needs. The registration procedure is
really fast, and we can achieve a praying hands posture even if is not easy with the four
CyberGrasp and CyberForce exoskeletons. In this case virtual and real hands matches.

4.2.3 CyberForce calibration

In section 4.3, we will present a method for reducing user’s fatigue when working with
the Haptic WorkstationTM. The main reason is that the weight of the exoskeletons is not
completely compensated by the counterweights. We also show that this extra-weight is not
constant inside the workspace, implying that a value of force magnitude on the CyberForce
will not have always the same effect on the wrist. The user’s comfort improvement module,
made for that purpose has also the advantage to normalize the vertical force components
within the workspace. It means that a vertical force command x will apply a force of y N
on the wrist, whatever the position of the wrist in the workspace. Thus, we can consider
that a part of the problem is solved for the vertical component. We have to check the two

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Raw Force Command

Re
su

lti
ng

 F
or

ce
 (N

)

Comparison between force commanded and resulting force

Figure 4.6: Calibration of the CyberForce.

40 CHAPTER 4. HAPTIC WORKSTATIONTM REGISTRATION

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

9

10

Raw Force Command

Re
su

lti
ng

 F
or

ce
 (N

)

Comparison between force commanded and resulting force

Figure 4.7: Calibration of the CyberGrasp

other components (forward/backward, and left/right).

The second goal of the calibration is the unit of the force commands. The CyberTrack
now returns positions in meters (unit of length in SI). We would like to have a force com-
mand expressed in Newton units. Thus, we only need to calculate the constant converting
force commands to SI units. This is done only once, because there is no drift possible at
this stage (except possibly motor weariness resulting in loss of torque).

We choose to use a spring scale linked to the ground on one side and to the end effector
of the CyberForce on the other side, as shown on figure 4.6. Then, we apply a force and
measure the impact on the spring scale. The graphic on figure 4.6 shows four curves: two
of them present a set of measures at a particular position of the exoskeleton for the left/right
force component. On curve is a comparison for the forward/backward component, and the
last one for the up component. We are concerned with two problems. First, we want to
know if the force magnitude is dependent of the position of the exoskeleton. Then, we
want to find the conversion of the values sent to the CyberForce in Newton.

This graph do not present all the tests made, but the ones shown are representative of
all others. We can conclude that the force magnitude is not dependant of the exoskele-
ton position for the up/right component when activating the user’s comfort improvement
module. It seems to be normal. However, we are slightly surprised that it is also the case
for the left/right and forward/backward components. The second constatation is that when
performing a linear regression on the curves, the slope is an approximation of a number
allowing us to express force command values in Newtons.

4.2.4 CyberGrasp calibration

In this subsection, we are focusing on the CyberGrasp. The experimental protocol is ex-
actly the same than for the CyberForce: we fix the CyberGrasp and apply force commands
on the strings. Results are presented on figure 4.7.

4.3. USER COMFORT IMPROVEMENT 41

Results obtained shows that the force command is quite linear. The slope at the begin-
ning is around 2.4 and that a maximal force of 10 N could be achieved with this device.

4.2.5 User Interface

The calibration of the CyberForce has to be done at each startup of the Haptic WorkstationTM,
whereas each time the haptic application user changes, it is preferable to perform a new Cy-
berGlove calibration. In order to avoid to launch another program for performing a new
calibration, we propose to take advantage of the MVisio 2D GUI rendering functionnalities
to embed in the MHaptic library some GUI elements for the calibration and the connection
of the Haptic WorkstationTM. The application programmer simply needs to call a single
MHaptic function to add the complete GUI in is application. It results in the interface
presented on figure 4.8.

Figure 4.8: GUI for connecting and calibrating the Haptic WorkstationTM.

There is one main window with 6 buttons: one for connecting and one for disconnecting
the Haptic WorkstationTM, and four buttons for opening other windows. These windows
allow a rapid calibration, provide a debugging information of the data, or allow to manually
set forces. This convenient method is really helpful in many situations.

4.3 User Comfort Improvement

Our first experiences with the Haptic WorkstationTM has shown that this device is uncom-
fortable to use during long sessions. The main reason is the uncomfortable posture of the
arms, which must be kept outstretched horizontally while supporting the weight of the Cy-
berForce exoskeleton. To prevent this comfort problem, we implemented a solution that is
used with all the work presented in this thesis.

42 CHAPTER 4. HAPTIC WORKSTATIONTM REGISTRATION

Figure 4.9: A user in the Haptic WorkstationTM and the measures of the extra weight of the
exoskeleton

4.3.1 Identification of uncomfort

Improving comfort when using a Haptic WorkstationTM is not like improving it inside a
sofa or a car. It is more like enhancing the comfort of a diving-suit! Indeed, the Haptic
WorkstationTM was not designed with comfort in mind. After some hands-on experience
it is easy to realize how cumbersome and heavy it can be. Using the workstation as shown
on figure 4.9, is equivalent to keeping arms outstretched while holding a 600g weight on
each wrist. A user is not able to stay inside more than half an hour.

The notion of comfort is very close to absence of tiredness: if the users were not tired,
they could stay probably longer, and we would consider this as a comfortable device. Tired-
ness is due to muscular activity (which induces fatigue). Thus, to improve the user com-
fort, we should at least focus on reducing the muscular activity induced by using the Haptic
WorkstationTM.

4.3.2 Evaluation of comfort

“To Improve user comfort”: This assertion implies that we need to measure the comfort.
Unfortunately, this is a subjective notion which is difficult to quantify. But, as mentioned
in the previous section, comfort is closely link to “muscular activity”.

In the rest of this section, we will consider muscular fatigue as an indicator of tiredness
and of comfort. The question is how to measure muscular activity over the time. Such mea-
sures and experiments are studied and analyzed by physical therapists using bio-feedback
techniques. Bio-feedback is a treatment technique in which people are trained to improve
their health by using signals from their own bodies [97]. Thus, bio-feedback instrumenta-
tion can be used to obtain objective measures of muscular activity and effort, which may
serve to deduce the amount of fatigue.

Bio-feedback measures are achieved using many instruments. The most common is the

4.3. USER COMFORT IMPROVEMENT 43

Electromyograph (EMG). It detects the electrical potential generated by muscle cells when
these cells contract, and also when the cells are at rest. This measure is our indicator of
muscular activity. The device we are using is a Physio Recorder S [101], shown in Figure
4.9. Its EMG sensor is composed of three electrodes which are used to measure action
potentials of one muscle. EMG signals are the manifestation of electrical stimulations,
which motor units receive from the Central nervous System, and indicate the activation
level of motor units associated with muscle contractions. EMG can be used as a reliable
measure of muscular activity and hence is a good indicator of fatigue and comfort. EMG
signals are frequently used for providing control commands for prothetic arms [25, 105].
They have also been exploited in studies on user comfort and performance [30].

We use this equipment to evaluate the muscular activity of the biceps and the triceps of
the user while using the Haptic WorkstationTM. In order evaluate the comfort improvement
module, we need to have reference values for comparing the results. Thus, we asked a user
to place his arms in two specific postures during 30 seconds:

• The arms relaxed, with the hands laid down on his knees. This posture would corre-
spond to the minimal biceps activity.

• The arms outstretched horizontally. This posture is considered as uncomfortable,
since it requires additional effort on the muscles.

Figure 4.10 presents the results of measuring muscular activity on user’s arm (biceps)
in the cases described before. The measured signal increases significantly when posture
changes from resting to activity, the voltage is multiplied by up to five times. The graph
shows two curves. The light-colored one represents the muscular effort over time while
carrying the exoskeleton, whereas the dark-colored one corresponds to tests without it.
The 600g extra weight from the exoskeleton must be compensated by the arm muscles,
increasing their activity. This is confirmed by the EMG measures: the light curve is above
the dark one, indicating an increase of muscular fatigue.

Without exoskeleton

With exoskeleton

0

5

10

15

20

25

30

35

40

45

50

0
0
.0

0

0
3
.9

0

0
7
.8

0

1
1
.7

0

1
5
.6

0

1
9
.5

0

2
3
.4

0

2
7
.3

0

3
1
.2

0

3
5
.1

0

3
9
.0

0

4
2
.9

0

4
6
.8

0

5
0
.7

0

5
4
.6

0

5
8
.5

0

Time (s)

Voltage (μV)

Arm outstretchedArm in rest

Figure 4.10: Posture and corresponding biceps activity while using the Haptic Workstation

To put in a nutshell, we assume that the muscular fatigue is mainly due to the extra
weight imposed by the exoskeleton of the haptic interface. Thus, our goal is to zero the
weight of it, which will traduce into improved comfort and longer sessions. Next subsec-
tion describes the approach we have followed to achieve this goal.

44 CHAPTER 4. HAPTIC WORKSTATIONTM REGISTRATION

4.3.3 Anti-Gravity Software

4.3.3.1 Problem Statement

The exoskeletons of the CyberForceTM are equipped with mechanical counterweights.
However, they are not sufficient to give the impression that the exoskeleton does not weight.
Moreover, depending on its spatial configuration, the exoskeleton do not weight the same
as it is shown on figure 4.9. Thus, applying a constant upward force is not sufficient. The
force should be applied according to the exoskeleton configuration.

4.3.3.2 Solution principle

The idea is to use the CyberForce itself to counter its own weight. For this purpose we need
the upward force values which compensate the effect of the gravity on it for each spatial
configurations. These values are stored in a force field.

The force field is a continuous function. We have two solutions to represent it: the
analytic method, which gives exact values of the force for each position after computation;
and the discreet method, which returns approximative values and which is based on an
interpolation.

However, the equation of the force field based on the rigid bodies of the exoskeleton
is hard to calculate and to solve in real-time. In [31], the authors present a comparison of
different algorithm for gravity compensation of parallel mechanisms (a 5DOF haptic inter-
face). They did not present a real-time controller for such algorithms. The possibility of
evaluating these kinds of compensation functions in real-time is not guaranteed. Moreover
this method supposes that we have the weight distribution of every exoskeleton bones. This
is almost impossible to measure. These reasons convinced us to choose a discrete approxi-
mation method: it is easier to implement, faster to evaluate and sufficiently precise for our
needs.

The Anti-Gravity software (AGS) could be divided into two parts: We first need to
calculate the force field for each exoskeleton and then to compute the appropriate force
value according to the position in real-time. The next two subsections describes these
procedures.

4.3.3.3 Force field computation

The first step is to define a working area, a parallelepiped in front of the Haptic Worksta-
tion, where the weight compensation would be applied. The compensation depends on the
exoskeleton’s position, but also on the orientation. However, to simplify the procedure we
compute a force field that is only function of the position. As the force vector to be applied
is always vertical (it counterweights the gravitation), we can only store the magnitude of
the force. The result of this computation is thus a 3D field of scalar values and is evaluated
using the algorithm that we describe in the next paragraph.

4.3. USER COMFORT IMPROVEMENT 45

P P P

P’
P’

Horizontal force
component

Vertical force
component

At each iteration, horizontal force component constrains exoskeleton along Δ. Vertical

force component, which is the value searched, is refined to reach the position P .

Δ
Δ Δ

P : position to reach

P’: hand position

Δ : vertical line

passing trough P.
t-3t-2

t-1

Figure 4.11: Forces constraining arm position while force field sampling.

The parallelepiped -working area- is discretized into voxels and a force is calculated at
each of their vertices. To find the correct force value, the algorithm is based on a single loop
where the vertical force is refined step after step. At each iteration horizontal forces con-
strain the position of the exoskeleton to achieve each pre-defined vertex, as shown in figure
4.11. There are three conditions to get out of this loop: the exoskeleton must be immobile,
the position must be reached, and these two conditions must stay true during at least one
second. In fact, immobile means “moving slower than a ε-speed” (less than 0.5mm/s),
and position reached means “closer than a ε-distance” (less than 1mm). Inside the loop,
changes are made to the force according the current state, as shown on table 4.2. When all
positions have been reached, results are saved in a XML file.One of the advantage of this
method is that the user does not need to interact with the Haptic WorkstationTMduring the
sampling of the force field.

Moving State
Going
down

No
Move

Going
Up

Po
si

tio
n

Above No
change

Low
de-

crease

High
de-

crease

Same pos. Low
in-

crease

No
change

Low
de-

crease

Below High
in-

crease

Low
in-

crease

No
change

Table 4.2: Force modification in function of exoskeleton states (position and speed)

4.3.3.4 Realtime exoskeleton weight compensation

The next step is to use the values stored in this force field to nullify the weight. When
the hand is in the parallelepiped, the vertical force to be applied depends on the current

46 CHAPTER 4. HAPTIC WORKSTATIONTM REGISTRATION

position. Our approach is to search for the discretized part of the parallelepiped into which
the hand is located. Then a weighted mean of the eight vertices of this part gives the force
value as illustrated on figure 4.12. The actualization of the forces is done within a frequency
of at least 800Hz, which corresponds to the Haptic WorkstationTM hardware refresh rate.
By this way, we could insure more than enough updates of the forces for the user comfort
even for quick movements.

L2

L5

L8
L6

L1
L4

L7

L3

P

L1 + L2 + … + L8

L1
m1 =

L1 + L2 + … + L8

L2
m2 =

1

8
F(p1)×m1 + … F(p2)×m2F(P) =

p4p1

p5

Where F(x) is force at position x, mα is weight of point pα, and Lα is
distance between pα and P.

p3

p6 p7

p8

p2

Parallelepiped Discreet part

Figure 4.12: Getting the compensation force at each position of the space

In this section we have described the software implementation of the Anti-Gravity soft-
ware. The next step is to evaluate its performance and validate whether it is useful to
improve user’s comfort when interacting with virtual environments.

4.3.4 Tests Results

In order to test the Anti-Gravity Software, we need to calculate the force field at least
once, and then to use the bio-feedback device to have an objective measure of its effect on
muscular activity.

First of all, we need to define the parallelepiped into which the force field is calculated
and its number of subdivisions. Then the process runs automatically without need of user
supervision. The CyberForceTM exoskeleton must reach all positions. To avoid damages on
the workstation, the speed of the CyberForceTM is slow (few millimeters per second), thus
it takes a long time to accomplish the task (at least 2 hours to reach 7×7×7 = 343 positions
for one arm). Considering that there is no human intervention during this step, the time is
not really a problem. Once the force field is saved, the easiest way to test it is to place the
exoskeleton at many positions into the parallelepiped and to release it gently. The result is
that the exoskeleton does not move: exactly the behavior we were expecting. Moreover,
when the user touches the exoskeleton he can feel that there is no force constraining the

4.3. USER COMFORT IMPROVEMENT 47

movement. It means the force is minimal. We have tested experimentally that the minimal
weight required to break equilibrium (move down the exoskeleton) is of approximately 2g.

The bio-feedback device allows to quantify the muscular effort. Thus we have designed
a test protocol for the AGS where the user must keep his arm outstretched with and without
it.

The results are presented on figure 4.13. The test session is divided into three thirty-
seconds-steps. During the first step we activate AGS and the user keeps his arm in the
parallelepiped where force field is applied. Then, during the next thirty seconds, we deac-
tivate it and the user has to keep his arm in the same posture. And finally the last step is the
reference measure that we will compare to the first one: it corresponds to the posture with
the arm outstretched and without the exoskeleton. Peaks that appear at around thirty sec-
onds and one minute should not be considered because they correspond to the movement
of the user changing the posture of his arm.

0

5

10

15

20

25

30

35

40

0
0
:0

0

0
0
:0

5

0
0
:1

0

0
0
:1

5

0
0
:2

0

0
0
:2

5

0
0
:3

0

0
0
:3

5

0
0
:4

0

0
0
:4

5

0
0
:5

0

0
0
:5

5

0
1
:0

0

0
1
:0

5

0
1
:1

0

0
1
:1

5

0
1
:2

0

0
1
:2

5

0
1
:3

0

Bio-feedback session with Anti Gravity Software

Arm outstretched, AGS

activated.

Arm outstretched, AGS

deactivated.

Arm outstretched

Without Exoskeleton

.

Figure 4.13: Effect of gravity compensation on muscular activity

Values returned by the EMG during this test seem coherent. The reference measure
(last 30s) was already calculated and presented on figure 4.10. We remark that there are
almost same values (between 15μV and 20μV).

We can remark that user’s muscular effort with weight compensation is equivalent to
the muscular effort for keeping arm outstretched. It means that the AGS compensates for
the exoskeleton weight, simulating the earth’s gravity, and thus improving user comfort
without constraining motion.

In the rest of this thesis, the User Comfort Improvement module could be considered
as activated by default in every applications presented (unless mentioned).

48 CHAPTER 4. HAPTIC WORKSTATIONTM REGISTRATION

4.4 Summary

In this chapter, we presented a study on the steps for correctly registering a two-handed
haptic device into Virtual Environments. The first step is to have access to the meaningful
data of the device. We provide this access at a high refresh rate near 1 kHz, which is manda-
tory for efficient haptic interaction. Then, taking into account the possible applications of
such devices, we provide efficient calibration tools. Efficiency in terms of calibration is
application-dependant. A large-scale two-handed haptic device do not require the same
absolute precision than a laparoscopy simulation tool. Our objective is to have calibration
methods that are fast, easy to do, keeping in mind that the user is not always the same, and
sufficiently precise for the need of manipulation. Finally, with the same state of mind, and
considering applications such as teleoperation or virtual training, we believe that comfort
is essential for increasing the efficiency. Thus, we provided a method for reducing user
fatigue when using the Haptic WorkstationTM [89].

Chapter 5

Realistic Two-Handed Haptic
Manipulation

A TWO-HANDED haptic device is a complex device. It has a lot of inputs/outputs, and
thus, controlling it requires many computer resources. Moreover, the computation

should be performed at a high refresh rate, which is not simplifying the task. Hopefully, to-
day’s computers usually include multi-core processors. In this context, we strongly believe
that a multithreaded approach is almost mandatory to achieve our goals.

In this chapter, we propose a set of haptic rendering functionalities that have been
grouped together into the MHaptic framework. First, in section 5.1, we present the general
organization of this library, indicating how to maximize the haptic rendering refresh rate
and how to compute the force feedback efficiently. In section 5.2, we introduce the collision
detection techniques and the implementation of an existing detector into our framework.
In section 5.3, we give indications about the computation needed to perform the physical
animation of virtual objects, and we present the integration of a physic engine. And finally,
in section 5.5 we propose our hand’s model for efficiently interacting with the objects of a
virtual environment with two hands.

5.1 MHaptic Architecture

It has became a de facto standard that haptic feedback generation start to be efficient near
500 Hz, and even that 1 kHz is preferable [49]. A study on the influence of this refresh
rate could be found in [19]. When considering the visual feedback, it appears that refresh
rates are significantly smaller. Between 24 Hz and 60 Hz depending on the application :
movies or realtime computer graphics. Thus, it seams obvious that we have to separate
haptic computation from visual display.

Besides this constatation, another reason could convince to separate these processes:
in 2008, even the low-costs personal computers are equipped with a multi-core processors.
Thus, we believe that we can greatly increase the efficiency by parallelizing our haptic-

49

50 CHAPTER 5. REALISTIC TWO-HANDED MANIPULATION

based Virtual Reality applications.

In the following subsections, we present the different modules, their role, how they are
organized together, and how they communicate.

5.1.1 Modules Organization

The MHaptic library embeds several components. The figure 5.1 presents the general or-
ganization of the modules, and shows how they exchange information together. In this
section, we explain this diagram, and justify our choice about software organization.

Raw, uncalibrated

position and hand

posture
Haptic Thread

Force-Feedback

Dynamic

Engine

Collision

Engine

950Hz

Two Handed Haptic

device
Get calibrated position

and hand posture

Ask a Collision

Hand

Visual

Rendering Engine

300Hz

Objects

Geometries

Objects bodies

Get updated object pose

Objects/Objects

collisions

Hand/Objects

collisions

300Hz

60Hz
Get a visual hand

representation
Get the position of

dynamic objects

Haptic Hand Model

Hardware

Abstration Layer

Haptic Scene

Get/set raw

position or force

Figure 5.1: General Organization of the MHaptic library.

On this diagram, the modules are presented in rectangles: the Haptic Thread, the Col-
lision Engine, the Dynamic Engine, and the Visualization Engine. Each module is in fact
an infinite loop, running until the application ends. The oval are representing the data
structures that simplifies the communication between the modules. There is the Hardware
Abstraction Layer, that guaranties the consistency of the data coming and going to the Hap-
tic Thread (see section 5.1.2). The Haptic Hand Model is one of the most important, as it
manage the virtual interacting hands. It will be particularly detailed in section 5.5. And
finally, the Haptic Scene groups the objects of the Virtual Environment that are touchable
and manipulable. The arrows presents the main messages and exchange of information
between these components (modules and data structure).

5.1. MHAPTIC ARCHITECTURE 51

The Haptic Thread embeds the optimizations made in section 4.1 for increasing the
refresh rate of the data coming and going to the Haptic WorkstationTM. Basically, it gathers
raw input data (hand posture and position) and copies it into a shared part of the memory.
It gives also the force values to the output device. The forces result more or less from the
computation of collisions between the hands and the objects. However, these modules do
not have a sufficient refresh rate. Thus, we need to update force magnitude even if we do
not have an updated collision information. Consequently, the only solution is to make it
the Haptic Thread. We deal with the force computation in section 5.5.2. Moreover, at this
stage, if activated, there is the User Comfort Improvement function presented in section 4.3
that can add a vertical force component on the CyberForce.

The Collision Engine and Dynamic Engine are working together. It seems difficult to
parallelize them because one (the Dynamic Engine) needs the results of the other. They
have many roles. First, they detect the collisions between the hands and the virtual objects.
This is essential for the force computation and for user’s feeling. They also animate the
grasped or touched virtual objects, which is essential for interaction. Finally, they allow
to have a fully dynamic environment where each object is able to act on another, which
increases realism and possibly immersion.

The last module is the Visual Rendering Engine. Its role is of course to provide a
view of the Virtual Environment. Haptics without visual feedback is often used in the
context of object recognition. But, as mentioned in [48], the discrimination of shapes or
curvature using a whole-hand (multi-fingered) kinesthetic haptic device is as difficult than
with single-point haptic device. Moreover, a two-handed haptic device seems adapted to
virtual manipulation or training. This suggest that embedding a visual rendering system
into a haptic framework presents advantages.

As presented on 5.1 these modules are not running at the same refresh rate. The are
separated into three threads. The first one contains only the Haptic Thread and has a fixed
refresh rate around 950 Hz. We remind that this module contains itself two subthreads.
The second one embeds the Collision and Dynamic Engine. Its refresh rate can be easily
adjusted according to the complexity of the Virtual Environment. And finally the Visual
Rendering Engine, is in fact not running in a thread, but in the main program which is
instantiating the other threads. In this state, the MHaptic library could possibly occupies
four processor/cores.

5.1.2 Modules synchronization

A well-known difficulty when dealing with multitasking is the memory coherence. It ap-
pears, for example, when a thread/process is writing data and that another one is reading
the same data. In MHaptic this situation can possibly appear twice. First, when one of
the module needs input from the haptic device, or has to command a force. For this issue,
we propose to create a Hardware Abstraction Layer presented in the next subsection. And
the other situation appears when the Visual Rendering Engine needs to display an updated
position of the scene. We deal with this situation in subsection 5.1.2.2.

52 CHAPTER 5. REALISTIC TWO-HANDED MANIPULATION

5.1.2.1 Hardware Abstraction Layer

Haptic Thread

Hardware Abstraction

Layer

CyberGlove

CyberTrack

CyberForce

CyberGrasp

Write raw angles data

Write raw position

Get force information

Get force information

Other modules

Get calibrated posture

Get calibrated position

Write repulsive force information

Write repulsive force information

Figure 5.2: Functions of the Hardware Abstraction Layer.

To maintain data integrity in a multithreaded haptic framework, we propose to use a
Hardware Abstraction Layer. Usually, in Computer Systems, the role of such layer is to
hide hardware from the rest of the code by providing higher-level functions for controlling
the lower-level components. In our case, it expose every functionalities of a two-handed
haptic device to the rest of the framework. It means also that MHaptic is designed to
manage other devices than the Haptic WorkstationTM. If we want to use the framework
with another haptic device, we simply need to adapt the Haptic Thread.

As shown on figure 5.2, the Hardware Abstraction Layer contains four components.
Each components has a memory buffer for stocking their related data. They also provides
two functions: a modifier and an accessor. There are mutually excluded using a semaphore.
It means that they cannot be executed simultaneously on the same component. Concerning
the input devices –i.e. dataglove and CyberTrack–, the modifier could only be used by the
Haptic Thread to store raw data into the buffer, whereas the accessor is used by the oth-
ers modules (for updating the virtual hand model for example). The code of the accessor
contains also the conversion from raw to calibrated values presented in section 4.2. Con-
cerning the output devices –i.e. CyberForce and CyberGrasp–, the accessors of the buffer
are used by the collision detection system which provides useful data for computing force
feedback like contact location, penetration distance or contact normal. And opposingly, the
modifiers are used by the Haptic Thread to retrieve this information.

Moreover the preservation of data integrity, this method presents another advantage:
the conversion from raw to calibrated data is only done when it is needed. Indeed, the
other modules do not run as fast as the haptic thread and they need calibrated values less
frequently that the Haptic Thread is able to update them.

The Hardware Abstraction Layer eases the implementation of other functions related
to the hardware. For example, in the Cybertrack class, the Haptic Thread does not simply
store the last raw position in buffer, but it keeps a trace of the 1000 last positions with
a timestamp. It does not add extra computation to do so. However, doing so allows us
to provide a function that can compute the mean speed or acceleration over a small time
period (one second or less). In our implementation, we also use a second-order Backward
Difference Expansion (BDE) Estimator to find the instant velocity [23]. Here again, the
computation of this kind of information is only performed if it is needed by a component,

5.1. MHAPTIC ARCHITECTURE 53

and thus, do not slow down the Haptic Thread. This is in fact the dual of the mechanism
that computes the force feedback: the other modules are not fast enough for refreshing the
force feedback, so they only provide the elements needed for this computation, and the
haptic thread performs this computation according to the lastly updated values.

In this subsection, we have presented a simple but powerful data structure inspired by
realtime operating systems mechanisms. It eases and secures the communication between
hardware and the software.

5.1.2.2 The Haptic Node

In this subsection, we present the Haptic Node and Haptic Scene, that are two helpers
whose primary role is to maintain integrity between the visually displayed information, the
collision geometries and the dynamic bodies. As these objects are not being used at the
same refresh rate, an effort has been made to guarantee that a module (visual, collision or
dynamic engine) always get the lastly updated value.

In Computer Graphics, a Scene Graph is a commonly used data structure that arranges
the logical and spatial representation of a graphical scene [106]. Usually, it is based on
a graph or tree structure linking nodes together. It means that a node could have many
children but a single parent. When an operation like a translation is applied on a node, it
propagates its effect to all its children.

On one hand, the MVisio visual rendering engine takes advantage and organizes the
objects into a Scene Graph. But these objects contains only visual properties and could not
be efficiently used by our haptic rendering system. On the other hand, we have the two
Collision Engine and Dynamic Engine modules that are using specific information. The
two Scene Graphs of these modules are different and could not be changed. Obviously,
there is a need for data structure linking these two scene graphs. This is the role of the
Haptic Scene and Haptic nodes.

Root

MVObject MVCameraMVLight

MVMesh MVMesh

World

ActorActor

Geometries Body

Geometries

Haptic node

Name

Type (static or dynamic)

Actor

Visual

Haptic Scene

Haptic node

Haptic node

...

Dynamic and collision

Scene graph
Visual Scene Graph

Figure 5.3: The Haptic Node links visual meshes and dynamic actors

As presented on figure 5.3, a MVisio scene graph contains a root, and then different

54 CHAPTER 5. REALISTIC TWO-HANDED MANIPULATION

kinds of objects organized in a tree. For instance, only the MVMesh objects should be be
considered because they can potentially represent a tangible object. On the other side, we
have a dynamic world that contains object that do not have a truly visual representation.
The role of the haptic node is to provide a link between these two scene graphs. Such
link is needed to ease the maintenance of coherence between the two Scene Graphs. For
example, if an actor is moved by the Dynamic Engine, the corresponding visual object
should be positioned accordingly. For this reason, a Haptic node is a class that contains
pointers on a visual mesh and on its dynamic alter ego. This class provides also useful
methods described below. The Haptic Scene is simply a collection of nodes, organized in
a simple list.

In a common haptic application, the dynamic world has a refresh rate that is much
higher that the visual rendering. Thus, it is not necessary to move a visual object at each
step of the dynamic animation. Moreover, only the dynamic actors move. For this reason,
every Haptic Node declared dynamic is inserted at the beginning of the list, whereas the
static ones are inserted at the end. The Haptic Scene has a function that is supposed to be
called before the new visual rendering of the scene. This functions starts by locking the
Dynamic and Collision Scene Graph, then it parses the list of Haptic Nodes until it finds a
static node. Each time it finds a dynamic node it updates the position of the corresponding
visual object.

The Haptic Scene provides also another interesting functionality. It is able to serialize
and deserialize the content of the Haptic Nodes using a XML file. During the serialization
process, that reads the XML file, a validation is made for guarantying that it is well-formed.
This validation is made according to a DTD (Document Type Definition). The choice of
XML has been made in order to ease the exchange of data in the haptic community. For
this reason, we also created a XSL (XML Stylesheet) document that can converts the data
from our XML format to the COLLADA standard. Examples of XML files, the DTD and
the XSL files can be found in Appendix I: The Haptic Scene file format, page 137.

In the previous sections and chapters, according to the figure 5.1, we have presented
the Two-handed Haptic Device, the Haptic Thread, the Hardware Abstraction Layer and
the Haptic Scene. We will know detail the Collision Engine, the Dynamic Engine and the
Haptic Hand Model.

5.2 Collision detection

Although our knowledge of the laws of Physics has evolved along time, the Newton’s law
of non-penetration, which states that two bodies cannot occupy the same place in space
within the same time interval is still not refuted, at least in which concerns the opinion of
most people. A physical constraint avoids objects of our world to penetrate each other,
and we are used to that. It is essentially because of this fact, that the problem of collision
detection came into the Virtual Reality problematic: virtual objects are also expected not to
penetrate each other. To achieve a realistic system, we have to take into account this fact.

5.2. COLLISION DETECTION 55

Collision detection is a broad topic dealing with a quite simple problem. It consists
in determining if two or more objects are intersecting. Result of this computation is thus
a boolean. However, additionally to the if (...there is a collision) question, we may also
want to know when and where the collision happens in order to properly adapt the force
feedback response.

In this section, we will first briefly review the computation needed to perform the de-
tection of collisions in Virtual Reality and Computer Graphics. Then we will deal with our
implementation of this functionality.

5.2.1 Basics

As mentioned earlier, collision detection is a broad topic. It is even difficult to establish a
classification of different methods. Some methods are exclusively applicable to rigid bodies
while others can be also extended to deformable bodies. Collision detection methods also
depend on the technique used for objects modeling. Methods made for polygonal objects
cannot be applied on objects constructed by CSG, for example. In addition, some methods
for collision detection are intimately related to collision avoidance methods, some are able
to detect self-collisions, others are not. In the context of building a manipulation engine,
we will first focus on rigid bodies. Deformable objects (fabrics, liquids, etc.) are much
more difficult to manage because they react differently to the collisions.

In terms of collision detection, a rigid body is described by its geometry. In this sub-
section, we will deal at first with computing intersections between two objects, and then
present methods for efficiently retrieving every collisions within a scene using some opti-
mizations necessary to achieve real-time.

5.2.1.1 Intersection of two geometries

Basically, detecting collisions means checking the geometries of the target objects for inter-
penetration. Mathematics and Geometry give enough tools for that, what is usually called
static interference test. We can extract two types of methods :

• Distance Calculation. This kind of algorithm start by determining the closest ele-
ments of each objects (usually located on face, edge or vertex). This can be done
by using brute force or stochastic (Monte-Carlo) methods for example. Then the
Euclidean distance between both objects can be calculated, and a negative distance
indicates a collision or a contact. [81]

• Intersection Tests. Intersection tests are efficient when the geometry or the kind of
primitive is known. Given two spheres A(CA,rA) and B(CB,rB), an intersection exists
if |CA −CB| < rA + rB. But usually, a Virtual Environment is not only composed by
spheres, and Computer Graphics provides mainly triangle meshes. Triangle-triangle
intersection test can also be done efficiently [82], but in the case of complex objets
with many triangles, it could require a potentially huge number of tests.

56 CHAPTER 5. REALISTIC TWO-HANDED MANIPULATION

To put in a nutshell, detecting collisions between two primitives (like sphere, box, or
capsule) is not really time consuming, but complexity greatly increases when dealing with
triangle meshes. But as most of the visual 3D models available are made with triangles
and not with the simple cited primitives, there is a strong need detecting collision between
general polyhedra.

As pointed out in [78], intersection detection between two complex polyhedra with
n and m vertices can be done in linear time in the worst case : O(nm). Using a proper
preprocessing, complexity can even drop to O(logn logm) [39]. The preprocessing takes
O(n + m). However, convex polyhedra is a subset of all possible polyhedra, and handling
the general polyhedron case is qualitatively more difficult.

Therefore, instead of managing the general polyhedron, a possible solution is to de-
compose it into convex parts in order to be able to use the algorithm cited in [39]. This
decomposition can also be performed as a preprocessing step. However, the performance
of this step depends of the complexity of the preprocessing and of the quality of the result-
ing decomposition. The minimal decomposition problem is known to be NP-Hard [5]. But
earlier, Chazelle proposed an algorithm that can always partition a polyhedra in O(n2).

In this subsection, we have seen that the efficiency of the inference test between two
geometries is strongly dependant of the nature of the geometries, the general polyhedron
(triangle mesh) being the worst case. Unfortunately most visual 3D models are made with
triangles. Thus, simplifying these models seems to be essential for increasing the perfor-
mance and the quality of the haptic feedback. We present our method for simplifying the
meshes in 6.2.

5.2.1.2 Collision detection in a complex scene

In the previous subsection, we dealt with collision between two given geometries. How-
ever, a normal scene is composed by several geometries (n). A naive solution for retrieving
every collisions consists in making the static inference test between every couple of ge-
ometries: it represents exactly n×(n−1)÷2 tests, showing a O(n2) complexity. However,
there are usually very few collisions, and testing every pairs is a loss of time. In this sec-
tion, we presents three basic optimizations aiming at making the static inference test only
in the cases that are doubtful.

As shown in the previous subsection, directly testing the geometry of two objects for
collision against each other could be expensive. To minimize this cost, object bounding
volumes could be tested for overlap before the geometry intersection test. A bounding vol-
ume is a single simple volume encapsulating an object that has a more complex nature. The
main idea is that this simpler volume has a cheaper overlap test, and that a complex mesh
does not collide with another one if their bounding volumes do not collide themselves. The
choice of the bounding volume characteristics is important. As shown on figure 5.4, it is
a trade-off between intersection test cost and tight fitting of the volume. A large bounding
volume could result in a false positive collision and thus, reduce the performances. Our
method uses axis-aligned bounding boxes because they are easy to compute, easy to in-

5.2. COLLISION DETECTION 57

tersect and require less memory. In case of false positive collisions, it does not strongly
reduce the performances because we made the choice to approximate the objects with sim-
ple primitives (see section 6.2).

Bounding sphere
Axis-Aligned

bounding box

Oriented

bounding box
Convex Hull

Figure 5.4: Types of bounding volumes

Second optimization is really simple. It comes directly from the fact that, in a normal
realistic life scene, only few objects are moving. Thus, every static object that are not
colliding a time t could not be colliding at a time t +ε . Thus, during the animation process
(which will be described in 5.3), we mark each object that do not move. And then when
we parse the pairs of objects, we do not even call the static inference test if they are both
disabled. This optimization is very efficient because it replaces the static inference test,
which can be complex by two simple bit tests. However, this method do not reduce the
number of pairs of object tested.

The third optimization is related to the fact that two relatively small and distant objects
could not intersect. So it is not useful to test these kinds of pairs. Two main approaches
exists for classifying the objects. First approach consists in organizing the objects in a
Binary Space Partition Tree (BSP-trees) [85]. This approach is efficient when the scene
can be preprocessed. But, in our case, it is not possible because a scene can possibly
contain a lot of dynamic objects. Second method is called Spatial Partitioning. It consists
in dividing the space into regular regions and to test only the objects belonging to the
same region. Many techniques exists: uniform grid, quadtree [100], octree [6], or their
generalization, the k-d tree [14] [46]. A good study on advantages and disadvantage of
these methods can be found in [59].

These combined optimizations greatly increase the performance of the collision detec-
tor.

5.2.2 Conclusion

In this section, we first presented techniques for detecting collisions between two geome-
tries. We conclude that simplifying the complex objects into simple geometries saves a lot
of computer resources. Then, we have presented optimizations used to speed up the pro-
cess when dealing with many geometries. These optimizations are needed for achieving
realtime performances.

58 CHAPTER 5. REALISTIC TWO-HANDED MANIPULATION

Root

obj1

obj2

obj3

obj4

obj5

obj6

obj7

obj2

obj1

obj2

obj1

Root

Vox1

Vox2

obj3

obj4

obj7

Vox6 Vox7.1

Vox7.2

Vox7.8

obj1

obj6

obj2

Vox6 obj5

Root

obj6

obj2obj3

obj6

obj4obj1

Abo
ve

P
lan

e1
Below

Plane1

Abo
ve

Pla
ne

2

B
elow

Plane2
obj1

obj6

obj5

obj4

obj2

obj3
Plane 1

P
la

ne 3

P
la
n
e
 2

Figure 5.5: A BSP-tree above and Spatial Partitioning technique below.

5.3 Dynamic animation

People are also used to diverse reactions of the objects when submitted to conditions to-
ward the violation of the non-penetration law. Some objects bounce on each other, some
deform, some others break; they generally produce sound when colliding, sometimes heat.
In Virtual Reality, modeling objects reproducing such phenomena is a big issue on increas-
ing the realism of a scene. Moreover in a context of realistic manipulation, it is absolutely
necessary to provide such mechanism. In Physics, the branch of the classical mechanics
which is concerned with the motion of bodies is called dynamics. In Computer Animation,
we can distinguish two kinds of dynamics:

• Forward Dynamics: the movements are calculated from the forces acting on a body.

• Inverse Dynamics: constraints are applied which specifies how objects interact, for
example, they may be linked by a hinge joint or a ball joint, and from this the forces
can be calculated.

In our system, we use these two kinds at the same time.

A Virtual Environment is composed by moving objects. In this section we refer to a
body when we are dealing with an object with dynamic properties. A body is composed by
3 main parameters:

• The mass m, which is a scalar value.

5.4. IMPLEMENTATION OF PHYSICS 59

• The center of gravity G, a 3 dimension position vector relative to the body local
frame. Forces acting on a body are applied to this specific point.

• The inertia tensor I, a 3×3 matrix, which represents the angular moment of inertia.
More generally it describes how difficult it is to change the angular motion of a body
about the main axes.

Forces acting on a body tend to move it (displacement and orientation). To calculate the
resulting change of position we use the Newton laws (especially the second one), and the
resulting change of orientation could be computed using the Euler’s equations of motion.
Here are the two laws:

∑F = mẍG , and ∑T = IAα̈ , where : (5.1)

F and T are the the forces and torque applied on the rigid body.

m, G, I, are the mass, center of gravity, and inertia tensor.

x, α are position and orientation of the rigid body.

To solve the equations 5.1, we can distinguish the approximates methods or the analytic
methods. One of the most frequetly used in computer animation is the Euler Integrator
which is explained in [7]. In [87], Otaduy and Lin present a good review of these techniques
when applied to haptic rendering.

In our framework, the rigid body animation is used in two contexts: the first one is to
realistically animate the Virtual Environment. The second one is to implement the hand
model.

5.4 Implementation of Physics

In this section, we propose a study on the implementation of the Collision and Dynamic
Engines. A Physics Engine is a middleware that combines these two components together.
Some years ago, it was necessary to write its own collision detector and to manage the
collision response in order to perform rigid bodies animation. But, the research in this
field and the increased computational power lead some groups to release publicly available
Physics Engine. A review of existing Physics Engine can be found in [18].

Historically, in MHaptic, two engines were successively implemented: the Open Dy-
namic Engine (ODE), which is an open-source constraint-based engine that uses a Euler
Integrator. The second one is the NVISIA PhysX, previously named Novodex and owned by
AGEIA. This one is free to use (even for commercial applications) but sources are not in-
cluded. ODE has some important features that are difficult to manage. For example, each
geometry must have a local frame that is centered on it. And it is impossible to change
it. In our context, the problem is increased, because we want to interact and manipulate

60 CHAPTER 5. REALISTIC TWO-HANDED MANIPULATION

existing Virtual Environments without modifying them. Thus, we need to perform sev-
eral coordinate system changes to synchronize the visual and physical representations of
a single object. This task is really tedious. Moreover, when very high values of forces
and torques are applied on joints, typically when the user tries to squash an object with his
hands, they degenerate. This is really annoying because our implementation of the hand
uses such joints. Opposingly, joints in NVIDIA PhysX do not generate because it is much
more numerically stable, and the geometries could have arbitrary coordinate system.

Moreover, every optimizations presented in 5.2.1.2 could be easily integrated with
PhysX. Thus, it appears that this library provides almost every tools that we wanted in
order to implement a framework for two-handed haptic interacting with generic Virtual
Environments.

5.5 Haptic Hand Model

In the two previous sections, we presented a way to physically animate the virtual objects.
The main advantages of using this method is that when we exert external forces on virtual
objects, we do not need to provide specific behaviors (using scripts). But it means also that
the virtual hands should be modeled with respect to the same approach.

In this section, we present a powerful model of virtual hands in the context of haptic
manipulation.

5.5.1 Approach and implementation

Several approaches have been primarily tested based on different methodologies. In this
subsection, we present the two techniques that were implemented and tested.

5.5.1.1 Direct Mapping

It consists in positioning a virtual interaction point at the same position than the device itself
(hard link). This is the most trivial solution, and seems also to be the easier to implement
(but we will show later that it is finally not the case). The calibrated position, rotation and
posture of the hands are directly mapped onto the the virtual hand. The hand model is thus
composed with collision geometries and with a skeletal animated visual mesh that uses
skinning techniques for increasing realism. The idea behind this technique is to compute
collisions between the hands and the virtual objects and to apply a realistic force-feedback
for avoiding the collisions.

As presented in 5.2, the collision detector returns if and where two objects collides.
This second information is used to compute the force feedback. For example, if the finger-
tip enters into a table, two points are returned:

5.5. HAPTIC HAND MODEL 61

PD

Object Surface

Force Feedback

Hand Movement
(a)

(b) (c)

PD

PD

Pi

Pi

Pn

Pn

Pn

Pn

Figure 5.6: Force feedback Computation based on penetration distance

• The deepest point of the phalanx into the table (PD on the figure 5.6)

• Another point Pn laying on the table surface that is the closest as possible of PD

The vector
−−→
PDPn determines the direction of the force feedback, and its norm Δ = |PDPn|

is used to compute the magnitude of the reaction force. This method gives the impression
that an elastic with a zero rest length is link between Pn and the fingertip resulting in a
force F = −kΔ. As for every virtual elastic, it is possible to change the spring constant
k. In order to avoid the resonance, due to the fact that the user’s fingertip is oscillating
between a “inside-object”/“outside-object” state, it is also possible to add a damping factor
d for smoothing the force magnitude: F = −(kΔ + dΔ̇). In fact, damping is critically
important, due to its role in counteracting the energy generation from errors introduced by
sensing and discrete time.

The first difficulty with this method is to deal with user’s movement. The figure 5.6
presents three particular cases. The first one 5.6(a), shows the resulting force feedback
when the user displaces his hand on the surface of a spherical object. We can observe
that the force seems to be smooth and the variation of direction gives the impression that
the object is a sphere. However, the two other examples presenting a hand moving on the
surface of a table (see figure 5.6(b) and 5 5.6(c)) are showing force continuity breaks at
particular points Pi. They are due to the fact that the collision detector returns the closest
point to Pi laying on the object surface. We can imagine many solutions to avoid this

62 CHAPTER 5. REALISTIC TWO-HANDED MANIPULATION

specific problem, but in fact, each solution will present an inconsistency in a particular
context.

The main source of problem with this solution comes from the Haptic Workstation
itself. The break sensation in force continuity increase with the penetration depth (because
force magnitude is greater). Our haptic device is not powerful enough to counterbalance
the weight of an arm resting on a table (or barely). Thus, penetration distances can become
great and the perception of a break increases.

Another problem to mention which is related to the Haptic WorkstationTM appears
when the force feedback could be applied on several actuators at the same time. The figure
5.7 presents two cases when it happens. The first one happens shows user’s fingers in
contact with the border of a table. When the fingers penetrates into the virtual table, a
resistive force has to be applied. But, it raises a question:

Should we apply the force feedback on the wrist through the CyberForceTM,
or on the fingers through the CyberGraspTM,

or even on a mix of both ?

Figure 5.7: Where should we apply the force feedback ?

In fact, it is impossible to answer to this question by examining a single frame at a
single time. The reason is that it depends of the muscular tension of the wrist and fingers.
If the user locks his wrist and that finger muscles are resting, the force feedback should be
mainly sent to the CyberGraspTM(and opposingly of course). If every muscles rest, force
feedback should be applied on the two devices at the same time. The same problem appears
when two hands are in contact with the same dynamic object. In this case, it is not trivial
to compute the force magnitude on the CyberForceTM, because each hand transmit force
through the virtual object to the other hand. As our Haptic WorkstationTM is a passive
device, we only know the position of the hands, and not the forces applied by the hands

5.5. HAPTIC HAND MODEL 63

on the system. This is the reason why it is impossible to answer to the question using a
single state of simulation. However, by examining many consecutive frames, we can get an
approximation of hand’s speed and acceleration. Then, because of the relation ∑

−→
F = ma,

it is at least possible to approximate the force divided by the mass.

Finally, with the direct mapping method, there are visual inconsistencies due to the in-
terpenetration of hands and object resulting in a break in presence [103]. It does not satisfy
the law of non-penetration. Here again, the limited force of the Haptic WorkstationTM is the
source of the problem. Moreover, it does not ease the computation of the force feedback,
and some specific examples shows that it could introduce discontinuities in force direction.
We present another solution in the next paragraph. We choose it for avoiding these two
problems.

5.5.1.2 Mass Spring Hand Hand

Real Hand Hand after Tracking
and Calibration

Mass-Spring
collision Hand

Visual Hand

Extract
posture

Constraint
posture

Match
exactly

Figure 5.8: The three Hand models

Our second technic consists in using a “god-object” or a proxy-based method [120]. A
proxy is weakly linked to the position of the device, i.e the Haptic WorkstationTM. Basi-
cally, it consists in three hand models (see figure 5.8):

• The Tracked Hand (shown in wireframe on the figure). It is in fact the virtual hand
skeleton created after calibration. It is supposed to be the exact representation of
the real hand position orientation and posture into the Virtual Environment. It is of
course not the case, but we assume that the matching is correct.

• The Proxy (Volumes shown on the figure), which is a mass-spring-damper system
that has the shape of the hands. Each phalanx and the palm is composed of a collision
geometry, and has also dynamic properties. These elements are linked together with
motorized joints parameterized with springs and damping coefficient.

• The Visual Hand. This is the hand that is visually rendered and the only one visible.
It is easily created using the MVisio visual rendering engine [94].

For each hand, the idea is to couple a proxy hand to the tracked hand using a set of
virtual linear and angular springs. As a result of the dynamic simulation, the spring-hand
tends to follow the tracked-hand. The visual hand displayed to the user reflects the spring-
hand configuration.

64 CHAPTER 5. REALISTIC TWO-HANDED MANIPULATION

This approach follows the “proxy” method proposed for the Phantom (a single-point
interaction device), extending it to the whole hand. It has been firstly described by Borst et
al. [20]: they applied it to the CyberGrasp force feedback device which is also a component
of the Haptic WorkstationTM.

It solves the problem of interpenetration between the visual hands and the environment
(mentioned in 5.5.1.1) because the spring-hands adapt their pose on the surfaces of the
objects. Spring-Hands have basically two constraints:

• A soft constraint which is to
match the best as possible the
configuration of the tracked
hands. This is achieved by
applying specific force and
torques on the linear and
angular springs.

• A hard constraint which is to
avoid penetration within vir-
tual objects. This is achieved
simply by activating the col-
lision detection between the
phalanxes/palm rigid bodies
and the objects of the Virtual
Environment.

The spring-hands are created using dynamic rigid bodies. To match the posture of
the hands, we use two kinds of geometrical primitives. For each hand, the phalanxes are
approximated with capsules and the palm with a flat box. Then, these rigid bodies are
linked together using spherical joints (3 angular DOF). Some of them could be replaced by
hinge joints (only 1 angular DOF) though we did not notice any problem with this method.
By linking the geometries together with those joints, we get an articulated hand. Finally, an
angular spring is attached to each joint. These springs will give a torque to the phalanxes
according to the angles of the tracked hand. As a result, the fingers of the spring-hand
will follow the fingers of the tracked-hand. The torque τ applied by the spring on the
articulation made of an angular joint is computed as follow:

τ = k(αs −αt)−d(ωs −ωt) , where : (5.2)

k, d are the spring and damping of the angular joint,

αt , αs are respectively the angles of the tracked hand and of the spring-damper hand,

ωs, ωt are angular velocities of the phalanxes on the tracked hand, and on the spring-
damper hand

5.5. HAPTIC HAND MODEL 65

The spring constant defines how stiff the torque is applied to the fingers. An high
value will provide a more reactive behavior but will suffer from vibrations. The damping
constant allows the torque to be reduced according to the respective angular velocities of
the joints. It avoids the vibrations of the fingers but provides a smoother reaction. These
two parameters are set empirically. More details can be found in section 6.1.

By the same manner, to allow the translation and the rotation of the hands in the virtual
world, one linear spring (3 DOF) and one angular spring (3 DOF) are attached to the base
of each hand. Therefore, when the user moves the wrists, these two springs respectively
apply a force and a torque, allowing the base of the spring-hand to follow the base of the
tracked-hand. The linear spring provides a linear force F as follow:

F = kt(pt − ps)−bt(vs − vt) , where : (5.3)

kt , bt are the spring and damping constants,

pt , ps are positions of the tracked and spring hands,

vs, vt are velocities of the spring and tracked models.

The torque that is applied by the angular spring is more complex as it depends on the
direction of the hands. As a result the spring torque vector and the damping torque vector
usually do not point in the same direction.

In the NVIDIA PhysX library, it is possible to directly attach linear and rotational springs
to the joints. The spring constant k and the damping constant b are both parameterizable.
According to the SDK documentation, it is preferable to adopt this solution than computing
the forces and torques and apply them manually to the phalanxes. The reason is that it
may be quickly instable for stiff spring and forces due to a limitation of the numerical
integration used to advance time from one time step to the next. Internally, the joints use a
drive constraint in which the springs are implicitly integrated within the solver. This is the
best way to model stiff behavior for stable simulation. We followed this recommendation
as the spring constants are necessarily very high to ensure that the spring-hands follow the
user’s moves as close as possible.

In fact, it implies that the forces and the torques are not applied directly as presented
previously. Instead, we give angular orders to the drives (motors) of the joints and the
Physics Engine integrates these values to internally produce the forces and the torques.
However, the model presented here is still perfectly valid in our case and represents the
real behavior of our simulation.

In the previous paragraphs, we have exposed the concepts and techniques related to the
Mass Spring Hand. However, we did not clearly present its implementation. The figure 5.9
schematizes the data structure, and present also the standard pipeline going from calibrated
haptic data to visual hand model.

To put in a nutshell, the Haptic Hand Model is a data structure which contains three
different hands. Internally, the tracked hand is stored as a hierarchy of positioning matrices.

66 CHAPTER 5. REALISTIC TWO-HANDED MANIPULATION

Mass Spring Hand Model (Proxy)Tracked Hand Visual Hand
Each Node stores a 4×4 Matrix

in local coordinate system

Each node contains an

angle value. The root has a

matrix expressed in world

coordinate system

tracked

pa lm

Phalanx

T hum b 1

Phalanx

T hum b 2

Phalanx

Pinky1

Phalanx
Pinky 2

Phalanx

Pinky 3

a b c d
e f g h
i j k l
0 0 0 1

geom

body

geom

body

geom

body

proxy

pa lm

Phalanx

T hum b 1

Phalanx
T hum b 2

palm Joint

thum b 1Joint

Phalanx

Pinky1

Phalanx
Pinky2

pinky2 Jointthum b 2 Joint

pinky1 Joint

geom

body

a b c d
e f g h
i j k l

0 0 0 1

a b c d
e f g h
i j k l
0 0 0 1

a b c d
e f g h

i j k l
0 0 0 1

geom

body

a b c d
e f g h
i j k l
0 0 0 1

a b c d
e f g h
i j k l
0 0 0 1

Nodes are linked with joints . Joints have

motors. Nodes contain a body and a geometry

positionated in world coord . system
roo t

pa lm

Phalanx

T hum b 1

Phalanx
T hum b 2a b c d

e f g h
i j k l
0 0 0 1

a b c d
e f g h
i j k l

0 0 0 1

a b c d
e f g h

i j k l
0 0 0 1

Wo rld Wo rld

Wo rld

Wo rldWo rld

Wo rld

a b c d
e f g h
i j k l
0 0 0 1

L o ca l

a b c d
e f g h

i j k l
0 0 0 1

a b c d
e f g h
i j k l
0 0 0 1

a b c d
e f g h
i j k l
0 0 0 1

L o ca l
L o ca l

L o ca l

L o ca l

Phalanx
Pinky1

Phalanx

Pinky 2

Phalanx
Pinky 3

a b c d

e f g h
i j k l
0 0 0 1

L o ca l

a b c d
e f g h
i j k l
0 0 0 1

L o ca l

L o ca l

root
a b c d

e f g h
i j k l
0 0 0 1

pinky1
a b c d
e f g h
i j k l
0 0 0 1

...

pinky2

index 3

a b c d
e f g h
i j k l
0 0 0 1

a b c d
e f g h
i j k l
0 0 0 1

pinky3
a b c d

e f g h
i j k l
0 0 0 1

Visual Hand
Structure

The copy of the

geometries 4×4

Matrices

Pipeline

Fo r ro o t

n o d e :

Fo r o th e r

n o d e s :

(pos, rot)

angle

a b c d
e f g h
i j k l
0 0 0 1

Wo rld

a b c d
e f g h
i j k l

0 0 0 1

L o ca l

a b c d
e f g h
i j k l

0 0 0 1

Wo rld

a b c d
e f g h

i j k l
0 0 0 1

Wo rld

directly

Convert local coord. system

to world coord. system

Ask motor to try to reach

the position

Send to

motor

a b c d
e f g h
i j k l
0 0 0 1

Wo rld

a b c d
e f g h
i j k l
0 0 0 1

Wo rld

After animation

a b c d
e f g h
i j k l
0 0 0 1

Wo rld

Lock,

copy,

unlock

Lock, convert to

local coordintate

system, unlock

a b c d
e f g h
i j k l

0 0 0 1

Wo rld

a b c d
e f g h
i j k l
0 0 0 1

L o ca l

geom

body
a b c d

e f g h
i j k l
0 0 0 1

The angle value of the tracked phalanx is applied to the mass spring system motor. Then position of mass-spring phalanx is applied to visual handIn english:

Figure 5.9: The Haptic Hand Model, and its embedded data structures

Then, the Proxy hand, which is the most complex, is stored as a hierarchy of PhysX actors
(an actor is a combination of one or more geometries and a body). The links of the hierarchy
are 6DOF joints (with distance constraints and angular limits). And each joint has a motor
linked to it. The motor acts mainly on the second body of the joint. Finally, the visual hand
model is also stored as a matrix hierarchy, combined with an MVISIO skinning mesh.

As shown on the figure 5.1, two modules need an access to the Haptic Hand Model, the
first one being the Collision Engine, while the second one is the Visual Rendering Engine.
As these modules run in different threads and need the same data, we have to synchronize
them. We chose to perform this synchronization at the visual hand model level, by mutually
excluding the positioning matrices stored in the visual hand structure of the figure 5.9.

Thus we provide two functions: the “Hand Model Update” Function is called by the
thread containing the Physics Engine. We present it in the Algorithm 1, and we can see
that it follows strictly the pipeline of the figure 5.9. In this algorithm, we can notice that
the visu variable contains in fact a simple copy of the matrices positioning the geometries.
Thus, the last part of the algorithm is executed quickly, and the lock time on visu is not
long.

On the other side, the “Get a Visual Hand Model” Function gets a copy of visu, then
converts the matrices that are in the world coordinate system into matrices in local coor-
dinate system (based on the hierarchy), and finally applies it directly to the bones of the
MVISIO hand model.

In this section 5.5.1, we have presented two approaches that have been chronologically

5.5. HAPTIC HAND MODEL 67

Algorithm 1 Hand Model Update
Require: track : A tracked Hand Model
Require: proxy : A Mass Spring Hand Model
Require: visu : A Visual Hand Data Structure

{Initialization of local variables. This is a synchronized access managed by the }
pos ← Calibrated Hand Position
rot ← Calibrated Hand Rotation
angles ← Calibrated Gloves Angles List

{First, we convert the angles directly to the proxy model}
track.pos = CreatePositioningMatrix(pos,rot)
track.pinky3.matrix = CreateAroundXRotationMatrix(angles[0])
track.pinky2.matrix = CreateAroundXRotationMatrix(angles[1])
... {And so on for every angles}

{Then, we send the orders to the mass spring hand motors}
proxy.pos = track.pos
proxy.motorPinky1To2.reachWorldPosition(track.pinky2.getWorldMatrix())
... {And so on for every motor}

{Finally, we store the data for easily creating the visual model. It is also a synchronized
access}
Lock visu
visu.pos = proxy.pos
visu.pinkydistal.matrix = proxy.pinkyproximal.geom.matrix
... {And so on for every visual phalanx}
Unlock visu

implemented. The first one shows many disadvantages that convinced us to use the second
solution. In the next sections, we discuss the computation of the force feedback using the
mass spring hand.

5.5.2 Force feedback Computation

The mass spring hand model provides an elegant way to compute the force feedback. When
a collision with the hand occurs, it is indeed easily possible to compute the distance be-
tween the position of the tracked hand and the position of the mass-spring system. Then,
we send these two positions to the Hardware Abstraction Layer (see subsection 5.1.2.1),
especially in the CyberForce and CyberGrasp data structure. Then, the Haptic Thread get
these data at a high refresh rate, and is able to compute a force for making the tracked hand
to match the position of the mass-spring hand. The force magnitude is of course propor-
tional to the distance between the two models. On the figure 5.10 (page 71), we can see the
difference between the two positions of the tracked and mass spring hands. The resulting

68 CHAPTER 5. REALISTIC TWO-HANDED MANIPULATION

forces are represented by the arrows. The advantage of the method is that the forces are
refreshed according to the lastly updated positions, near 1 KHz, whatever the speed of the
collision engine. The disadvantage is that during the real hand movement we can miss
some collisions. This occurs only with small objects: for a hand speed of 1ms−1, and at
300 Hz, the detector checks collisions every 3 mm. This is the concept of force feedback
computation.

However, the previous paragraph did not mention some details. The CyberGrasp is an
unilateral device. Thus some collisions could not be managed. To solve this problem, when
we compute the difference vector between the tracked and mass spring hands, we also get
the vector that is normal to the nail (the nail’s normal vector is aligned with the string of
the Cybergrasp). Then, if the scalar product of these two vectors (after normalization) is
positive, it means that the CyberGrasp should produce force.

The Collision and Dynamic Engine are running in the same thread. It is their results
that are sent to the Hardware Abstraction Layer. The algorithm 2 resumes what they are
doing. On the other side, the Haptic Thread gets these results and computes the forces.
This is presented for the CyberForceTM in the algorithm 3. In this algorithm, k is a variable
that takes into account the conversion to Newtons found in 4.2.3 and that can vary over
time to perform some kind of low/high-pass filtering.

We mention also that using the same method we are able to compute the torque. In
this case, when using Euler angles, the computation of the (minimal) angle between two
rotations is less straightforward than the distance between two positions. But when using
quaternions to represent the rotations, it is immediate. Unfortunately, because the Cyber-
Force is an underactuated device, we never tested it.

5.5.3 Benefits for manipulation using two-hands

In this section, we will show that the mass-spring hands presents many advantages in the
context of two-handed haptic interaction.

The first advantage concerns the visual feedback. We have seen that when using this
system, the visual hand do not penetrate anymore into the virtual objects. However, it
induces a problem often called visual-proprioceptive discrepancy. This problem occurs
when the virtual hand is for example stopped by a table. It is then possible that the real
hand is not at the same position that the virtual one (Position discrepancy). It is also
possible that the real hand moves but the visual one does not (Motion discrepancy). This
is of course something that the user could notice. The question is then to know which
anomaly is noticed the first. In [26], Burns et al. investigate users detection threshold for
visual interpenetration and visual-proprioceptive discrepancy. Conclusions show that we
are much more sensitive to interpenetrations. We can thus conclude that the spring-hand
model present an advantage over the direct mapping technique in terms of presence.

The second benefit that we have presented concerns the computation of the force feed-
back. In the case of interaction through a single-point device using for example a Phantom R©,

5.5. HAPTIC HAND MODEL 69

Algorithm 2 Collision detector and Dynamic Engine Thread
Require: track : A tracked Hand Model
Require: proxy : A Mass Spring Hand Model

while Simulation is Running do
Call Hand Model Update Function (Algo. 1) {First, we need to update the Hand
model}
listLe f t ← Collision of Left Hand with Geometries
listRight ← Collision of Right Hand with Geometries
listOb j ← Collision of Geometries with Geometries
Call Animate every objects {including the hands...}

for all collision in listLe f t do
{We check which part of the Left Hand collides}
if collision.geom1 = proxy.thumb1.geom or collision.geom1 = proxy.thumb2.geom
then

{We have a collision with the left thumb, we compute the distance vector}
vector dist ← (collision.geom1.pos− track.thumb2.pos)
vector norm ← the normal to the thumb’s nail
if dist ·norm ≥ 0.0 then

CyberGrasp.setForceT humb(proxy.thumb2.geom.pos, track.thumb2.pos,dist ·
norm)

end if
else if collision.geom1 = proxy.index1.geom ... then

...

... {We perform the same for each finger}

...
else if collision.geom1 = proxy.palm.geom then

CyberForce.setForce(proxy.palm.geom.pos, track.palm.pos)
end if

end for

for all collision in listRight do
contacts[6] = true;
... {Same computation with Right Hand}

end for
end while

70 CHAPTER 5. REALISTIC TWO-HANDED MANIPULATION

Algorithm 3 Haptic Thread CyberForce Computation
while Haptic thread is Running do

(pos,rot) ← Raw data coming directly from the two-handed device
{We store the updated position in the Hardware Abstraction Layer}
CyberTrack.setPosition(pos,rot)
pos2 ←CyberForce.getMassSpringPos()
if ‖pos2− pos‖ ≥ ε then

sendForce(‖pos2− pos‖× k)
end if

end while

the force feedback computation is greatly improved due to the proxy. As mentioned earlier,
it removes the strange behavior that usually happens when we compute forces according to
the penetration distance.

Finally, this method has also a third advantage. It implicitly computes the forces ap-
plied by the user on the virtual object, as illustrated on figure 5.11.

These improvements strongly increases the realism and thus the immersion of the user
into the virtual environment. We try to simulate the best as possible the reality and its
physic. This implies a better learning curve of the manipulation system, and requires less
adaptation from the user. The efficiency of many applications is improved because users
could focus on the simulated task only, and not on the way to manage the simulation itself.

5.6 Summary

In this chapter, we presented MHaptic. It is a software library for performing efficient
haptic interaction and virtual manipulation with a two-handed device. We gave at first a
general organization of it, showing that parallelization is a promising technique for creating
such library, because the different components do not have the same refresh rate. More-
over, we showed how to optimize the transfer of data between these components, without
compromising the integrity. Then we explained the needs in term of collision detection and
realistic animation engine. We found that the NVIDIA PhysX Physics Engine was efficient
according to these needs. And finally, we proposed a powerful hand model that allows
realistic manipulation with two hands combined with a convincing force feeling.

However, even if this library has a powerful architecture and provides state of the art
algorithms to interact with some virtual objects, it is not enough to tell that we achieved
the interaction with any Virtual Environment. One of the main reason is that usually a
Virtual Environment do not include object properties necessary to their animation or to the
computation of the force feedback. Starting from this constatation, we propose to add to
the MHaptic library a tool that can be used to easily add such properties to an existing
visual Virtual Environment.

5.6. SUMMARY 71

Figure 5.10: The computation of the forces for the CyberForceTM, and CyberGraspTM

Figure 5.11: The implicit force estimation process done by the mass-spring system

Chapter 6

Manipulation in Generic Virtual
Environments

WHEN DEALING WITH two-handed virtual interaction using a haptic device, the ulti-
mate goal is to be able to manipulate and interact with any kinds of Virtual Environ-

ments as if they were real. It is of course impossible. We are still far to visually simulate
the reality despite all the efforts and the progress in visual rendering during the two last
decades. But we can however consider that a high level of realism has been achieved
(shown on figure 6.1). In Haptics, the evolution is much more slower. The device has lim-
its that are difficult to handle, and these limits are not only due to computer sciences and
electronics, but mainly to mechanics.

Figure 6.1: Real Scene on the left and Realtime Rendered image on the right using the
CryEngine 2 made by Crytek.

Our main goal is to interact with a Virtual Environment using the two hands via the
Haptic WorkstationTM, to feel the forces exerted by the virtual objects, and to minimize

73

74 CHAPTER 6. MANIPULATION IN GENERIC V.E.

the learning curve of a given application. We also want to ease the work of the application
programmer in the sense that he should be able to quickly build a Virtual Environment that
has the properties mentioned.

In this chapter, we present some ways to achieve these two goals. The first section deals
with the parametrization of the mass-spring model of the virtual hands, while the second
section presents an authoring tool intended to add haptic information to the objects of an
existing visual Virtual Environment.

6.1 Parametrization of springs, damper and surfaces

In the mass-spring system presented in section 5.5.1.2, it is possible to parameterize many
coefficients presented in the following list. These parameters are important because they
can alter the quality of the simulation. In this section, we present an analysis for tuning
these parameters according to the kind of application.

Here is a list of these parameters:

• The Coulomb friction coefficients and the bounciness of the geometries constituting
the hand.

• The Coulomb friction coefficients and the bounciness of the Virtual objects.

• The mass of the palm and phalanxes.

• The spring and damping constant of the phalanxes joints.

• The spring and damping constant of the 3DOF translational wrist joint.

• The spring and damping constant of the 3DOF rotational wrist joint.

We examine at first the friction and restitution of the Virtual Environment objects and
of the hand’s masses. We then study the parametrization of the springs a dampers of the
phalanx joints.

6.1.1 The Coulomb Friction and the Restitution

In this subsection, we present three values that are important because they can greatly alter
the difficulty of the manipulation. When hands are in contact with an object, they exert a
force on it. But, as in reality, the forces are not sufficient to grasp object. Indeed, the friction
has a really important role which is to avoid that the object slides. Friction and restitution
are coefficients that need to be tuned for increasing the realism of the manipulation.

Friction is the force resisting the relative motion of two surfaces that are in contact.
When two contacting surfaces move relative to each other, the friction between these ob-
jects converts the kinetic energy into heat. This effect prevents objects from sliding as

6.1. PARAMETRIZATION OF SPRINGS, DAMPER AND SURFACES 75

m

P

Ff

Cg

N

If Ff + P + N > 0 Object slides

If Ff + P + N = 0 No movement

Figure 6.2: Friction helps us to grasp objects

shown on figure 6.2. In our framework, we should be able to manipulate the objects in the
virtual environment easily. Thus, we should prevent that objects slide though the hands,
and opposingly, we should prevent that they stick.

The Coulomb friction is a model to describe friction forces using the equation 6.1. It is
in fact an approximation of what happens in reality and not an exact representation of the
real physical interactions. The coefficient of friction is a dimensionless positive quantity
and could not be calculated: it has to be set empirically or measured experimentally and
depends on the two objects that are in contact.

Ff = μFn , where : (6.1)

Ff is the force exerted by the friction,

Fn is the normal force exerted between the surfaces,

μ is the coefficient of friction, either static or dynamic friction depending on the rela-
tive movement.

We can distinguish two friction factors: the dynamic friction, and the static friction. In
the example of the figure 6.2, the initial minimal force to get the cube moving is modulated
by the static friction factor. When the cube is already sliding, the dynamic friction repre-
sents the force resisting to the movement. Usually the dynamic friction coefficient value is
smaller than the static coefficient.

The restitution (bounciness) is a coefficient that represents the ratio of the speed of a
moving object, from when it hits a given surface to when it leaves the surface.

In the physics library used, these coefficient are assigned on a per-object basis. This
does not reflect reality, because both friction and restitution are really properties of pairs
of materials rather than of single materials. However, providing values for every possible
combination of materials that may touch is probably not feasible because it is proportional
to O(n2), where n is the number of materials. Instead, an effective value for the property
in question is generated whenever two objects of different materials interact by using a

76 CHAPTER 6. MANIPULATION IN GENERIC V.E.

function to combine the two coefficients. This function can be the average, the minimum,
the maximum, the addition or the multiplication.

We choose to have interactions between virtual objects (not including the hands) that
are not completely correct. Thus, we are empirically setting the friction coefficients of the
materials according to standard tables [112], and then we perform a mean of the two mate-
rials that are in contact. It creates some errors. However with this method, we obtain results
that are visually convincing, due to the fact that it is difficult for a human to estimate friction
coefficient using only visual cues. Thus, it is difficult to perceive an incoherence between
visually estimated friction and the knowledge of virtual object’s material. Concerning the
restitution coefficient, we are also combining values using the average function.

A particular attention should be taken to set the coefficients of hand’s geometries. The
main problem comes from the static and dynamic friction. We found indeed that a small
value for the restitution (for instance, 0.1) is appropriate. Because it avoids that the object
bounces on the hands, it increases the ability to catch it. However, we distinguish two
cases for the friction coefficients: the first one appears when the user touches a static object
(usually heavy or fixed), whereas the second one happens when the user tries to grasp
a small dynamic object. In the first case, if the object is adhesive, the user should feel
resistive forces on the hands. This is automatically computed with the mass-spring hand
model, but we have to set a hand value of friction that is quite high to simulate this effect.
On the other hand, if the object is slippery, the feeling should be smooth, an this implies
a low value of friction. Thus our best results are achieved by setting a medium value for
static friction, and a smaller value for dynamic friction. The effect is quite convincing, but
still not perfect. Hopefully, such values works well for the grasping of dynamic objects.

6.1.2 The Mass Spring Damper model of the Hand

As previously explained, our hand model is made of masses linked together with joints.
First, our approach consists in choosing the masses of the phalanxes, and then to tune the
damping and spring parameter of the joints according to the masses.

According to Kreighbaum et al. in 1983 [71], the hand represents an average of 0.5% of
the total female weight, and 0.65% of the male weight. Men’s mean weight is around 80 kg
resulting in hand’s weight of approximatively 500 g. For women, these values give hand’s
weight of 330 g. Although we provide in our haptic library the functionality to change
this, we focus in our study on the men hand’s weight. All the phalanxes represents 30%
of the hand’s weight. Thus, we instantiate the palm geometry with a mass of 350 g, the
five phalanxes linked to the palm weighting 13 g (metacarpal), then 10 g for the five next
(proximal), and finally 9 g for the four last phalanxes (distal).

The spring and damping vales of the joints are probably the most important values. It
is important to understand their respective functions. Springs are used to have a reactive
hand model that follows quickly the real hand. When springs are soft, a quick movement
of the hand could result in a high position difference between hand model and real hand.
Whereas damping is used to reduce springs force according to the magnitude of the force.

6.2. PARAMETRIZATION OF THE HAPTIC VIRTUAL ENVIRONMENT 77

Its most important effect is to limit the oscillations that could be induced by high values of
spring.

We made empirical experiences in order to find the best values of spring and damping.
The experiences consist in analyzing the behavior of the spring hand model with various
couple of spring/damping coefficients. We start with wrist link, then continue by tuning
the parameters for every phalanxes at the same time. Starting with small values, we change
them according to user’s perception. When he notices oscillations, we increase the damp-
ing, and if he notices a movement delay, we increase the spring. With this method, the
values are quite different depending on the user. However, we also remark that the ra-
tio between spring and damping is nearly the same for all users. This result is not really
surprising and comes probably from the way we adjust the parameters. What is more sur-
prising is the absolute difference between two users. We found indeed that small coefficient
values suitable for a user A, are not really good for a user B, and opposingly.

In this section, we presented a study for parameterizing object surface properties in
the Virtual Environment and the mass-spring hand model. With these parameters, it is
possible to achieve an easy manipulation of different kinds of virtual objects that has been
simplified into basic collision detection primitives (capsule, sphere, box, etc.). Concerning
more complex meshes, the manipulation is still possible but unexpected behaviors could
unfortunately appear. For this reason, we propose in the next section a tool intended to
simplify the complex meshes into basic primitives.

6.2 Parametrization of the Haptic Virtual Environment

When creating various applications that have an extensive use of haptic features, the pro-
grammers (creators of the application) often face an important problem: the lack of haptic
information of the 3D models. The common editing tools for creating Virtual Environments
do not always provide the adequate functionalities for adding this kind of information. And
when the functions are present, they are barely used by the designers themselves for many
reasons. The first reason is that the model was not primarily supposed to be integrated
with an haptic application. This is often the case for old purely visual models. The sec-
ond reason is that there are many kinds of haptic information that could be added, but
most of them are completely irrelevant for a particular haptic device. For example, the
temperature of a virtual object will not be used in an application that uses only the Haptic
WorkstationTM. Moreover, in the common visual design process, after the model creation,
there are many passes of prerendering followed by model refinement, etc. It is thus possi-
ble to imagine that it should be the same for the haptic design. And in this case, it implies
that the designer has access to the haptic device by the same manner that he has access to
a visual rendering device (usually his screen). This is not always possible because of the
costs or the location of the device. It is the third reason.

In this context, it appears to be necessary to give the opportunity to the haptic program-
mer to augment the visual Virtual Environments using an authoring tool, called in the rest
of this document the Haptic Scene Creator. This one is presented in this section.

78 CHAPTER 6. MANIPULATION IN GENERIC V.E.

6.2.1 Needs and specifications

As previously stated in 5.2.1.1, the complexity of a visual mesh requires its decomposi-
tion in low level primitives in order to speed up the collision detection. Obviously, this
decomposition can not be done automatically, because it strongly depends on the targeted
application and desired level of detail. For this purpose, the Haptic Scene Creator applica-
tion is a graphical tool that supports the haptic augmentation of any Virtual Environment
loadable in our visual rendering engine. It is very intuitive, simple to learn and provides
useful automated features to simplify and accelerate the task.

In order to improve the learning curve of the Haptic Scene Creator, we have decided to
imitate the kind of interface proposed to advanced 3D graphics modeler such as Autodesk R© 3DS
Max and Maya (see figure 6.3). It means that our editor has a GUI and is able to load ����

visual files, to load/save haptic XML files, and to present a view of the Virtual Envrionment
to the designer. Finally, as in Autodesk R© 3DS Max, we choose to use a four viewports
interface and to place a toolbar on the right of the screen.

Figure 6.3: Comparison between Autodesk R© 3DS Max user interface on the left and the
HSC user interface on the right

The designer should be able to select visual objects in order to “augment” them. Once
selected, the user can manipulate information which is relevant for our dynamic engine and
collision detection system.

The dynamic engine needs information related to the “mass” of an object. We remind
that the “mass”, or body, includes the real mass (or density), the center of gravity and the
inertia tensor. Of course the mass/density is easily parameterizable in the editor, but we
preferred to hide the inertia tensor to the designer to keep the tool intuitive and accessible.
In fact, the center of gravity and the tensor matrix can be computed knowing the size, the
position and the density of the geometries linked to the object. Unless some special effects
are desired, it provides a reasonable approximation. By automating these computations,
the designer will also be able to focus on higher level tasks.

The collision detection system needs to know the shape of an object. Of course, the
shape is clearly defined in its visual description. However, using this information only

6.2. PARAMETRIZATION OF THE HAPTIC VIRTUAL ENVIRONMENT 79

is by far too complex for the computation of the collisions [42]. Thus, objects should be
approximated with simple geometric primitives (boxes, spheres, capsules). Later on we add
more complex geometries such as convex meshes and penetration maps. These geometries
are not displayed during the simulation, but it is necessary to visualize them in the editor.
Moreover, for each collision geometry linked to an objet, its material properties must be
parameterizable. These parameters are the static and dynamic friction coefficients and the
coefficient of restitution (bounciness) as described in subsection 6.1.1.

Finally, as in Maya animation tool, the immediate visualization of the results using
the simulation mode allows the designer to see in real-time the animated objects. This
features does not allow the designer to immediately feel and manipulate the objects using
the Haptic WorkstationTM, but it is more intended for debugging than for fine tuning of
parameters. For this specific purpose, it is preferable to launch the real simulation. Now
that the specifications of the Haptic Scene Creator are clearly described, we show their
implementation in the next subsection.

6.2.2 Implementation of the GUI

We have seen previously, that our GUI needs five main features:

• Open/Save files functionalities.

• Multiple viewport rendering.

• Geometry/material editing.

• Mass property parameterizing.

• Immediate dynamic simulation previewing.

The core of the application uses a Finite State Machine (FSM) shown in figure 6.4.
Most operations, commands or drawing executions depends on the current state. State ma-
chines provide a powerful mechanism to avoid multiple tests. For instance, it is authorized
to modify the mass of an object only if it has been selected, i.e. if the state is “Object
Selected”. Internal commands are also triggered during a state transition, such as the syn-
chronization of all views on one object when the user just picked one. Some components
of the 2D and 3D GUI are also displayed according to the state of the application. The 2D
GUI contains for example the toolbar (see figure 6.5), information messages, the selection
area and so on. The 3D GUI contains some objects integrated to the scene that belong to
the editor, such as the arcball.

The Haptic Scene Creator is implemented in C++, using only the MHaptic and MVisio
libraries.

Some basic features of the Haptic Scene Creator are presented in the following sub-
sections, whereas some more complicated/automated features that have been progressively
added are described in section 6.2.3.

80 CHAPTER 6. MANIPULATION IN GENERIC V.E.

Navigation

State

Object

Selected

Geometry

Creation

Dynamic

Properties

Initialized

Texture

Parametrizing

Geometry

Positioning

Animation

Previewing

Load/Save

haptic or

visual files

Press Animate

Press EditClick on

an object

IF ‘dynamic’

Apply

Lauch a

ball

Press Space

Click on

another

object

Click on

nothing

Mouse

moves Press “Edit Textures”

Press on a

collision primitive

button

Apply

Apply

Figure 6.4: The Finite State Machine is the core of the Haptic Scene Creator

6.2.2.1 Multiple viewports rendering and navigation

Navigation using more than one viewport is intuitive because it simplifies visualization and
editing, especially when dealing with complex sets of data. Most of the Computer-Aided
Design (CAD) software provide the ability to display a 3D object from multiples points of
view, as shown in figure 6.6.

In the Haptic Scene Creator, three orthographic cameras and one camera in perspective
are provided to visualize the environment. In the three orthographic views, the objects
are rendered in wireframe mode. The objects in the perspective view are shaded using
transparency, textures and smooth lighting.

6.2.2.2 Creating geometry and body of an object

As stated previously, a haptic object contains two parts: the mass properties, also called
body, and the collision geometries.

In the Haptic Scene Creator, the body is computed automatically according to the posi-
tion of its geometries and their respective densities. The only information that the designer
may want to modify is the mass or the density of an object. This can be simply done in the
toolbar on the right side of the screen.

6.2. PARAMETRIZATION OF THE HAPTIC VIRTUAL ENVIRONMENT 81

Figure 6.5: The toolbar contains all available commands of the Haptic Scene Creator

Figure 6.6: Multiple viewports rendering in CAD systems: Maya on the left and LightWave
3D on the right

82 CHAPTER 6. MANIPULATION IN GENERIC V.E.

The designer must also be able to approximate the geometry of a visual object by adding
and linking some simple collision geometries to it, such as boxes, spheres, planes and cap-
sules(also called capped cylinder, or line-swept spheres). These primitives can be defined
by a low number of parameters: three for a box (height, length, depth), one for a sphere
(radius), etc. In the first implementation of the Haptic Scene Creator, the input of these
values is performed manually by the designer. However, even if this method works, it is
a relatively tedious task. This convinced us to implement a method that is described in
section 6.2.3.

6.2.2.3 Editing materials

As introduced previously in subsection 6.1.1, each object has some material properties,
which are the restitution (bounciness), the static friction and the dynamic friction.

Materials can be modified for each geometry in the scene. For example, a carpet would
provide a stronger frictional force-feedback to the user’s hands during its manipulation
than a wooden table. The restitution and the frictional coefficients can also be set for each
collision geometry independently, allowing various interesting effects.

In the Haptic Scene Creator, the designer can modify materials by using three scroll-
bars. Some materials have also been predefined in the editor. They are accessible in the
toolbar when editing a geometry. One simply has to click on the button corresponding to
the predefined material to modify the properties of the selected object.

6.2.2.4 Immediate physics simulation of the system

The Haptic Scene Creator provides also an immediate simulation of the augmented haptic
scene, as shown in figure 6.7. During the simulation, the designer is able to launch virtual
balls on the objects, in order to see if the reaction is correct, and if the collision geometries
provides a good approximation.

In this section, the basic features have been covered. However, in this state, the Haptic
Scene Creator suffers from a lack of flexibility. At usage, it is not possible to augment
quickly a scene. The task is repetitive and tedious. In the next section, we will present
advanced features that reduce the time and the difficulty of it.

6.2.3 Advanced functionalities of the Haptic Scene Creator

The basic functionalities presented in the previous section allow us now to start working on
a scene augmentation. However, repetitive work and lack of flexibility convinced us to add
extra functionalities. These features are implemented in order to maximize speed and com-
fort during the augmentation of the Virtual Environment. They provide a strong support to
the designer automatizing tasks and allowing a fine tuning of the haptic properties.

6.2. PARAMETRIZATION OF THE HAPTIC VIRTUAL ENVIRONMENT 83

Figure 6.7: The dynamic simulation of the system in the Haptic Scene Creator. The de-
signer can launch balls on the dynamic objects.

The main difficulty when augmenting a virtual environment is to deal with the parametriza-
tion of the geometries that approximate a specific object. This is the most time-consuming
part. We believe that this process could be partially automatized.

6.2.3.1 Vertex selection and Copy-pasting

Most of the time, the complex objects could be separated into parts that can be easily
approximated using simple primitives. Thus it appears necessary to offer the possibility to
extract some portions of a single object. We thus provide the possibility to select specific
vertices on the selected object, allowing the Principal Component Analysis (described in
the next subsection) to be performed only on the subpart of this object.

There are two ways to internally check if a given vertex must be selected or discarded.
The first one is to compute the six planes that define the 3D frustum in the world space and
to check if the vertex lies in this frustum. The second one is to project the vertex on the
screen and check if it lies inside the 2D selection rectangle. The last method is adopted,
though both methods give the same results.

We also provide a copy pasting functionality. It is easy to implement and greatly in-
crease the haptic augmentation speed of a complex scene.

84 CHAPTER 6. MANIPULATION IN GENERIC V.E.

6.2.3.2 Fitting collision primitives using Principal Component Analysis

In this subsection, we introduce a method that allows the automatic fitting of the collision
geometries to the visual objects. It even allows to fit them to a subpart of an object by
using the vertex selection as presented in the previous subsection. Computing tight-fitting
bounding volumes is a not a trivial task. Depending on the type of geometry and on its
orientation, the difference of volume between a poorly aligned and a well-aligned geometry
can be quite large. This can be seen on the middle of the figure 6.8: the axis aligned
bounding box is containing all the points but its orientation implies a bigger volume. A
better alignment is shown on the right side.

To make this possible, we use the statistical method called Principal Component Analy-
sis (PCA) [67]. In statistics, PCA is a technique for simplifying a multidimensional dataset
by extracting its most significant directions (principal components). In our context, the
data is the set of 3D vertices of the 3D models. In the Haptic Scene Creator, we use PCA
to fit four kinds of shapes: oriented boxes, spheres, capsules and planes.

The procedure is performed in three steps. First, the covariance matrix is computed on
the set of selected vertices. Second, the matrix is decomposed to find the eigenvalues and
corresponding eigenvectors. Finally, the shapes are oriented according to these eigenvec-
tors. We present now the procedure in detail.

The first step is to compute the covariance matrix C = [ci j] (also called the dispersion
matrix) for the selected points P = {P1,P2, . . . ,Pn}.

ci j =
1
n

n

∑
k=1

(Pk,i −ui)(Pk, j −u j) (6.2)

The ui and u j terms represent the mean of the i-th coordinate value of the points:

ui =
1
n

n

∑
k=1

Pk,i (6.3)

The second step is to decompose this covariance matrix to extract meaningful informa-
tion about the principal directions of the point cloud. This decomposition of the matrix is
performed by computing its eigenvalues and eigenvectors. In general, finding the eigenval-
ues and eigenvectors of a matrix in a robust way is nontrivial. However, the iterative Jacobi
method can be used when dealing with symmetric matrices, which is always the case for a
covariance matrix. As a result, it decomposes into real (not complex) eigenvalues and an
orthogonal basis of eigenvectors. In our case, the covariance matrix is always 3x3 sized
and thus three eigenvectors are returned after its decomposition. The Jacobi method is not
explained here, but more details can be found in [53].

The third and last step depends on the type of shape we are trying to fit to the point
cloud. For each kind of shape, we compute its dimensions, position and orientation. The
orientation is always computed according to the eigenvectors, because they provide the

6.2. PARAMETRIZATION OF THE HAPTIC VIRTUAL ENVIRONMENT 85

Figure 6.8: PCA applied on an oriented box

main directions of the point cloud. For example, the largest eigenvalue corresponds to the
eigenvector indicating the main direction of the point cloud. Finally, the haptic structure
of the selected object is updated to include the newly created shape in its local reference
frame. We now present how each shape is individually fit.

6.2.3.2.1 Fitting boxes The orientation of the box is set to follow the orientations given
by the three eigenvectors of the matrix decomposition. This is shown in two dimensions
on the right side of the figure 6.8. The dimensions of the box are then set by first finding
the distance between the extreme points of the point cloud along the three axis.

6.2.3.2.2 Fitting capsules As shown on figure 6.9, the capsule is oriented along the
axis following the maximal spread of the point cloud. This axis is given by the eigenvector
corresponding to the highest eigenvalue found in the covariance matrix decomposition.
Then, the height of the capsule is computed by subtracting the minimal and maximal values
of the projection of the points along this axis. Finally, the radius of the cylinder is set to the
maximal distance between this axis to the furthest vertex in the point cloud. The capsule is
then positioned at the center of the cloud.

Figure 6.9: PCA applied on a capsule

86 CHAPTER 6. MANIPULATION IN GENERIC V.E.

6.2.3.2.3 Fitting spheres Sphere shapes are defined by the radius only. Fitting spheres
is done iteratively. The center of the point cloud is found using the same computation
previously done with boxes and capsules. Then, for each vertex not included in the sphere,
the radius (initially set to zero) is increased until all vertices finally lie inside the volume.

6.2.3.2.4 Fitting planes Planes are defined by the equation −→n ·−→x = d, where −→n is the
normal of the plane and d its distance to the origin. In mathematics, a plane is a infinitely
thin 2-dimensional surface. In many collision detection engines and in our case, planes
are considered as half spaces, making an object behind it colliding with it. As a result, the
plane is certainly one of the most robust shape found in a collision engine.

Because the plane equation must be computed in world space, the vertices are first
transformed in world space. The normal −→n is set to the unit vector following the eigenvec-
tor corresponding to the smallest eigenvalue. The distance d is set to d = −→n ·−→x , where −→x
is a random point from the set of the selected vertices. Because there is no way to know in
advance in which direction the normal will be pointing (an horizontal plane can be defined
by a vector going up or down), the normal of the plane can be switched manually.

In this subsection, we have presented a method that fits automatically the collision
geometries to the visual objects. The results obtained and some comments are given at the
end of this chapter.

6.2.3.3 Convex shapes and penetration maps

Adding simple primitives to the haptic structure is sometimes not enough to cover com-
plex 3D models. When a more accurate physical representation of the shape is needed,
increasing the number of primitives may become a difficult task. Two kinds of geometries
are added to solve this problem: convex hulls and penetration maps. Both geometries are
presented in figure 6.10.

Among other uses, convex hull allows a stable approximation of arbitrary triangle
meshes. The convex hull of a set of points is the smallest convex set that contains these
points. Computing a convex hull is not a trivial task [3] and many algorithms have been
proposed [10]. The details are not shown here since the PhysX engine that we use already
provides such a robust implementation.

When saving the scene into a file, the vertices of a convex hull are stored in the XML
file. This way, the convex shape is only computed once at its creation.

When some concave objects may not be reasonably approximated using standard prim-
itives and convex hulls, the editor allows the use of arbitrary triangle meshes. However,
the triangle data is not used directly for collision detection, which could be heavy for such
objects. This is why the collision detection engine that we use provides penetration maps
(pMaps). PMaps use a voxel representation of the collision geometry instead of the trian-
gles that form its surface.

6.2. PARAMETRIZATION OF THE HAPTIC VIRTUAL ENVIRONMENT 87

Figure 6.10: A convex hull approximating a table (top) and a penetration map approximat-
ing a pan (bottom)

Like convex hulls, pMaps are computed only once at their creation by the collision
engine. The voxel data is then serialized in a binary .pmap file for a later reuse. PMaps
are robust for collision detections but use more memory and are time intensive. We also
observed some strange behaviour when building pmaps from complex volumes, so they
must be used sparingly. Convex shapes should be used instead as much as possible.

6.2.4 Haptic Scene Creator Evaluation

As shown previously, the Haptic Scene Creator includes many features aiming at simpli-
fying the task of a Haptic application designer who is using the MHaptic framework. To
evaluate it, we asked a programmer with knowledge in Virtual Reality to augment a visual
Virtual Environment as much as he can. We gave him the the user manual of the software
that can be found in the Appendix III: HSC User Manual, page 145.

The test scene is a quite complex. It represents a four-rooms house (kitchen, bathroom,
bed, office and living-room), and contains 398 visual nodes. It is presented in figure 6.11.
The main goal is to use the Haptic Scene Creator to augment every touchable object with
a good level of approximation in order to manipulate objects easily. This task took almost
three hours, time to create 612 geometries for 167 static objects and 114 dynamic objects.
The advanced functionalities (copy-pasting, vertex selection, PCA) were of course exten-

88 CHAPTER 6. MANIPULATION IN GENERIC V.E.

Figure 6.11: The augmentation of the 3D House.

sively used. We do not have performed the same procedure on the full scene without using
the advanced functionalities (and neither using a simple text editor to write by hand the
XML file). But, to give an idea of the improvements, augmenting a chair without advanced
functionalities took five (tedious!) minutes, whereas it took around 1 minute using the
PCA.

We remarked that sometimes it is difficult to find the good approximation of an object.
It is also sometimes not trivial to find the proper way to select the vertices of a mesh, in
order to have the good results of the PCA. But most of the time, a solution can be found.
We present an evaluation of the manipulation of this model in section 7.2.2.

Synthesis of Part II

In this chapter we proposed a study on the parametrization of the virtual objects properties.
We demonstrate the importance of the parameters for the surface to increase the efficiency
of the manipulation tasks. Then, we proposed a tool for easily augmenting the existing
visual Virtual Environment by including haptic properties.

The framework that we proposed in the second part of this thesis reach the expected
goal: proposing two-handed haptic feedback and virtual manipulation in generic Virtual
Environments. We exposed the difficulties and the problems faced during the creation of
this framework as well as their solutions. In the next part of this thesis, we present some
applications that we built using this framework.

Part III

Applications

89

Chapter 7

Realistic Manipulation

THE PREVIOUS PARTS of this thesis have presented many algorithms, techniques and
innovations related to the control of a two-handed haptic device. We embedded most

of this research into a framework: MHaptic. But the primary intention when designing a
haptic library (like any other kind of library), is that it can be used by software developers
to create at least one application.

The Haptic Interface enables Human Computer communication trough touch, in re-
sponse to user movements. This communication is bidirectional in the sense that the same
device conveys information from Human to Computer, by the mean of movements, and
from Computer to Human by the mean of touch or kinesthesia. This characteristic makes
the field of Haptics to have numerous applications. Obviously a two-handed haptic device
is not thought for a particular application. It can work with every virtual applications that
simulates a real life scenario with hand’s interaction. But it can also be applied to any
context that needs a complex human computer interaction. Considering this flexibility, we
believe that we should not bound the evaluation of such two-handed devices to a specific
field, as well as we should not make only studies that concerns the realistic manipulation.
We will present in this chapter applications with realistic or pseudo-realistic interaction,
whereas in chapter 8, we present experiments with interaction paradigms that could not be
considered as realistic, because they use metaphors or gestures.

The word realistic has many definitions. In this chapter, it is used with the sense of
“conform to a reality” or believable. The first section present a feasibility study in the
context of virtual training. The objective is to explore the haptic virtual manipulation in a
Mixed-Reality Environment. Then, in the second section, we present two applications that
uses MHaptic and its Virtual Environments interaction functionalities.

91

92 CHAPTER 7. REALISTIC MANIPULATION

Figure 7.1: A Mixed-Reality industrial training environment [115]

7.1 Two-handed Haptic Manipulation in Mixed-reality En-
vironments

In the industry, the traditional training of workers to use special equipment is normally
carried out using a part or full real equipment. This could be afforded by the industry itself
or specialized centers for training. But it brings many drawbacks like: the cost of equip-
ment just for training is too high; machines are innovating and training equipment should
change; new products or improvements of the production line which implies new training;
outsourcing training with specialized centers, etc. Beside this kind of training there is also
more specialized training like aviation or surgery where it is not always possible to use the
real equipment and to check all the cases that the trainee could face.

Because of this, the help of computer solutions has been considered. They offer lower
cost and more adaptability. The simulation of a working environment with computers is
done by means of Virtual Reality (VR). In these applications we are able to build any kinds
of scenarios, tools and equipment. However, a complete and detailed simulation of some
scenarios appears to be very complex to develop, and moreover it is still difficult to produce
truly convincing results.

Thus, to reduce the programming effort and also to simulate better the reality, Mixed
Reality (MR) provides a good solution [110]. The principe of Mixed-Reality consists in
superpositioning real images (pictures or video) inside of virtual world or vice versa. It can
provide a complete real scene with virtual elements that help with the training process, as
it is shown on the figures 7.1 achieved in the framework of the STAR European project.

These technologies are affordable and good enough to simulate working cases. They
can show the proper way to play a role inside a context which is the primary goal of training.
But usually these technologies are limited to keyboard or mouse interaction. In some cases
other user interfaces are used, like large screens or touch screens. It is of course a big issue
in a context like training. This is the reason that convinced us to study the integration of a
two-handed device: The benefit of manipulating objects is to teach the user in a practical

7.1. HAPTIC MANIPULATION IN MIXED-REALITY 93

manner the proper way of performing tasks. For example, in assembly process: the user
can manipulate virtual objects and position them directly.

In this section, we present a first a brief review of existing applications taking advan-
tage of Mixed or Virtual Reality environment for manipulation or assembly training, with
some of them providing force feedback. We remark these applications do not provide the
ability to interact with real and virtual objects at the same time. It convince us to present a
system that allows this kind of interaction. with the help of the Haptic WorkstationTMand
of MHaptic. Then, by the mean of a simple feasibility study, we evaluate the benefits of
such Haptic Mixed-Reality platform in the context of virtual assembly.

7.1.1 Related Works

When a haptic device is not available, a Mixed-Reality system presents the advantage over
a purely virtual one that it can give the opportunity to use the real hands for interacting. For
example, in [119], authors propose a training application where the user uses a see-through
Head Mounted Display to see overlayed interesting information to help him to assemble
furniture with his own hands. The drawback of such method is that it is limited to real
objects manipulation. In [4], Azuma gives an overview on the recent advances in the field.
In his article, haptic user interface are discussed as a new approach.

In VTT project [79], authors present a virtual technical trainer for milling machines,
which is based on haptic devices. They use as prototypes three kinds of force feedback
devices: the Phantom, a home-made 2DOF haptic device, and a pseudo-haptic technique.
They present, in [34], an evaluation of these devices considering the efficiency criteria
of the industry. We can also cite [74], which present a system assembly training in the
field of aeronautic. Authors use a Phantom to simulate mounting/unmounting operation of
different parts of an aircraft. In these exmaple, interaction is limited to virtual objects.

An example of interaction with real objects which moreover provides haptic feedback
is in [86]. The authors use sensors to perceive the real environment, and transmit these
sensors information to a 6-DOF haptic display with augmented force feedback. This is a
truly “augmented haptic” system because the user is able to feel haptic textures of objects
that he could not feel with is real hand (like the bumps of a sheet of paper).

An approach of real hands interaction with virtual objects is addressed by Walairacht
et al. in [116]. They present a manipulation system of virtual objects where 4 fingers
of each hand of the user are inside of a string-based haptic device allowing to feel the
virtual objects. Moreover the video of the hands is overlaid on the virtual world to have a
better visualization of the hand posture. Here again, the system is limited to virtual object
manipulation.

In the next subsection, we present a two-handed manipulation system that provides the
possibility to interact with real and virtual objects at the same time. The user is be able to
use his both hands by the mean of the Haptic WorkstationTM.

94 CHAPTER 7. REALISTIC MANIPULATION

7.1.2 System Architecture

Figure 7.2: General scheme of the four hardware modules of our application

As shown on figure 7.2 our application has been designed with many devices. First, the
Haptic Workstation provides of course the haptic feedback. Then, it has also two tracking
systems, and a see-through Head Mounted Display. Our assembly application, which is
in fact a feasibility study, consists in building a Mixed-Reality table with a scale of 1/4.
It is constituted by a 55 cm long and 22 cm large piece of wood that contains also four
holes where the feet are driven in. Four virtual objects represented by a 25cm long cylinder
shape represents the feet. In the following subsections, we present the the Mixed-Reality
integration –i.e. tracking system and HMD–. It has been of course programmed with
MHaptic.

7.1.2.1 See-Through Head Mounted Display

In a mixed-reality system, virtual and real should be visually blended. Usually, two kinds of
devices allow that: Video Head Mounted Display and see-through Head-Mounted Display
(HMD).

Our implementation uses the Sony Glasstron PLM-S700 see-through HMD. Advantage
of such HMD in comparison with video HMDs is the quality of the real environment dis-
play: the reality is not “pixelized”. However, there is also drawbacks: they are usually
semi transparent, and a virtual object could not completely occlude the reality. Moreover,
the Glasstron HMD has tinted lenses (It could vary from opaque to a tint as standard sun-
glasses). Thus, the color of the real environment is altered. But it in a bright room, it does
not really affect the user experience.

This HMD is calibrated using the SPAAM method [113]. It displays only the virtual
feet because they are the only virtual objects of the scene (see figure 7.3).

7.1. HAPTIC MANIPULATION IN MIXED-REALITY 95

Figure 7.3: Photo taken from the user point of view, and augmented with what is displayed
in the HMD

7.1.2.2 Tracking Device

Under mixed-reality conditions, real and virtual have to be well-aligned to avoid confusing
the user. Moreover, with a haptic enhanced framework, real and virtual objects must collide
each other, user should be able to interact with virtual objects as well as with real objects.
This implies that we know the shape and the position of each objects of the system in
realtime. This is not really a problem for the virtual objects, but, it is of course an unknown
for real elements. As we have restricted our system to rigid objects, the shape of real objects
could be statically stored. But the position and orientation values are dynamic, and have to
be estimated for real objects during the simulation. In our feasibility study, three objects
have to be tracked: the user’s head (the HMD in fact), the board of the mixed-reality table,
and the table where all the objects are putted (see photo and schema in figure 7.4 and 7.2).

We have used two different tracking methods. The first one could be considered as a
software solution since it is based on the ARToolkit library with a common webcam. We
choose to track the board with this method because it is truly wireless: nothing else than a
piece of paper has to be attached to the board. The second one is the PhaseSpace Motion
Capture system that we already used in section 4.2.2 to validate the CyberTrack calibration.
This is the method that we choose to track the HMD and the work table (seen on figure 7.4
and represented on figure 7.2).

7.1.2.3 Assembly Training System

The hardware and software that we described in previous sections meet the requirements
for creating a mixed-reality application. The real objects can interact with the virtual ones,
because their position is known. The user is able to grasp a virtual foot. Then a simple
haptic guidance in position system tries to move the user’s hand in the location of the
nearest board hole. This is achieved by applying a force vector to his hand whose direction
is equal to the foot extremity/board’s hole vector. The norm of the vector is proportional
to the distance. When a virtual foot collides with one hole of the table and that the foot is
perpendicular to the board, the force feedback response simulate the driving-in feeling.

96 CHAPTER 7. REALISTIC MANIPULATION

Figure 7.4: Photo of the devices used to build our Mixed-Reality system

7.1.3 Results and Evaluation of the System

In this section, we first present the testing protocol, and then we give a general evaluation
of the complete system. Finally, we elaborate recommendations, based on our experience,
to design a Mixed-Reality system that includes two-handed haptic interaction.

7.1.3.1 Experimentations

The described system integrates complex and heterogeneous VR devices that are not de-
signed to work together. The calibration procedures of the devices could introduce errors,
and the sum of these errors could lead to an unusable system. This subsection presents tests
that will be useful to evaluate objectively these errors.

When dealing with mixed-reality and haptic applications, it is important to have an
efficient mix between real and virtual. This is achieved by two components: the tracking
of the real dynamic objects, and the projection of the virtual objects using the HMD. This
lead to the first test which consists in measuring the difference between virtual and real
environment: we ask to a user to grasp a virtual foot and to try to place it visually inside
the hole of the table. Within perfect conditions, the system should detect that a foot is
inside a hole and apply the “driving-in” force feedback. However two approximations

7.1. HAPTIC MANIPULATION IN MIXED-REALITY 97

have been done: first, the board position is evaluated by the tracking system; second, the
virtual foot is displayed with the HMD and does not superpose perfectly on the reality.
Thus, by measuring the distance between the virtual foot and the board’s hole as they are
stored in the system when they should be aligned, we approximate the addition of these
two errors. We performed this test many times, moving the head and the board inside the
workspace and we present the results on figure 7.5.

0

1

2

5

6

0 5 10 15 20 25 30 35

Distance (cm)

3,4

Figure 7.5: Distance between Real and Virtual environments measured by the first test (35
measures).

Second test quantifies how the user is perturbed by this difference: is he able to assem-
ble the table under these conditions? In normal condition, the user sees only the real table
board and the virtual feet. Thus, we compare the time taken to assemble this mixed-real
table and the time taken to assemble a complete virtual table (without see-through). Fi-
nally, we have also done a test including the haptic guidance system: when the user grasps
a virtual feet, he feels a force guiding his hand to the position where he can assemble the
feet to the board. In this last situation, we can also evaluate if the user is perturbed of being
guided to a place where visually, he is not supposed to assemble the table. To perform this
test, we have ask to six persons to try the system. Usually, we ask to people that do not have
a particular background in Haptics and Virtual Reality. However, in this case, we consider
both the fact that the devices are complex, and that even if this system was applied to the
industry the trainee should have a period of accommodation with the devices. Thus, we
chose to ask to people knowing Virtual Reality devices (and especially the tracked HMD).
Three “challenges” have been created:

1. To build the table in a completely virtual environment. Every real object is replaced
by virtual one and simulated with MHaptic. The see-though HMD is set opaque.

2. To build the Mixed-Reality table.

3. To build the Mixed-Reality table, with the haptic guidance system.

The order is randomly sorted for each tester in order to cancel a kind of accommodation
effect when we compute the mean time. We measure the time taken to perform these
actions. Moreover, we gather oral feedback of the user after their test. We present the
times in the table 7.1.

98 CHAPTER 7. REALISTIC MANIPULATION

Test 1 2 3
Tester A 1m05 4m30 1m30
Tester B 0m55 2m00 1m25
Tester C 1m30 5m00 (Max) 1m50
Tester D 1m00 1m30 1m30
Tester E 0m45 2m10 1m15
Tester F 1m45 5m00 (Max) 2m10
Mean Time 1m10 3m02 1m37
Rank 1 3 2

Table 7.1: Times to build the Virtual and Mixed-Reality table by each user.

7.1.3.2 Evaluation and Recommandations

The previous subsection describes the testing protocol of our system. In this subsection,
we extract results from it in order to finally elaborates recommandations when creating
applications combining Mixed-Reality and Haptic Feedback.

The first test presents an important fact: despite all the calibration procedures, the
matching difference between the real and virtual world is still high. The mean is around
3,4cm, and the standard deviation is high (0,95cm): this is because errors are sometimes
cumulated sometimes canceled. Moreover, with these results, we present only the differ-
ence norm: but we remarked that the "difference vectors" are in every directions of the
space. Thus, it seems to be difficult to find a correction improving the matching using the
hardware that we have. After more detailed investigation, the main errors in the calibration
procedure are located at the display level. Using the optical see-through HMD calibrated
with the SPAAM procedure, a displacement of this one on the face of the user during the
manipulation is difficult to avoid. In [17], the authors have used a video-through HMD,
device that avoid the difficult calibration of the HMD.

Second test shows that the assembly procedure is more easy when having only virtual
objects, and that our mixed-reality system is not able to be as fast and efficient than an en-
tirely virtual one. However, as mentioned in the introduction, it is sometimes impossible to
have a completely virtual environment for many reasons (cost, complexity) and sometimes
the goal of a training system is to teach using the real equipment itself. In these conditions,
with a simple feasibility study, we have shown that it is difficult to manage haptic assem-
bly with mixed-reality. This is mainly due to the visual sense that is not truly convincing.
Hopefully, we have shown that some haptic techniques could help: the haptic feedback
guidance, for example is very efficient in these conditions. The testers understand well
that the virtual and real visual environment are not perfectly superposed, and that they will
better apprehend the mixed-reality world with the help of the haptic guidance. Now, the
main question is to evaluate how much the differences between virtual and real, visual and
haptic, perturbs the learning curve of the trainee. According to the discussions with the
testers, we believe that, in the assembly/manipulation context, the important point is the
order of the actions/movements. In such case, haptic feedback and guidance is a good tool

7.2. REALISTIC TWO-HANDED HAPTIC MANIPULATION 99

because it provides the enactive knowledge that the trainee should acquire.

Finally, we remark that these tests provide good indications on the way to build a haptic
system under mixed-reality conditions. As it is explained in the previous paragraphs, the
perfect visual matching is difficult to reach. Some studies on pseudo-haptic feedback have
shown that the visual channel influences the haptic perception [73]. Thus, a realistic haptic
feedback is not mandatory since it will be anyway perturbed by the haptic/visual misalign-
ment. However, augmented haptic feedback like the haptic guidance mechanism provides
a good solution to build an efficient system. This is the main result of this paper.

7.1.4 Conclusion

In this section, we have presented a system that allows training for manipulation and as-
sembly tasks into a Mixed-Reality Environment. It allows to interact with real and virtual
objects at the same time. With this feasibility study, we elaborate some recommendations
when dealing with Mixed-Reality and two-handed haptic force feedback. Even with an
efficient tracking system, mixed-reality techniques using optical see-through HMD are not
precise enough to superpose correctly the virtual on the real world. The problem is that a
small misalignment is acceptable when only the visual sense is stimulated. However, when
combined with haptic force-feedback, the mixed-reality world will be much more difficult
to apprehend, because of kind of ghost effects. The user feels something that he does not
see, or the opposite. This is comparable to the mechanism of pseudo haptic techniques: the
visual channel could “create” haptic feedback. Thus, trying to reproduce realistically an
assembly situation in a mixed-reality with haptic feedback context will inevitably lead to
a system that is difficult to use. But applying augmented haptic feedback to the user will
improve the system usability.

7.2 Realistic two-handed Haptic Manipulation

In this section, we put the emphasis on MHaptic and its functionalities. First, we will show
that is not limited to interaction with rigid object, but that it could be easily extended to soft
or deformable objects. Then we present a application allowing the user to interact with the
objects of a virtual house.

7.2.1 Soft Objects Manipulation

In section 5.2, about collision detection, we presented methods to optimize the computation
of collisions between rigid objects. However, in reality, there are many objects that are not
rigid. We can cite for example the clothes, the liquids, most of the organic objects. In
the MHaptic framework, we are limited to rigid objects mainly because the Haptic Scene
Creator and the Haptic Scene component do not allow to create or save other kind of
objects. But it does not mean that we cannot create deformable objects: PhysX provides

100 CHAPTER 7. REALISTIC MANIPULATION

support of fluids and fabrics. We propose in this section to create a virtual carpet that can
be stretched and torn. We present results in figure 7.6.

It is relatively easy to integrate this kind of object into MHaptic. Unfortunately, the
PhysX library keep internal the results of the collision detection with such objects. Thus, it
is impossible to have access to the data necessary to perform force feedback computation.
It results in a proprioception that is not really well simulated.

7.2.2 Interaction with complex Virtual Environment

In section 6.2.4, we performed the augmentation of a complex visual scene representing
a small house. In this section, we present the results obtained (in terms of performance)
when manipulating this environment.

The PC running the simulation is a based on an Intel Quad-Core processor (2.4 GHz)
and a NVIDIA 8800GTX graphics card. When loading the simulation, we remark that
between 75% and 100% of the microprocessor is occupied, which is as expected. At the
beginning during few second, the program lags. The reason is that every dynamic objects
are in the “moving state”, and that most of them are colliding. Then, once they stop, the
refresh rate is stable. The Haptic Thread is running around 900 Hz. The Physics Engine
has been limited to 300 Hz, and the display is also refreshed around 300 Hz. The visual
result is presented on figure 7.6.

When immersed into a large scale Virtual Environment, the user is not able to reach
every object. As he is seated in the Haptic WorkstationTM, it seems difficult to propose a
realistic displacement method. Thus, a metaphor should be used to let him move aground
the Virtual Environment. In [41], authors presented an evaluation of 3 different techniques
to achieve the interaction with objects that appear bigger than the workspace of the haptic
device. We used a method similar to the “bubble” technique described in [40]. When the
user moves his arms near the workspace limits, he enters into an area that displace the
virtual camera: arms to the front moves the camera forward, arms to one side turns the
camera. In addition, force feedback is applied to tell the user that he is entering to this area.
This convenient method is intuitive, and the displacement is really controllable. However,
we remark that a calibration has to be done to adapt the method to the user’s morphology.
Indeed, the far limit of the workspace is not at the same position for everyone.

The force feedback is efficient with most of the static objects. We were surprised that
even the thin tables produce a convincing resistive force due to the fact that the hand does
not go through. The main limitation comes from objets augmented with pMaps. Even
the static ones produce unexpected behaviors. It also occurs occasionally with dynamic
objects that use convex meshes. Despite these issues, the feeling of being there (presence)
seems increased, mainly because of the 3D interaction capabilities of the two-handed haptic
device.

In this chapter, we presented applications with realistic interaction paradigms. In the
first section, we proposed a study using an assembling training system under Mixed-Reality

7.2. REALISTIC TWO-HANDED HAPTIC MANIPULATION 101

conditions. We created a feasibility study that allows to perform a test on the efficiency
with different kinds of realistic interfaces. We presented interesting results concerning
precision, and proposed useful recommendations about the design of such systems. Then,
in the second section, we showed some Virtual Reality applications made with MHaptic.
The common point between these applications is that they are intuitive thanks to the two-
handed haptic device.

Figure 7.6: Manipulation and Interaction with a haptic house.

Chapter 8

Unrealistic Human-Computer
Interactions

WE SHOWED in previous chapter that some applications, like Virtual Training, take
advantage of realistic two-handed interactions. For an efficient training, we can

distinguish the theory learning from the gain of experience. A two-handed interactive
system can propose real life situations that increases the experience of the trainee. Some
other applications do not simulate a real life interaction. They propose a paradigm based on
metaphors, which is often the case in computer applications. The main disadvantage of this
kind of interaction, is that it could require some kind of training and practice. But, when
the experience is acquired, it could become really easy to perform complex tasks. In this
chapter, we want to study these interaction paradigms, in order to see how a two-handed
device could increase the learning speed without compromising the efficiency.

As mentioned in subsection 2.2.1, teleoperation is historically the first field that took
advantage of Haptics [61]. This is one of the reason that convinces us to evaluate this novel
platform in this historical context. We propose to create a teleoperation platform that uses
Virtual Reality techniques and a two-handed haptic device. We perform two experiments
with two different categories of teleoperated robot: one for driving a small robot, and the
other one with the remote control of a blimp. One may ask: “why two experiments with
two robots ?”. In fact, we think that a specific interface for a specific robot is needed to
maximize the efficiency in terms of remote control. And we are quite sure that a generic
device, even with a high number of degrees of freedom, cannot perform better than a spe-
cific interface. But, a generic device has the advantage to be easily reconfigurable to be
adapted to many robots. This is the main characteristic that needs to be evaluated. The
sections 8.1 and 8.2 present these two experiments.

103

104 CHAPTER 8. UNREALISTIC INTERACTIONS

8.1 Interaction Paradigm for Teleoperation

In this section we present the evaluation of different kinds of interfaces to remote control
a small robot. We deal first with the technical description of the overall system, then we
present our evaluation protocol, which is based on a robot race, and we finally discuss the
results and conclude.

8.1.1 A Teleoperation System

This subsection deals with the implementation of our system. It uses the Haptic Worksta-
tion and it is based on the concept of mediators. Mediators are virtual objects with haptic
feedback that act as intermediaries between the user and a complex environment. We intro-
duced in [77] and demonstrated its application within an interactive Virtual Environment.
In [57], we took the next step and presented the implementation of a mediator interface to
drive a real mobile robot. The same robot is used in this study. The system architecture can
be divided into two main parts:

• Controlled world: a mobile robot made up with the Lego R© Mindstorms toolkit con-
trolled by a laptop.

• Mediator world: a Virtual Environment with haptic feedback provided by a two-
handed haptic device.

Both systems are connected to the Internet network and communicate between each
other using the TCP/IP protocol.

Laptop

Lego tow er

In f ra red

Lego robot

W ebc am

Graphic Worksation

In te rne t

In te rne t
V ideo S t ream

and s ens ors s ta te

S teering A ng le

T hro t t le lev e l Haptic workstation

Figure 8.1: Controlled World on the left, Mediator World on the right.

The controlled world elements are illustrated on figure 8.1. The robot is a toy tank
equipped with a collision detection sensor on the front-side and a web-cam. It is built using
the Lego Mindstorms Robotics Invention System 2.0 R© kit. The robot is controlled by the
RCX (yellow brick) which contains a built-in microprocessor. It can execute autonomous
behaviors coded on a PC and loaded through the brick’s IR interface, but we chose to bypass
this functionality and use the RCX as a gateway for direct controlling the motors/sensors
through a laptop. The motors can turn in both directions with 8 different speeds. By setting

8.1. INTERACTION PARADIGM FOR TELEOPERATION 105

two different speeds on the engines, the robot can turn. On the front, there is a bumper with
two boolean contact sensors which allow for collision detection on the left or right sides of
the robot. The laptop runs a program to evaluate the boolean position of the sensors and
turn on the motors to move the robot. Communication between the laptop and RCX is done
trough the infrared port of the RCX and the Lego USB Tower connected to the laptop. The
video stream is acquired with a Logitech Quickcam P4000TM located on top of the robot
and connected via USB to the laptop.

The mediator world shown on figure 8.1 is composed by a 3D graphics Workstation
(Windows PC) and our Haptic WorkstationTM. The Workstation renders the Virtual En-
vironment for the user seated in it. To drive the robot, the pilot has different types of
interfaces, described in the next subsection.

Three main kinds of data streams are exchanged between both worlds, they are also
illustrated on figure 8.1:

• Video stream coming from robot to the mediator world.

• Messages coding the position of the virtual cockpit elements.

• Messages coding the state of the contact sensors of the robot.

In the next subsection we proceed with the presentation of the teleoperation scenario
we have implemented and describe the test protocol we have followed.

8.1.2 Teleoperation scenario: a robot “grand-prix”

The teleoperation scenario is a car race around obstacles with a few bends as illustrated
in figure 8.2. The goal is to complete the circuit as fast as possible. The very limited
speed of the robot and the ease of the circuit guarantees that the driver’s expertise will not
be determinant in the time required to complete a lap. This is important when evaluating
the efficiency of the interface. Before having test users try the interface, we measured
the optimal time required to complete the circuit, by driving the robot directly from the
controller laptop, using the keyboard and watching the robot directly (see Figure 8.2). The
optimal time is 1m30s.

Four different types of mediator interfaces, which will be defined in next subsection,
will be tested by each test user. They have to evaluate the efficiency and intuitiveness of
each variation. By efficiency we mean the capacity of the interface to let the user accom-
plish the workload satisfactorily. The workload in this case consists on: first, finishing the
race; second, avoiding all the obstacles; and third, doing it as fast as possible. Efficiency
can be objectively measured in terms of the time taken to finish the lap and the number of
obstacles touched. Intuitiveness is more subjective. It refers to the ease of learn and use the
interface. We measure it by means of a questionnaire and direct observations of the user’s
behavior when using each interface. The evaluation criteria and analysis methodology will
be detailed later in this subsection.

106 CHAPTER 8. UNREALISTIC INTERACTIONS

Déviat

ion

D
é

v
ia

t

i
o
n

D
é

v
ia

t

io
n

ST AR TF IN ISH

3
m

5
0

2m 50

1

1

3

3

55

2

2

4 4

Figure 8.2: The robot Grand-Prix

A test with several persons is the only way to validate our search for the best interface.
We choose a group of persons who are not working with haptic technologies to perform
the test. Users are from 25 to 40 years old, three men and one women, all of them with a
Computer Science background.

We describe now the specific protocol used to execute the tests.

8.1.2.1 The protocol

We introduced some randomness in the testing procedure. Each user must test four different
interfaces, but the order in which each interface is tried by each user is random. This was
done to minimize the effect that after some trials, people can get used to driving the robot
and finish the lap successfully even with an inefficient interface.

Before the tests, the driver is allowed to do a lap with a remote-control and direct view
on the robot to study how it turns and moves. The remote-control is a PC that displays the
visual feedback of the robot’s webcam and controls the steering wheel and the throttle with
the keyboard. It gives the opportunity to the user to perform a mapping between the exact
position of the robot and the visual feedback of the webcam. This also gives some points of
reference which can be helpful to decrease the difference between the first and the last test
performed by the driver. then, the user is placed in another room, and do not have a direct
view on the robot. The evaluation is based on a set of well defined and easily measurable
parameters defined as follows.

8.1. INTERACTION PARADIGM FOR TELEOPERATION 107

8.1.2.2 Evaluation parameters and analysis

There are four race results corresponding to each interface for each person. There are two
evaluation parameters used to benchmark the interfaces:

• Global lap time spent on each interface.

• Ranking each interface on a per-driver basis.

The first parameter is obtained by adding the time spent by each driver to finish the race
using a given interface. Then, the best interface will be the one with the smallest time. The
second parameter is calculated by ranking the interface according to the performance of
each person. On a per-driver basis, the best interface is the one that allowed finishing the
faster lap. The best interface will be the one that was best ranked by all users.

This benchmark does not take into account subjective criteria required to evaluate the
intuitiveness. Thus, we ask the testers to answer a small questionnaire and we comple-
mented the analysis making an evaluation of the overall performance of each interface.

8.1.2.3 Measuring intuitiveness

The questionnaire used to evaluate the driver’s impressions about an interface was com-
posed by 3 questions:

• Is the interface easy to learn?

• Do you think this interface is efficient to drive the robot?

• Do you have any remarks about this interface?

We asked these questions to the users after they tested each interface. The objective
was to identify contradictions between performance to complete a lap and user perceptions
(interface intuitiveness).

8.1.2.4 Overall evaluation

The test and responses to the questionnaire were complemented with an overall perfor-
mance evaluation of the efficiency (the capacity of the interface to help the users complete
the workload). The overall evaluation was done by giving the interface a mark according
the rating scale for teleoperation systems shown in figure 8.3.

This method has been proposed in [24] to evaluate military cockpits. It was also later
applied in [43] in which the authors presented an approach to evaluate two interfaces for
the control of robotic surgical assistants. We adapted this evaluation to our own task:

108 CHAPTER 8. UNREALISTIC INTERACTIONS

C an the lap be
 accom plished ?

T ask

YES

YES

N O

N O

N O

T ask abandoned. U nable to apply the level of effor t. 8

D ifficulty to m aintain the level of effor t even to
accom plish the lap.

6

T he lap can be achieved w ith high level of effor t but no
attention can be paid to avoid the obstac les.

4

D ifficulty to m aintain the level of effor t even to avoid
obstac les.

3

A high level of effor t is necessary to avoid obstac les, but
it is poss ible 2

W ork load ins ignifiant. 1

YES

W ork load tolerable ?

W ork load satis factory ?

Figure 8.3: Rating scale for teleoperation systems.

measuring the efficiency of a teleoperation interface for driving a robot on a circuit (primary
task) while avoiding obstacles (secondary task). This rating scale allowed us to have a
unique mark characterizing each interface.

In next subsection, we discuss the alternative mediator interfaces we have implemented,
and give results of the driving tests and responses to the questionnaires.

8.1.3 Alternative mediator interfaces

To control the robot, four alternative mediator interfaces have been designed. They are
shown on figure 8.4 (second and third interface are visually identical). The design pat-
tern consists in going from physical/realistic cockpits up to gesture-based interfaces. The
evolution is quite natural, the first interface is based on real car cockpits whereas the last
one takes advantage of the Haptic WorkstationTMas a system designed to acquire and drive
(through force-feedback) the arm gestures performed by the user.

All interfaces have a common visual element: a virtual screen that displays the video
stream sent by the robot webcam. This element is essential to know the location of the robot
in the remote scenario. Additionally, all interfaces have a common haptic behavior: in case
of collision between the robot and an obstacle, a signal is sent to the interface and controls
are blocked to prevent the user from keep moving toward the obstacle. Implementation
differences will be described in the next subsections.

8.1. INTERACTION PARADIGM FOR TELEOPERATION 109

8.1.3.1 First Approach: Having virtual elements which look like reality

The first approach tends to reproduce a standard vehicle cockpits as shown in figure 8.4.
The steering wheel and the throttle are universal interfaces used to control a car, so it seems
logic to use a virtual cockpit which looks like a real one. The mediator interface is thus
composed by the following parts:

• A haptic and visual virtual steering wheel.

• A haptic and visual virtual throttle.

The haptic shapes of the steering wheel and the throttle are exactly the same than the
corresponding visual shapes. When a collision is detected by the contact sensors of the
Lego R© robot, the virtual steering wheel shakes and the throttle is blocked a while. This
behavior is the same for all three interfaces with these controls.

The time taken by each driver to perform a lap is shown on table 8.1, and the per-driver-
rank of of the first interface. The last line presents the number of gates which have been
missed or touched by the driver:

People A B C D E
Time 3m30 10m00 4m05 5m20 5m10
Rank 3rd 3rd 4th 2nd 4th

Obstacle 1 5 1 1 1

Table 8.1: Results of simple interface test.

In this test, the driver B has reached the time limit: he has driven during 10 minutes
without passing trough the 5 gates. Thus we decided to set his time to the maximum time
in order to not penalize too much the interface in the global time ranking.

After discussing with the testers, we found the first advantage of this interface is obvi-
ous. Nobody has asked for the use of the controls: it is very intuitive that the steering wheel

First Interface Second and third Interface Gesture Interface

Figure 8.4: Alternative mediator interfaces.

110 CHAPTER 8. UNREALISTIC INTERACTIONS

controls the direction and the throttle sets the speed of the robot. If the user has nobody to
help him, he can still understand easily the use of the interface.

Besides this advantage, this interface is not very convincing. First of all, drivers criticize
the visual feedback. Everybody has touched at least one gate. Frequently, obstacles were
not visible on the screen because the camera was placed on the front of the robot, and the
view angle was not large enough. Moreover, there is no speed or direction perception.
These two points often make the driver think he is too far and he stops running before
passing trough the gate.

In order to improve the perception of speed and direction we decided to add com-
plementary visual feedback to give a better idea of the robot motion to the driver; in an
analogous way as the HMD used by jet pilots which provides them useful information.

8.1.3.2 Second Approach: Adding visual feedback to enhance control

The drivers need more information about speed and yaw of the robot. Thus we choose to
add two visual elements (see figure 8.4):

• A visual speedometer which displays the current speed of the robot.

• Two indicators flashing when the user turns.

The table 8.2 presents the results obtained for the second interface.

People A B C D E
Time 3m45 10m00 3m40 6m45 4m00
Rank 4th 3rd 3rd 3rd 3rd

Obstacle 1 5 0 1 0

Table 8.2: Results of added visual feedback interface test.

This second interface has very similar results to the first one. Addition of drivers times
is 28m05s for the first one and 28m10s for the second. Means of rank are equal and
obstacle collision differs from two. The only conclusion we could draw by considering
the results of these tests is that the additional visual feedback does not provide sufficient
helpful information.

By discussing with the drivers, we discovered that they did not really look at the
speedometer because they gave priority to the task of controlling the robot. These tasks
are so hard that they considered the collision avoiding as a secondary problem they did not
have time to treat. A new question appears: why is it so hard to control the robot? The
steering wheel is hard to turn because the Haptic Workstation is not fully actuated to sim-
ulate properly this mechanism. This implies that the driver concentrates more on grasping
the steering wheel than on driving. We try in the third interface to simplify the use of the

8.1. INTERACTION PARADIGM FOR TELEOPERATION 111

cockpits elements. We add them a “return to zero” functionality: when the driver releases a
control, this one comes back to its initial position. By this manner, the driver spares on the
one hand the movement necessary to reset it. On the other hand the effort to aim the center
(the initial position) of the control is spared as well. The third interface takes advantage of
this constatation.

8.1.3.3 Third Approach: Adding assisted-direction to interface elements

The visual aspect of the third interface is exactly the same as the second). It differs from
the precedent by enabling the “return to zero” functionality.

Results for the third test are presented on table 8.3.

People A B C D E
Time 2m50 2m30 3m10 5m25 3m40
Rank 2nd 2nd 2nd 3rd 2nd

Obstacle 0 1 1 1 0

Table 8.3: Results of assisted direction interface test.

Except for the user D who tested this interface at the first, every drivers have found that
this interface was better than the both precedents. Total time spent on it was 17m35s which
is a significant decrease in comparison with the first and second one.

Responses to the questionnaire provided by the drivers permit us to understand that
the “return to zero” functionality is very helpful. It is not intuitive when the user sees the
interface for the first time, but after having touched a cockpit element, he/she understands
quite immediately its behavior without surprise.

Nevertheless the lap times are the double of the perfect lap time. In fact, the drivers do
often unintentional changes of orientation because the Lego R© robot does not have a smooth
behavior while turning. When it happens the time taken to recover the right direction could
be significant, and increase even more if the driver tries to turn faster to spare time.

Some people used only one hand to manipulate both controls, because they found too
hard to use them at the same time. This problem comes from the lack of feeling of the
control. Proprioception is not enough to feel the control. Tactile feedback is also important
for this task. Users counter this lack of haptic feedback by watching the hands. Of course,
it appears to be hard to watch two virtual hands and the webcam feedback at the same time.

Currently, hands interact with the controls (steering wheel, throttle) and then a mapping
between controls position and robot engines is done. In this process, the controls are an
additional intermediary component which could be eliminated in favor of a direct mapping
between the hands position and the robot engines as presented on figure 8.5. This is how
we came up with the forth mediator, a gesture-based interface.

112 CHAPTER 8. UNREALISTIC INTERACTIONS

8.1.3.4 Fourth Approach: Gestures-based interface

In this interface, we remove the virtual controls and the left hand (see figure 8.4), but we
choose to let the indicators and the speedometer because they don’t complicate the visual
interface and drivers can use them from time to time.

Obviously both haptic shapes (used to generate the force-feedback) corresponding to
the controls are removed, and a field of force constraining the right hand at a comfort-
able position is introduced. The user can still move his/her hand everywhere, but the force
becomes stronger proportionally to the distance between his/her hand and the neutral posi-
tion.

Figure 8.4 presents the results of each driver with the gesture interface.

People A B C D E
Time 2m00 2m00 1m50 3m30 3m20
Rank 1st 1st 1st 1st 1st

Obstacle 0 1 1 0 0

Table 8.4: Results of gesture interface.

The rank convinced us totally: all users did their best lap with this interface, even for
user E who started the test with it (and did not have the same level of familiarity with the
system). Best times are not so far from the optimal lap time (1m30s). The difference may
come from the view angle of the webcam, which is much more limited compared to the
direct visual driving.

The unique disadvantage we found in this method is that the user does not really un-
derstand how to drive the robot just by looking at the visual interface (less intuitive at first
sight). However, the reflex of moving the hand to interact with something comes quickly
and then, after a few tests, the user learns to drive.

The control on the robot is precise. Users can change direction in a simple movement,
and go forward and backward by the same manner. When a collision is detected with

Figure 8.5: Mapping between hands, virtual controls and robot engines and short-cut used
to create a gesture-based interface.

8.1. INTERACTION PARADIGM FOR TELEOPERATION 113

a gate or a wall, the haptic response is more intuitive than shaking the controls, and the
user understands better what happens. Moreover, one really feels a “wall” preventing any
further motion of the hand towards the obstacle. In contrast, with the virtual controls, users
often thought the blocked control was either a bug in the system or a lack in their driving
skills.

In the next subsection we present the overall evaluation of results, and we state our
conclusions about teleoperation of robots with a Haptic WorkstationTM.

8.1.4 Discussion of results

Several lessons have been learned from the tests and the questionnaire. Figure 8.6 sums
up all tests results, and confirms that our intuition about the gesture interface was well
founded: it revealed to be the most efficient interface, but perhaps not the most intuitive
one.

The overall evaluation obtained using the method described in Figure 8.3 confirmed the
ranking obtained with the other benchmark (time to finish the lap, per-driver ranking): the
most efficient interface, the one that minimized the effort to accomplish the workload was
the gestures-based interface. In second place we have the one with “assisted-direction”
and the last place is shared by the two first approaches. We believe we were able to avoid
influence from the driver’s skills when evaluating the interfaces, since even with the worst
performer, the gestures-based interface was the best evaluated.

In ter face 2

Inter face 3

Inter face 4

0

1

2

3

4

A B C D E

4

3

2

1

D river N am e

In
terfa

ce

R
a

n
k

0

200

400

600

A B C D E

4

3

2

1

In te
rf a

ce

D r iver Nam e

T
im

e
(s

)

In ter face 4

Inter face 2

Inter face 3

Inter face 1

Figure 8.6: Overall results of the driving tests.

The gesture interface eliminates the interaction between the hands and virtual controls
and for the moment seems to be the best approach. As long as hardware does not allow
enough haptic feedback on both hands and arms, it will be difficult to have a good percep-
tion of grasping and manipulating an object like a steering wheel.

We can conclude that the efficiency of the teleoperation interface depends significantly
on minimizing the actions of grasping objects to trigger functionalities (such as the map-
ping between the steering wheel and the robot engines).

114 CHAPTER 8. UNREALISTIC INTERACTIONS

Based on the presented tests we draw the following general conclusions about the fac-
tors that affect the efficiency and intuitiveness of an interface for teleoperation:

An efficient interface for direct teleoperation must have rich visual feedback in the form
of passive controls such as speedometers, direction indicators and so on. Such visual aids
were appreciated by users once they were released from the burden of manipulating the
virtual steering wheel and throttle.

Force feedback shall be exploited not as a way to simulate tangible objects (interfaces
resembling reality) but to drive the users gestures (gestures-based interface).

As reported by the users, the gestures-based interface was efficient because it did not
required precise manipulations. It reduced the amount of concentration required to drive.
The user could direct her attention to the rest of the visuals and use them to improve the
driving.

We can consider the gesture interface as an adaptive interface that does not impose the
driver to perform a well defined gesture but only to reproduce a general intuitive pattern
(moving the hand forwards, backwards,...).

Virtual interfaces that resemble reality were the most intuitive ones, in the sense that
users knew immediately how they worked (previous real-world experience). Nevertheless,
the available hardware made them less efficient due to the problems with the grasping
mechanism explained before.

It is finally important to notice that the observations and assumptions presented here
can be strongly dependent on the hardware used and the teleoperated robot. Perhaps an ad-
hoc designed hardware (the Haptic Workstation was conceived as a multi-purpose equip-
ment) could give better results in terms of grasping and manipulation. A more responsive
robot equipped with some degree of autonomy could assist the user and compensate for the
drawbacks due to unprecise grasping. Nevertheless, the adaptivity of the gestures-based
interface is a very important element to keep in any type of interaction mechanism.

8.2 Teleoperation of an unmanned aerial Vehicle

In the previous subsection, we conclude that a gesture-based interaction paradigm is prefer-
able to teleoperate a robot with a two-handed generic device. We show also that the perfor-
mance of the interface is near optimal in this specific case. In this section, we present the
extension of this system to the teleoperation of a blimp.

8.2.1 Another teleoperated vehicle: the R/C Blimp

Our blimp, as shown on figure 8.7, is a low-cost Unmanned Aerial Vehicle (UAV) that
we use in our teleoperation research. The R/C Blimp is composed by a 6,75m long and
2,20m diameter envelope that is filled with 11m3 of Helium gas (He). The total weight

8.2. TELEOPERATION OF AN UNMANNED AERIAL VEHICLE 115

Figure 8.7: Photo of the R/C blimp.

including its standard flight equipment is 9kg, so there is around 2kg ofmaximum payload
for the cameras and the video transmission system. Below, there is a gondola containing
the electronics part, the power supply (6600mAh allowing 1h at half-speed) and supporting
the two electric motors. Each have 1,5kg of power, allowing the blimp to fly at 35km/h
when there is no wind. The range of thetransmission of the radio controller is 1.5km, but it
can be extended with repeaters.

Figure 8.8 shows the five actuators controlling this R/C Blimp. Aerodynamic stabiliz-
ers are used only when the blimp has reached a certain speed (approximatively 8km/h). In
previous subsection, we have seen that the agility is essential when flying in urban environ-
ments. Thus, there is one extra-helix, located on the bottom stabilizer, that can run on both
directions. It is used to turn left or right when the Blimp is flies at low speed. The pilot can
also change the plane of the main helixes, in order to go up or down at low speed. Finally,
there is an actuator for the speed which controls the rounds per minute of the helixes.

Part of the 2kg payload is for carrying two video-cameras and their transmission sys-
tems. The first camera can be controlled by the pilot using head movements. The orien-
tation system must be faster than the head, and the field of view has to be large enough

Figure 8.8: Actuators of the blimp: aerodynamic stabilizers, left/right motor, motors for
changing helixes plane and speed.

116 CHAPTER 8. UNREALISTIC INTERACTIONS

to permit a good control of the R/C Blimp. Thus, we chose a small (less than 50g) wide-
angle CCD-camera. The other camera is used by the Surveillance Control Room. Thus it
must have a good quality, allow for recording and zooming: we have chosen a Panasonic
mini-DV TriCCD camera (1.2kg). We use the analogical output of these cameras with two
systems of video transmission. On the ground, we receive two PAL/B signals that are dig-
italized. Both are connected to a workstation located on the network that broadcasts the
streams.

Finally, the actuators are controlled by a 40MHz 7-channels Futaba FX-18 radio con-
troller. On board, the reception system is completely duplicated to prevent failures. Each
of the two airborne cameras can be oriented along the pitch and the yaw angle (two chan-
nels), and the Panasonic camera can also zoom (one channel). The wide-angle camera that
is used by the pilot is also connected to the Futaba radio, so the pilot has to control seven
channels. We have used an USB SC-8000 Servo Controller that allows a PC to control a
radio.

8.2.2 The Virtual Cockpit

In this subsection, we will describe how we have implemented the cockpit using Virtual
Reality devices. The R/C blimp is not so easy to pilot, even with the remote controller,
which is usually the classic device for this purpose. Moreover, the Virtual Cockpit is in an
isolated room without any direct-view of the R/C Blimp. Therefore the interface must be
precise (for a fine control) and intuitive (to avoid manipulation errors). In the first part,
we deal with the visual rendering of the cockpit, after we describe the haptics part of the
interface. Both of them tend to achieve the two goals mentioned above.

The visual part of the blimp is rendered to the pilot via a ProviewTM XL50 Head-
Mounted Display (HMD). This HMD gives a 1024×768 resolution on both eyes, with an
horizontal field of view of 40◦. In order to have a virtual camera that moves according to
the head movements, we have used an orientation tracker, the InertiaCube3, provided by
Intersense. This tracker is very precise and has a refresh rate of 180Hz. On software side,
we are using MVISIO to render the Virtual Cockpit, which consists in a stereo 3D model of
a blimp cockpit and a polygon where we map the realtime video stream. Figure 8.9 shows
the representation of the blimp inside the virtual environment.

In accordance with the results obtained in 8.1, we use a gesture-based interface: the
right hand is used to control the aerodynamic stabilizer (by moving the hand forward/back-
ward and left/right), whereas the left hand is used to control the engine power. However,
when there is no power, a left/right hand movement does not move the stabilizers but con-
trols the rear engine allowing the pilot to do faster turnabout. The force feedback con-
straints the user hands to the neutral position, i.e. no power and straight ahead. When the
user wants to move a hand, the force feedback intensity increases. The pilot can thus feel
how fast he is going by evaluating the force applied on his hands.

8.2. TELEOPERATION OF AN UNMANNED AERIAL VEHICLE 117

Figure 8.9: The Blimp’s Virtual Cockpit.

8.2.3 Results

The goals were to have a precise and intuitive interface. We have also observed that the
Haptic WorkstationTM is precise enough to offer a fine control on the blimp’s actuators.
We successfully made a 5 minutes teleoperated flight with a takeoff, and passage over
buildings. We did not performed a landing, not because of the lack of control, but because it
was too risky. In conclusion, the gesture-based control seems to be a promising technique.

The use of a responsive head orientation tracker to drive the video camera is also an
efficient method. It allows indeed to have mixed reality video stream coming from the R/C
Blimp that is well positioned into the virtual 3D cockpit. This is also an intuitive way to
move such a camera because it reproduces exactly what happens in the reality. Thus, it
increases the believability of the Virtual Cockpit by giving to the pilot the impression that
he is inside a real Blimp.

In this chapter, we have successfully implemented two efficient Virtual Reality inter-
faces for teleoperation. The use of a two-handed haptic device for simulating the controls
is probably not as powerful than two dedicated interfaces. However, it provides the ability
to control two different devices. We can also imagine that two or more devices can be
teleoperated by the same pilot. Indeed a Virtual Cockpit is easily reconfigurable. Thus a
pilot can quickly switch from one to another robot, while autopilots control for a while the
rest of the vehicles.

We group these experiments in the category of “unrealistic interaction paradigm”, be-
cause we demonstrate that even a state of the art two-handed haptic device is not able to
render efficiently simple tools like a steering wheel. The lack of feedback and the underac-
tuation is the cause of efficiency problems. The creation of other paradigms solves partially
the efficiency issue to the detriment of intuitiveness. In [92], we also proposed an interface

118 CHAPTER 8. UNREALISTIC INTERACTIONS

based on the Haptic WorkstationTM to model 3D shapes using metaballs. 3D modeling
is typically a field where there are a lot of metaphors in the interaction paradigms. Our
main idea was to find out if we can provide an efficient paradigm that is simply based on
hands and gestures. Results are mitigate: the provided method requires too much training
and manipulation is thus not as simple as expected. This category shows the limits of a
two-handed haptic device like the Haptic WorkstationTM.

Part IV

Synthesis

119

Chapter 9

Conclusion

WE BELIEVE THAT two-handed Haptic feedback is a wide topic which is still under
exploration. When Guiard analyzed human bimanual action, he proved that the

vast majority of human manual acts involve two hands acting in complementary roles [55].
However, in Haptics, the majority of undergone experiments involve only one hand, or even
one finger. In this thesis, we made preliminary studies on two-handed haptic feedback
focusing, on the one hand, on the realistic rendering for manipulation, and on the other
hand, on its applications.

9.1 Summary

In this thesis, we first have presented, in chapter 2, a review of the existing haptic devices,
which can be separated in two main groups: tactile and kinesthetic devices. We also pro-
posed a review of the Virtual Reality applications that take advantage of the force feedback
and 3D interaction provided by kinesthetic devices. At the end of the chapter, we presented
works related to whole-hand and bimanual interaction, from a cognitive and computer sci-
ences point of view. Our main conclusion was that there is a clear lack of two-handed
whole-hand haptic systems.

In chapter 3, we studied the needs to interact in a natural manner with a Virtual En-
vironment. We demonstrated the need to track the two hands –i.e. their posture and
position– and to provide force feedback on them. Mechanical haptic devices with such
properties are definitively not common. In fact, the only commercially available one, is
the Immersion R© Haptic WorkstationTM. The others are research products. The end of the
chapter describes this device in detail.

The second part of this thesis focused on the software control of the Haptic Workstation.
In chapter 4, we presented an optimized method to access to the device in order to retrieve
useful data as fast as possible. However, it is impossible to use the data in this form because
it is not calibrated. For this reason, we presented also fast registration methods suiting the
needs of realistic haptic manipulation. Finally, in this chapter, we proposed a software

121

122 CHAPTER 9. CONCLUSION

method to improve the user’s comfort while interacting with Virtual Environments. This
strong base eases the creation of the remainder of the haptic rendering software.

In chapter 5, we proposed and described MHaptic. MHaptic is a multithreaded library
that handles the haptic rendering and the animation of virtual objects. First, we presented
a study on the general structure of the library. We described the modules that are working
together in different threads, and the ways to achieve an efficient synchronization between
them, in order to maintain high refresh rates and data integrity. We then presented the opti-
mized techniques used in the collision detection and realistic animation modules. Finally,
we proposed our haptic hand model which is based on a mass-spring system managed
by the physics engine. The model eases force feedback computation and allows generic
manipulation of virtual objects.

In chapter 6, we proposed techniques allowing a user to interact with any Virtual En-
vironment. The fact is that existing Virtual Environment models usually do not contain
properties needed to compute force feedback. Starting from this observation, we presented
a study on the parametrization of the mass-spring hand model and of the virtual objects
in order to ease the grasping and to improve user’s feeling. Then, we proposed and de-
scribed a software, the Haptic Scene Creator whose role is to edit an existing visual Virtual
Environment in order to add these missing properties.

In the third part of this thesis, we presented experiments in some applications that
we believe they can take advantage of two-handed haptic rendering. We separated these
experiments into two groups. The ones that feature a realistic interaction paradigm, and
the others. In chapter 7, we performed a study on two-handed haptic feedback in a Mixed-
Reality Environment. We then presented other applications that allows interaction with
some kinds of non-rigid objects.

Finally, in chapter 8, we proposed a study on applications that do not necessarily need a
realistic interaction paradigm. We conducted two experiments in the field of teleoperation.
The first one consisted in driving a small robot. We performed a study on four interfaces
that combines visual feedback with two-handed 3D interaction. Then, we proposed a sec-
ond teleoperation experiment using an aerial robot.

9.2 Contributions

9.2.1 Two-Handed Haptic Feedback Rendering

The MHaptic framework embeds the research undergone to create a software haptic ren-
derer for two-handed devices. First, we present a method to improve the data access rate.
We propose a study, that could be reproduced for any haptic devices, whose goal is to eval-
uate the maximal refresh rate obtainable according to the link between the device and the
computer. We then show how to take benefit of multithreaded approaches to optimize this
rate.

9.2. CONTRIBUTIONS 123

We also propose methods to calibrate a two-handed device according to the applications
that could take advantage from them. We show that it is precise enough to achieve realistic
manipulation, but also quick and easy enough to rapidly change user.

We then suggest a method to improve user comfort. This method is applicable on any
passive device that do not fully support user limbs. In this study, we also propose a novel
method to evaluate the fatigue and use it to validate our work.

Considering the massive use of multicore CPUs in today’s computers, we present the
organization of a multithreaded haptic library. The structure of the library separates the
main components into different threads. We briefly present the optimized synchronization
that eases the communication between them. We put emphasis on a technique made to
efficiently render force feedback on the two hands without sacrificing visual quality.

Finally, we present an effective software that allows to edit visual models of complex
Virtual Environments. We present some useful techniques that avoid tedious tasks, and
show that this software makes the addition of haptic properties to a virtual object very easy.

The results of these contributions have been accepted and published in international
conference proceedings, particularly in [89] and [88].

9.2.2 Applications of Two-handed Haptics in Virtual Reality

In the second part of the thesis, we focused on two-handed haptic feedback and 3D inter-
actions in various contexts. We created a first assembly training application in a Mixed-
Reality Environment in which the user is able to assemble and interact with real and virtual
objects. We proposed a feasibility study that allows to perform a test on the efficiency of
different kinds of realistic interfaces. We present interesting results about precision, and
propose useful recommendations about the design of such systems. We demonstrate that,
in this context, the haptic guidance technique presents advantages. We then show that the
MHaptic framework and the NVIDIA PhysX engine are also suitable for deformable ob-
jects manipulation. It proves that physics engine integration is a good choice for creating a
haptic library.

We also proposed the integration of two teleoperation interfaces. We show that a two-
handed haptic device is a promising technique to remote control any kind of robots. Even if
it is not as efficient as a dedicated system, a two-handed device is generic, and thus is able
to control many robots. Furthermore, we also provide an interesting conclusion: it is better
to create new interaction paradigms rather than simulating a real interface. We prove with
a validation that the simulation of a real interface (like a steering wheel) is less efficient
than a gesture-based interface for example. We can thus provide two possible conclusions:
either the device itself is not precise/efficient/actuated enough to simulate a steering wheel,
or a real steering wheel is not the best tool to handle a vehicle. We believe it is perhaps a
mix of both.

These contributions have been published in international journals [92] [93], and con-
ference proceedings [90] [91] [57].

124 CHAPTER 9. CONCLUSION

9.3 Perspectives

9.3.1 Results Improvement

The haptic rendering engine resulting from this thesis combines a realistic force feedback
perception with a realistic animation of manipulated virtual objects, and this in generic
Virtual Environments. However, some aspects of our method could be improved.

In terms of haptic rendering, there are some issues that could be addressed. One of the
first that comes in mind, is the texture rendering. Even if the mass spring system is able to
slightly render this effect based on the friction coefficient of the objects, it is not really the
best approach. We believe that if a texture is applied on an object and taken into account
by the force feedback engine, it would enhance the perception of the nature of it, even if
the Haptic WorkstationTM is not the best tool to simulate this effect.

Another issue is related to the use of the PhysX library, and the fact that it is not open
source. The library does not provide access to all information, although we know that this
information has been computed. This force us to use some tricks and to approximate the
information. We hope that PhysX will become open source or that an equivalent of the
same quality will be issued in the near future. Hopefully, it is in fact very probable since
Physics engine providers are currently competing to gain the position of leader.

Then, as mentioned in section 6.1, we remarked that users of the system do not perform
equally with the same parametrization of the spring hand model. The study of this fact has
not been addressed in this thesis.

Many users put also the finger on the fact that the arms are not displayed. We never add
the forearm to the simulation because we do not exactly know its posture. However, it is
probable that even if we display it in the bad position, the immersion will be greater.

Finally, concerning the applications, many more studies should be undertaken in order
to validate the fact that the use of two hands presents advantages. We already present some,
but we think that, due to the potential of the concept, the study of a single application could
almost be the subject of a single thesis.

9.3.2 The Future of two-handed Haptics

As mentioned earlier in this conclusion, we believe that two-handed Haptics has a promis-
ing future. The intuitiveness and efficiency resulting from the use of such technologies for
the manipulation of Virtual Environments allow us to think that two-handed devices will
become the new standard of Haptics in few years. We are conscious that, in 2008, such de-
vices have a very high cost. However, situation was the same for the Phantom R© 10 years
ago, and today, some devices that imitate it are commercially available for less than 300
dollars.

However, if we had to choose only one improvement of the Haptic WorkstationTM, it

9.3. PERSPECTIVES 125

would be the addition of a device stimulating the palm. This is one of the most common
remarks that we had from the dozens of users of the device. It is true that the grasping
state usually provokes a pressure on a part of the palm. We believe that a study on the
importance of the palm pressure feeling could provide interesting results.

Finally, in the same state of mind, the adjunction of tactile devices on the fingertips
would greatly increase the discrimination of shapes. It is really challenging to combine
these two haptic perceptions, but it has already be done on a smaller scale with success.

Bibliography

[1] R. J. Adams and B. Hannaford. Control law design for haptic interfaces to virtual reality.
IEEE Transactions on Control Systems Technilogy, 10(1):3–13, January 2002.

[2] D. L. Akin, M. L. Minsky, E. D. Thiel, and C. R. Kurtzman. Space Applications of Automa-
tion, Robotics and Machine Intelligence Systems (ARAMIS)-Phase II, volume 1. NASA
Contractor Report 9734, prepared for NASA Marshall Space Flight Center, 1983.

[3] D. Avis and D. Bremner. How good are convex hull algorithms? In SCG ’95: Proceedings of
the eleventh annual symposium on Computational geometry, pages 20–28, New York, NY,
USA, 1995. ACM.

[4] R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre. Recent advances
in augmented reality. IEEE Computer Graphics Application, 6:34–47, 2001.

[5] C. L. Bajaj and T. K. Dey. Convex decomposition of polyhedra and robustness. SIAM J.
Comput., 21(2):339–364, 1992.

[6] S. Bandi and D. Thalmann. An adaptive spatial subdivision of the object space for fast
collision detection of animated rigid bodies. Computer Graphics Forum, 14(3):259–279,
1995.

[7] D. Baraff and A. Witkin. Physically based modeling: Principles and practice. In Online
Siggraph ’97 Course notes. ACM Press, 1997.

[8] F. Barbagli, J. Salisbury, K., and R. Devengenzo. Enabling multi-finger, multi-hand virtual-
ized grasping. Robotics and Automation, 2003. Proceedings. ICRA’03. IEEE International
Conference on, 1:809–815 vol.1, Sept. 2003.

[9] F. Barbagli and K. Salisbury. The effect of sensor/actuator asymmetries in haptic interfaces.
Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2003. HAPTICS 2003.
Proceedings. 11th Symposium on, pages 140–147, March 2003.

[10] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The quickhull algorithm for convex hulls.
ACM Trans. Math. Softw., 22(4):469–483, 1996.

[11] C. Basdogan, C.-H. Ho, and M. Srinivasan. Virtual environments for medical training:
graphical and haptic simulation of laparoscopic common bile duct exploration. Mecha-
tronics, IEEE/ASME Transactions on, 6(3):269–285, Sep 2001.

[12] M. Benali-Khoudja, M. Hafez, J. Alexandre, and A. Kheddar. Tactile interfaces: a state-of-
the-art survey. In proceedings of the 2004 International Symposium on Robotics, 2004.

[13] M. Benali-Khoudjal, M. Hafez, J.-M. Alexandre, J. Benachour, and A. Kheddar. Thermal
feedback model for virtual reality. Micromechatronics and Human Science, 2003. MHS
2003. Proceedings of 2003 International Symposium on, pages 153–158, Oct. 2003.

127

128 BIBLIOGRAPHY

[14] J. L. Bentley. Multidimensional binary search trees used for associative searching. Commun.
ACM, 18(9):509–517, 1975.

[15] M. Bergamasco, P. Degl’Innocenti, and D. Bucciarelli. A realistic approach for grasping and
moving virtual objects. Intelligent Robots and Systems ’94. ’Advanced Robotic Systems and
the Real World’, IROS ’94. Proceedings of the IEEE/RSJ/GI International Conference on,
1:717–724 vol.1, Sep 1994.

[16] P. Berkelman, R. Hollis, and D. Baraff. Interaction with a real time dynamic environment
simulation using a magnetic levitation haptic interface device. Robotics and Automation,
1999. Proceedings. 1999 IEEE International Conference on, 4:3261–3266 vol.4, 1999.

[17] G. Bianchi, B. Knoerlein, G. Szekely, and M. Harders. High precision augmented reality
haptics. In proceedings of the EuroHaptics Conference, 2006.

[18] A. Boeing and T. Bräunl. Evaluation of real-time physics simulation systems. In GRAPHITE
’07: Proceedings of the 5th international conference on Computer graphics and interactive
techniques in Australia and Southeast Asia, pages 281–288, New York, NY, USA, 2007.
ACM.

[19] S. Booth, F. Angelis, and T. Schmidt-Tjarksen. The influence of changing haptic refresh-rate
on subjective user experiences - lessons for effective touch-based applications. In proceed-
ings of the 2003 Eurohaptics conference, pages 374–383, 2003.

[20] C. W. Borst and A. P. Indugula. Realistic virtual grasping. In proceedings of the 2005 IEEE
Conference 2005 on Virtual Reality (VR’05), pages 91–98, 320, Washington, DC, USA,
2005. IEEE Computer Society.

[21] C. W. Borst and A. P. Indugula. A spring model for whole-hand virtual grasping. Presence
: Teleoperators and Virtual Environments, 15(1):47–61, February 2006.

[22] R. Boulic, S. Rezzonico, and D. Thalmann. Multi-finger manipulation of virtual objects. In
ACM Symposium on Virtual Reality and Technology, 1996. Comput. Graphics Lab., Fed.
Inst. of Technol., Lausanne, Switzerland.

[23] R. Brown, S. Schneider, and M. Mulligan. Analysis of algorithms for velocity estima-
tion from discrete position versus time data. IEEE Transactions on Industrial Electronics,
39(1):11–19, Feb 1992.

[24] S. Bruce, C. Rice, and R. Hepp. Design and test of military cockpits. In Proceedings of
IEEE Aerospace Conference, volume 3, pages 5–14, 1998.

[25] N. Bu, O. Fukuda, and T. Tsuji. EMG-Based motion discrimination using a novel recurrent
neural network. Journal of Intelligent Information Systems (JIIS), 21(2):113–126, 2003.

[26] E. Burns, S. Razzaque, A. T. Panter, M. C. Whitton, M. R. McCallus, and J. Frederick
P. Brooks. The hand is more easily fooled than the eye: Users are more sensitive to visual
interpenetration than to visual proprioceptive discrepancy. Presence : Teleoperators and
Virtual Environments, 15(1):1–15, February 2006.

[27] P. Buttolo, A. Marsan, and P. Stewart. A haptic hybrid controller for virtual prototyping
of vehicle mechanisms. In HAPTICS ’02: Proceedings of the 10th Symposium on Haptic
Interfaces for Virtual Environment and Teleoperator Systems, page 249, Washington, DC,
USA, 2002. IEEE Computer Society.

[28] W. A. S. Buxton. Chunking and phrasing and the design of human-computer dialogues.
pages 494–499, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.

BIBLIOGRAPHY 129

[29] Y. Cai, S. Wang, and M. Sato. A human-scale direct motion instruction system device for
education systems. IEICE TRANSACTIONS on Information and Systems, 80(2):212–217,
1997.

[30] A. E. Çakir, G. Çakir, T. Müller, and P. Unema. The trackpad: a study on user comfort
and performance. In Conference companion on Human factors in computing systems, pages
246–247. ACM Press, 1995.

[31] D. Checcacci, E. Sotgiu, A. Frisoli, C. Avizzano, and M. Bergamasco. Gravity compensation
algorithms for parallel haptic interface. In Proceedings of IEEE International Workshop on
Robot and Human Interactive Communication, Berlin, Germany, pages 140–145, 2002.

[32] H. Chen and H. Sun. Real-time haptic sculpting in virtual volume space. In Proceedings
of the 2002 ACM symposium on Virtual reality software and technology, pages 81–88, New
York, NY, USA, 2002. ACM.

[33] F. Conti, F. Barbagli, D. Morris, and C. Sewell. Chai: An open-source library for the rapid
development of haptic scenes. In Demo paper presented at IEEE World Haptics, March
2005.

[34] F. Crison, A. Lécuyer, D. Mellet-D’Huart, J. M. Burkhardt, G. Michel, and J. L. Dautin.
Virtual technical trainer: Learning how to use milling machines with multi-sensory feedback
in virtual reality. In proceedings of the IEEE International Conference on Virtual Reality
(VR’05), 2005.

[35] C. Darwin. The Descent of Man, and Selection in Relation to Sex. Princeton University
Press, 1871.

[36] R. V. der Linde, P.Lammertse, E. Frederiksen, and B. Ruiter. The hapticmaster, a new high-
performance haptic interface. In proceedings of the 2002 Eurohaptics Conference, 2002.

[37] J. E. Deutsch, J. Latonio, G. C. Burdea, and R. Boian. Post-stroke rehabilitation with the
rutgers ankle system: A case study. Presence: Teleoper. Virtual Environ., 10(4):416–430,
2001.

[38] J. Dionisio. Virtual hell: a trip through the flames. Computer Graphics and Applications,
IEEE, 17(3):11–14, May/Jun 1997.

[39] D. P. Dobkin and D. G. Kirkpatrick. Determining the separation of preprocessed polyhedra:
a unified approach. In Proceedings of the seventeenth international colloquium on Automata,
languages and programming, pages 400–413, New York, NY, USA, 1990. Springer-Verlag
New York, Inc.

[40] L. Dominjon, A. Lécuyer, J. Burkhardt, G. Andrade-Barroso, and S. Richir. The “bub-
ble” technique: Interacting with large virtual environments using haptic devices with lim-
ited workspace. In proceedings of the First Joint Eurohaptics Conference and Sympo-
sium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (WORLDHAP-
TICS’05).

[41] L. Dominjon, S. Richir, A. Lécuyer, and J.-M. Burkhardt. Haptic hybrid rotations: Over-
coming hardware angular limitations of force-feedback devices. In VR ’06: Proceedings of
the IEEE conference on Virtual Reality, pages 164–174, Washington, DC, USA, 2006. IEEE
Computer Society.

[42] C. Ericson. Real-Time Collision Detection. Morgan Kaufmann, 2005.

130 BIBLIOGRAPHY

[43] J. Fernandez-Lozano, J. M. G. de Gabriel, V. F. Munoz, I. Garcia-Morales, D. Melgar,
C. Vara, and A. Garcia-Cerezo. Human-machine interface evaluation in a computer as-
sisted surgical system. In Proceedings of IEEE International Conference on Robotics and
Automation, pages 231–236. IEEE Computer Society Press, 2004.

[44] M. Fischer, P. van der Smagt, and G. Hirzinger. Learning techniques in a dataglove based
telemanipulation system for the DLR hand. In transactions of the IEEE International Con-
ference on Robotics and Automation, pages 1603–1608, 1998.

[45] M. Foskey, M. A. Otaduy, and M. C. Lin. Artnova: touch-enabled 3d model design. In
Proceedings of the 2002 IEEE Virtual Reality Conference, pages 119–126, 2002.

[46] J. H. Freidman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches in
logarithmic expected time. ACM Trans. Math. Softw., 3(3):209–226, 1977.

[47] A. Frisoli, F. Rocchi, S. Marcheschi, A. Dettori, F. Salsedo, and M. Bergamasco. A new
force-feedback arm exoskeleton for haptic interaction in virtual environments. Eurohaptics
Conference, 2005 and Symposium on Haptic Interfaces for Virtual Environment and Teleop-
erator Systems, 2005. World Haptics 2005. First Joint, pages 195–201, March 2005.

[48] A. Frisoli, M. Solazzi, F. Salsedo, and M. Bergamasco. A fingertip haptic display for improv-
ing curvature discrimination. Presence: Teleoper. Virtual Environ., 17(6):550–561, 2008.

[49] P. Fuchs and G. Moreau. Le Traité de la Réalité Virtuelle, deuxième édition, volume 1. Les
Presses de l’Ecole des Mines de Paris, 2004.

[50] D. G.Caldwel1, O.Kocak, and U.Andersen. Multi-armed dexterous manipulator operation
using glove/exoskeleton control and sensory feedback. In IROS ’95: Proceedings of the
International Conference on Intelligent Robots and Systems-Volume 2, page 2567, Washing-
ton, DC, USA, 1995. IEEE Computer Society.

[51] J. Goble, K. Hinckley, R. Pausch, J. Snell, and N. Kassell. Two-handed spatial interface
tools for neurosurgical planning. Computer, 28(7):20–26, Jul 1995.

[52] R. C. Goertz and W. M. Thompson. Electronically controlled manipulator. Nucleonics,
12(11):46, 1954.

[53] G. H. Gollub and C. F. V. Loan. Matrix Computations, chapter 8.4, pages 426–429. The
Johns Hopkins University Press, 1996.

[54] W. B. Griffin, R. P. Findley, M. L. Turner, and M. R. Cutkosky. Calibration and mapping of
a human hand for dexterous telemanipulation. In proceedings of the Haptic Interfaces for
Virtual Environments and Teleoperator Systems Symposium, 2000.

[55] Y. Guiard. Asymmetric division of labor in human skilled bimanual action: The kinematic
chain as a model. Journal of Motor Behavior, 19:486–517, 1987.

[56] M. Gutiérrez, P. Lemoine, D. Thalmann, and F. Vexo. Telerehabilitation: controlling haptic
virtual environments through handheld interfaces. In VRST ’04: Proceedings of the ACM
symposium on Virtual reality software and technology, pages 195–200, New York, NY, USA,
2004. ACM.

[57] M. Gutierrez, R. Ott, D. Thalmann, and F. Vexo. Mediators: Virtual haptic interfaces for
tele-operated robots. In Proceedings of the 13th IEEE International Workshop on Robot and
Human Interactive Communication (RO-MAN’04), pages 515–520, 2004.

[58] C. Hand. A survey of 3d interaction techniques. COMPUTER GRAPHICS forum,
16(5):269–281, 1997.

BIBLIOGRAPHY 131

[59] H. J. Haverkort. Results on geometric networks and data structures. PhD thesis, Utrecht
University, 2004.

[60] V. Hayward and O. R. Astley. Performance measures for haptic interfaces. In Robotics
Research: The 7th International Symposium, pages 195–207. Springer Verlag, 1996.

[61] V. Hayward, O. R. Astley, M. Cruz-Hernandez, D. Grant, and G. Robles-De-La-Torre. Hap-
tic interfaces and devices. Sensor Review, 24(1):16–29, 2004.

[62] Y. Hirata and M. Sato. 3-dimensional interface device for virtual work space. Intelligent
Robots and Systems, 1992., Proceedings of the 1992 lEEE/RSJ International Conference on,
2:889–896, Jul 1992.

[63] B. J. Holbert. Enhanced targeting in a haptic user interface for the physically disabled using
a force feedback mouse. PhD thesis, Arlington, TX, USA, 2007. Adviser : Manfred Huber.

[64] J. M. Hollerbach, E. Cohen, W. Thompson, R. Freier, D. Johnson, A. Nahvi, D. Nelson, and
T. V. T. Ii. Haptic interfacing for virtual prototyping of mechanical cad designs. In In ASME
Design for Manufacturing Symposium, pages 14–17. Kluwer Academic Publishers, 1997.

[65] H. Iwata. Artificial reality with force-feedback: development of desktop virtual space with
compact master manipulator. In SIGGRAPH ’90: Proceedings of the 17th annual conference
on Computer graphics and interactive techniques, pages 165–170, New York, NY, USA,
1990. ACM.

[66] H. Iwata, H. Yano, T. Uemura, and T. Moriya. Food simulator: A haptic interface for biting.
Virtual Reality Conference, IEEE, 0:51, 2004.

[67] I. T. Jolliffe. Principal Component Analysis. Springer, 2002.

[68] L. A. Jones and M. Berris. The psychophysics of temperature perception and thermal-
interface design. In HAPTICS ’02: Proceedings of the 10th Symposium on Haptic Interfaces
for Virtual Environment and Teleoperator Systems, page 137, Washington, DC, USA, 2002.
IEEE Computer Society.

[69] F. Kahlesz, G. Zachmann, and R. Klein. Visual-fidelity dataglove calibration. In proceedings
of Computer Graphics International, pages 403–410, 2004.

[70] S. Kim, S. Hasegawa, Y. Koike, and M. Sato. Tension based 7-dof force feedback device:
Spidar-g. Virtual Reality, 2002. Proceedings. IEEE, pages 283–284, 2002.

[71] E. Kreighbaum and K. M. Barthels. Biomechanics: A Qualitative Approach for Studying
Human Movement, chapter Appendix III. Burgess Pub. Co, 1983.

[72] W. Kuo-Cheng, T. Fernando, and H. Tawfik. Freesculptor: a computer-aided freeform design
environment. In Proceedings of the 2003 International Conference on Geometric Modeling
and Graphics, pages 188–194, Juillet 2003.

[73] A. Lécuyer, J. Burkhardt, J. L. Biller, and M. Congedo. A4: A technique to improve per-
ception of contacts with under-actuated haptic devices in virtual reality. In proceedings
of the First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual
Environment and Teleoperator Systems (WORLDHAPTICS’05), March 2005.

[74] A. Lécuyer, A. Kheddar, S. Coquillart, L. Graux, and P. Coiffet. A haptic prototype for the
simulations of aeronautics mounting/unmounting operations. In proceedings of the IEEE
International Workshop on Robot-Human Interactive Communication (RO-MAN’01), 2001.

132 BIBLIOGRAPHY

[75] C. Lee, M. S. Hong, I. Lee, O. K. Choi, K.-L. Han, Y. Y. Kim, S. Choi, and J. S. Lee. Mobile
haptic interface for large immersive virtual environments: Pomhi v0.5. Journal of Korea
Robotics Society, 3(2), 2008.

[76] C. Lee and Y. Xu. Online, interactive learning of gestures for human/robot interfaces. In
Proceedings of the 1996 IEEE International Conference on Robotics and Automation, pages
2982–2987, 1996.

[77] P. Lemoine, M. Gutierrez, F. Vexo, and D. Thalmann. Mediators: Virtual interfaces with
haptic feedback. In Proceedings of EuroHaptics 2004, 5th-7th June, Munich, Germany,
pages 68–73, 2004.

[78] M. Lin and J. Canny. A fast algorithm for incremental distance calculation. Robotics and
Automation, 1991. Proceedings., 1991 IEEE International Conference on, pages 1008–1014
vol.2, 9-11 Apr 1991.

[79] D. Mellet-d’Huart, G. Michela, J. M. Burkhardt, A. Lécuyer, J. L. Dautin, and F. Crison.
An application to training in the field of metal machining as a result of research-industry
collaboration. In proceedings of the Virtual Reality Conference (VRIC), 2004.

[80] T. Miller and R. Zeleznik. An insidious haptic invasion: adding force feedback to the x
desktop. In UIST ’98: Proceedings of the 11th annual ACM symposium on User interface
software and technology, pages 59–64, New York, NY, USA, 1998. ACM.

[81] B. Mirtich. V-clip: fast and robust polyhedral collision detection. ACM Trans. Graph.,
17(3):177–208, 1998.

[82] T. Möller. A fast triangle-triangle intersection test. J. Graph. Tools, 2(2):25–30, 1997.

[83] D. G. R. C. M.R. Tremblay, C. Ullrich and J. Tian. Whole-hand interaction with 3d environ-
ments. Technical report, Virtual Technologies Inc., 1997.

[84] J. Murayama, L. Bougrila, Y. K. Akahane, S. Hasegawa, B. Hirsbrunner, and M. Sato. Sp-
idar g&g: A two-handed haptic interface for bimanual vr interaction. In Proceedings of
EuroHaptics 2004, pages 138–146, 2004.

[85] B. Naylor, J. Amanatides, and W. Thibault. Merging bsp trees yields polyhedral set opera-
tions. In SIGGRAPH ’90: Proceedings of the 17th annual conference on Computer graphics
and interactive techniques, pages 115–124, New York, NY, USA, 1990. ACM.

[86] T. Nojima, D. Sekiguchi, M. Inami, and S. Tachi. The smarttool: a system for augmented
reality of haptics. In proceedings of the IEEE Virtual Reality Conference, pages 67–72,
2002.

[87] M. A. Otaduy and M. C. Lin. High Fidelity Haptic Rendering, chapter 6 DOF Haptic Ren-
dering Methodologies, pages 23–34. Morgan and Claypool Publishers, 2006.

[88] R. Ott, V. de Perrot, D. Thalmann, and F. Vexo. Mhaptic: a haptic manipulation library
for generic virtual environments. In Proceedings of the Cyberworlds 2007 International
Conference, pages 338–345, 2007.

[89] R. Ott, M. Gutierrez, D. Thalmann, and F. Vexo. Improving user comfort in haptic virtual
environments trough gravity compensation. In proceedings of the First Joint Eurohaptics
Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator
Systems (WORLDHAPTICS’05), pages 401–409, 2005.

[90] R. Ott, M. Gutierrez, D. Thalmann, and F. Vexo. Vr haptic interfaces for teleoperation : an
evaluation study. In Proceedings of the IEEE Intelligent Vehicles Symposium, (IV’05), 2005.

BIBLIOGRAPHY 133

[91] R. Ott, M. Gutierrez, D. Thalmann, and F. Vexo. Advanced virtual reality technologies for
surveillance and security applications. In Proceedings of the ACM SIGGRAPH International
Conference on Virtual Reality Continuum and Its Applications (VRCIA’06), 2006.

[92] R. Ott, D. Thalmann, and F. Vexo. Organic shape modelling. Computer-Aided Design and
Applications, 3(1–4):79–88, 2006.

[93] R. Ott, D. Thalmann, and F. Vexo. Haptic feedback in mixed-reality environment. The Visual
Computer, 23(9-11):843–849, 2007.

[94] A. Peternier, D. Thalmann, and F. Vexo. Mental vision: a computer graphics teaching plat-
form. In proceedings of the 2006 Edutainment Conference, pages 223–232, 2006.

[95] A. Peternier, F. Vexo, and D. Thalmann. The mental vision framework: a platform for teach-
ing, practicing and researching with computer graphics and virtual reality. LNCS Transac-
tions on Edutainment, 2008.

[96] ReachIn API, Touch Enabled Solutions. http://www.reachin.se/products/reachinapi/.

[97] B. Runck. What is Biofeedback?. DHHS Publication No (ADM) 83-1273, Arizona Behav-
ioral Health Associates, P.C. http://www.psychotherapy.com/bio.html.

[98] D. C. Ruspini, K. Kolarov, and O. Khatib. The haptic display of complex graphical envi-
ronments. In SIGGRAPH ’97: Proceedings of the 24th annual conference on Computer
graphics and interactive techniques, pages 345–352, New York, NY, USA, 1997. ACM
Press/Addison-Wesley Publishing Co.

[99] P. Salamin, D. Thalmann, and F. Vexo. Comfortable manipulation of a virtual gearshift
prototype with haptic feedback. In Proceedings of the 2006 ACM symposium on Virtual
reality software and technology, 2006.

[100] H. Samet. The quadtree and related hierarchical data structures. ACM Comput. Surv.,
16(2):187–260, 1984.

[101] Schuhfried GmbH. Physiorecorder.
http://www.schuhfried.co.at.

[102] C. S. Sherrington. On the proprioceptive system, especially in its reflex aspect. Brain,
29:497–482, 1907.

[103] M. Slater and A. Steed. A virtual presence counter. Presence : Teleoperators and Virtual
Environments, 9(5):413–434, October 2000.

[104] S. S. Snibbe, K. E. MacLean, R. Shaw, J. Roderick, W. L. Verplank, and M. Scheeff. Haptic
techniques for media control. In UIST ’01: Proceedings of the 14th annual ACM symposium
on User interface software and technology, pages 199–208, New York, NY, USA, 2001.
ACM.

[105] A. Soares, A. Andrade, E. Lamounier, and R. Carrijo. The development of a virtual myoelec-
tric prosthesis controlled by an emg pattern recognition system based on neural networks. J.
Intell. Inf. Syst., 21(2):127–141, 2003.

[106] H. Sowizral. Scene graphs in the new millennium. IEEE Computer Graphics and Applica-
tions, 20(1):56–57, 2000.

[107] D. J. Sturman and D. Zeltzer. A survey of glove-based input. IEEE Comput. Graph. Appl.,
14(1):30–39, 1994.

134 BIBLIOGRAPHY

[108] Z. Sun, G. Bao, J. Li, and Z. Wang. Research of dataglove calibration method based on
genetic algorithms. In proceedings of the 6th World Congress on Intelligent Control and
Automation, pages 9429–9433, 2006.

[109] I. E. Sutherland. The ultimate display. In Proceedings of IFIPS Congress, volume 2, pages
506–508, 1965.

[110] H. Tamura, Yamamoto, and A. Katayama. Mixed reality: future dreams seen at the border
between real and virtual worlds. IEEE Computer Graphics and Applications, 21(6):64–70,
November/December 2001.

[111] N. Tarrin, S. Coquillart, S. Hasegawa, L. Bouguila, and M. Sato. The stringed haptic work-
bench. In SIGGRAPH ’03: ACM SIGGRAPH 2003 Sketches & Applications, pages 1–1,
New York, NY, USA, 2003. ACM.

[112] The Engineering Toolbox, Friction and Coefficient of Friction for some common material
combinations. http://www.engineeringtoolbox.com/friction-coefficients-d_778.html.

[113] M. Tuceryan and N. Navab. Single point active alignment method (spaam) for optical see-
through hmd calibration for ar. In proceedings of the IEEE and ACM International Sympo-
sium on Augmented Reality (ISAR’2000), pages 149–158, 2000.

[114] M. Ueberle and M. Buss. Control of kinesthetic haptic interfaces. In Proceedings of
IEEERSJ International Conference on Intelligent Robots Systems, Workshop Touch Haptics,
pages 147–151, 2004.

[115] L. Vacchetti, V. Lepetit, M. Ponder, G. Papagiannakis, D. Thalmann, N. Magnenat-
Thalmann, and P. Fua. A Stable Real-Time AR Framework for Training and Planning in
Industrial Environments, pages 129–146. Springer, 2004.

[116] S. Walairacht, K. Yamada, S. Hasegawa, Y. Koike, and M. Sato. 4 + 4 fingers manipulating
virtual objects in mixed-reality environment. Presence: Teleoperators and Virtual Environ-
ments, 11(2):134–143, 2002.

[117] D. Xu. A neural network approach for hand gesture recognition in virtual reality driving
training system of spg. In Proceedings of the 18th IEEE International Conference on Pattern
Recognition (ICPR’06), pages 519–522, 2006.

[118] G.-H. Yang, K.-U. Kyung, M. A. Srinivasan, and D.-S. Kwon. Development of quantitative
tactile display device to provide both pin- array-type tactile feedback and thermal feedback.
In WHC ’07: Proceedings of the Second Joint EuroHaptics Conference and Symposium
on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pages 578–579,
Washington, DC, USA, 2007. IEEE Computer Society.

[119] J. Zauner, M. Haller, A. Brandl, and W. Hartman. Authoring of a mixed reality assembly
instructor for hierarchical structures. In proceedings of the Second IEEE and ACM Interna-
tional Symposium on Mixed and Augmented Reality, pages 237–246, October 2003.

[120] C. B. Zilles and J. K. Salisbury. A constraint-based god-object method for haptic display. In
proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,
volume 3, pages 146–151, 1995.

Appendices

135

Appendix I: The Haptic Scene file
format

This appendix presents the Document Type Definition of a XML Haptic File.

<? xml v e r s i o n =" 1 . 0 " e n c o d i n g =" ISO−8859−1" ?>

< !−−
A H a p t i c s c e n e d e c r i p t i o n document t y p e (f o r Ageia) .
The body i s n o t saved because i t i s n o t n e c e s s a r y :
− I f t h e a c t o r i s Dynamic , a body i s a s s o c i a t e d d u r i n g t h e

c r e a t i o n o f t h e o b j e c t and computed
from i t s s h a p e s : i n e r t i a t e n s o r , c e n t e r o f mass e t c .
− I f t h e a c t o r i s S t a t i c , no body i s c r e a t e d .
− The Scene i s c o n s t i t u t e d by O b j e c t
− The O b j e c t s are e i t h e r Dynamic or S t a t i c and t h i s

i n f o r m a t i o n i s an a t t r i b u t e :
∗ An O b j e c t must f i r s t have a name
∗ Then i t has a g l o b a l p o s i t i o n (p o s i t i o n o f t h e

c o o r d i n a t e s y s t e m o f t h e o b j e c t)
∗ Then i t has a g l o b a l r o t a t i o n (r o t a t i o n o f t h e

c o o r d i n a t e s y s t e m o f t h e o b j e c t)
∗ Then i t has a t l e a s t one Shape w i t h an a t t r i b u t e

d e s c r i b i n g i t s t y p e
+ A Shape has a l o c a l p o s i t i o n (p o s i t i o n r e l a t i v e t o

t h e c o o r d i n a t e s y s t e m o f t h e o b j e c t)
+ A Shape has a l o c a l r o t a t i o n (r o t a t i o n r e l a t i v e t o

t h e c o o r d i n a t e s y s t e m o f t h e o b j e c t)
+ A Shape has e i t h e r a D e n s i t y or a Mass

(2 n o t e s : − When mass < =0.0 t h e n d e n s i t y and volume
d e t e r m i n e t h e mass

− When o b j e c t i s S t a t i c , t h i s i n f o r m a t i o n
i s n o t used a t a l l)

+ I f a t t r i b u t e i s p lane , t h e Shape has t h e n 4
p a r a m e t e r s (a , b , c , d f o r ax+by+cz=d)

137

138 APPENDICES

+ I f a t t r i b u t e i s sphe re , t h e Shape has t h e n 1
p a r a m e t e r (t h e r a d i u s)

+ I f a t t r i b u t e i s box , t h e Shape has t h e n 3 p a r a m e t e r s
(h a l f t h e s i d e s)

+ I f a t t r i b u t e i s Capsule , t h e Shape has t h e n 2
p a r a m e t e r s (r a d i u s and l e n g t h)

+ (n o t s u p p o r t e d y e t) I f a t t r i b u t e i s a Tr imesh (one
f a k e param)

− Mass i s a number [kg]
− D e n s i t y i s a number [u n i t = kg .m−3 , D e f a u l t v a l u e i s

1 . 0]
− P o s i t i o n i s 3 numbers [m]
− R o t a t i o n i s 3x3 numbers (heavy b u t s t r a i g h f o r w a r d)
− A number i s e i t h e r a f l o a t , a dou b l e o r an i n t e g e r

−−>

< !ENTITY % number " i n t e g e r | f l o a t | dou b l e ">
< !ELEMENT i n t e g e r (#PCDATA) >
< !ELEMENT f l o a t (#PCDATA) >
< !ELEMENT d o u b l e (#PCDATA) >
< !ELEMENT MHAPTIC:scene (MHAPTIC:object) ∗>
< !ATTLIST MHAPTIC:scene xmlns:MHAPTIC CDATA #REQUIRED>
< !ELEMENT MHAPTIC:object (MHAPTIC:name , MHAPTIC:position ,

MHAPTIC:rotat ion , (MHAPTIC:shape) +) >
< !ATTLIST MHAPTIC:object t y p e (S t a t i c | Dynamic) #REQUIRED>
< !ELEMENT MHAPTIC:shape (MHAPTIC:position , MHAPTIC:rotat ion ,

(MHAPTIC:density | MHAPTIC:mass) , (MHAPTIC:planeparams |
MHAPTIC:sphereparams | MHAPTIC:boxparams |

MHAPTIC:capsuleparams | MHAPTIC:trimeshparams)) >
< !ATTLIST MHAPTIC:shape t y p e (P l a n e | Sphere | Box | Capsu le

| Tr imesh) #REQUIRED>
< !ELEMENT MHAPTIC:posit ion ((% number ;) ,(% number ;) ,(% number ;)

) >
< !ELEMENT MHAPTIC:rotat ion ((% number ;) ,(% number ;) ,(% number ;)

,(% number ;) ,(% number ;) ,(% number ;) ,(% number ;) ,(% number ;)
,(% number ;)) >

< !ELEMENT MHAPTIC:density (%number ;) >
< !ELEMENT MHAPTIC:mass (%number ;) >
< !ELEMENT MHAPTIC:planeparams ((% number ;) , (%number ;) , (%

number ;) , (%number ;)) >
< !ELEMENT MHAPTIC:sphereparams (%number ;) >
< !ELEMENT MHAPTIC:boxparams ((% number ;) , (%number ;) , (%

number ;)) >
< !ELEMENT MHAPTIC:capsuleparams ((% number ;) , (%number ;)) >
< !ELEMENT MHAPTIC:trimeshparams (%number ;) >

The Haptic Scene file format 139

< !ELEMENT MHAPTIC:name (#PCDATA) >

This an example of a simple scene:

<? xml v e r s i o n =" 1 . 0 " e n c o d i n g =" ISO−8859−1" ?>
< !DOCTYPE MHAPTIC:scene SYSTEM " H a p t i c S c e n e . d t d ">
<MHAPTIC:scene xmlns:MHAPTIC=" h t t p : / / v r l a b . e p f l . ch / ~ r en o ">

<MHAPTIC:object t y p e =" S t a t i c ">
<MHAPTIC:name> g r o u n d L i v i n g < / MHAPTIC:name>
<MHAPTIC:posit ion>

< f l o a t > 1 .766357 < / f l o a t >
< f l o a t >−0.000000< / f l o a t >
< f l o a t >−4.121672< / f l o a t >

< / MHAPTIC:posit ion>
<MHAPTIC:rotat ion>

< f l o a t > 1 .000000 < / f l o a t >
< f l o a t > 0 .000000 < / f l o a t >
< f l o a t > 0 .000000 < / f l o a t >
< f l o a t > 0 .000000 < / f l o a t >
< f l o a t > 1 .000000 < / f l o a t >
< f l o a t > 0 .000000 < / f l o a t >
< f l o a t > 0 .000000 < / f l o a t >
< f l o a t > 0 .000000 < / f l o a t >
< f l o a t > 1 .000000 < / f l o a t >

< / MHAPTIC:rotat ion>
<MHAPTIC:shape t y p e =" P l a n e ">

<MHAPTIC:posit ion>
< f l o a t > 0 .000000 < / f l o a t >
< f l o a t > 0 .000000 < / f l o a t >
< f l o a t > 0 .000000 < / f l o a t >

< / MHAPTIC:posit ion>
<MHAPTIC:rotat ion>

< f l o a t > 1 .000000 < / f l o a t >
< f l o a t > 0 .000000 < / f l o a t >
< f l o a t > 0 .000000 < / f l o a t >
< f l o a t > 0 .000000 < / f l o a t >
< f l o a t > 1 .000000 < / f l o a t >
< f l o a t > 0 .000000 < / f l o a t >
< f l o a t > 0 .000000 < / f l o a t >
< f l o a t > 0 .000000 < / f l o a t >
< f l o a t > 1 .000000 < / f l o a t >

< / MHAPTIC:rotat ion>
<MHAPTIC:materialparams>

< f l o a t > 0 .240000 < / f l o a t >
< f l o a t > 0 .350000 < / f l o a t >
< f l o a t > 0 .200000 < / f l o a t >

140 APPENDICES

< / MHAPTIC:materialparams>
<MHAPTIC:planeparams>

< f l o a t > 0 .000000 < / f l o a t >
< f l o a t > 1 .000000 < / f l o a t >
< f l o a t > 0 .000000 < / f l o a t >
< f l o a t >−0.000001< / f l o a t >

< / MHAPTIC:planeparams>
< / MHAPTIC:shape>

< / MHAPTIC:object>
< / MHAPTIC:scene>

Appendix II: Programming with
MHaptic

This appendix presents the code of a simple program that uses MHaptic. Some parts have
been removed because they are not useful to understand the library. We can see that a
program should start by initializing the visual Virtual Environment using MVisio. The
visual scene is stored in a ���� file. Then, we need to initialize MHaptic and to add the
haptic information to the objects using ����	
����������������. Then, the only thing
to do is to render as fast as possible the visual scene. The updates of force, objects position,
hand posture are embedded into MHaptic.

The listing:

i n c l u d e < mhap t i c / mhap t i c . h>

i n t main (i n t argc , char ∗ a rgv []) {

/ / V i s u a l D i s p l a y i n i t i a l i z a t i o n
MVSETTINGS s e t t i n g s ;
s e t t i n g s . s e t C o l o r D e p t h (3 2) ;
s e t t i n g s . setWindowX (6 4 0) ;
s e t t i n g s . setWindowY (4 8 0) ;
s e t t i n g s . s e t F u l l S c r e e n (f a l s e) ;
s e t t i n g s . s e t T i t l e ("MHAPTIC Simple Program ") ;
i f (MVISIO : : i n i t (& s e t t i n g s) == f a l s e) {

p r i n t f (" D i s p l a y Abor ted \ n ") ;
f f l u s h (s t d o u t) ;
re turn 0 ;

}

/ / V i s u a l V i r t u a l Env i ronmen t I n i t i a l i z a t i o n
MVCAMERA ∗ camera = new MVCAMERA() ;
camera−> s e t P o s i t i o n (0 . 5 , 0 . 0 , 0 . 5) ;
camera−> s e t T a r g e t (0 . 0 , 0 . 0 , 0 . 0) ;

MVLIGHT ∗ l i g h t = new MVLIGHT () ;
l i g h t −> s e t P o s i t i o n (5 . 0 , 1 0 . 0 , 0 . 0) ;

141

142 APPENDICES

MVNODE ∗ s c e n e = MVISIO : : l o a d (" MyTestScene . mve") ;

/ / H a p t i c i n i t i a l i z a t i o n
MHAPTIC : : i n i t () ;
/ / Connect w i t h e v e r y d e v i c e s

MHAPTICWORKSTATION : : c o n n e c t A l l () ;

/ / S t a r t H a p t i c Thread
MENGINE : : s t a r t H a p t i c T h r e a d () ;

/ / Add H a p t i c I n f o r m a t i o n t o t h e a l r e a d y loa de d V i s u a l
Scene

MHAPTIC : : l o a d S c e n e (" MyTestScene . xml ") ;

bool done = f a l s e ;

whi le (! done) {

/ / Check Keyboard E v e n t s :
char key = 0 ;
SDL_Event e v e n t ;
whi le (SDL_Pol lEvent (& e v e n t)) {

i f (e v e n t . t y p e == SDL_QUIT)
done = 1 ;

i f (e v e n t . t y p e == SDL_KEYDOWN) {
i f (e v e n t . key . keysym . sym == SDLK_ESCAPE)

done = 1 ;
}

}
SDL_PumpEvents () ;

/ / check Mouse E v e n t s
MVID b u t t o n P r e s s e d = 0 ;
s t a t i c i n t oldMouseX , oldMouseY , deltaMouseX ,

del taMouseY ;
i n t MouseX = 0 ;
i n t MouseY = 0 ;
i n t f l a g s = SDL_GetMouseState (&MouseX , &MouseY) ;
bool MBL = f a l s e , MBR = f a l s e ;
i f (f l a g s & SDL_BUTTON(1)) MBL = t rue ;
i f (f l a g s & SDL_BUTTON(3)) MBR = t rue ;

Programming with MHaptic 143

/ / MVisio 2D GUI e v e n t s
MVELEMENT : : manageGUIEvents (key , MouseX , MouseY ,

MBL, MBR, &b u t t o n P r e s s e d) ;

/ / Forward E v e n t s t o t h e MHPATIC GUI
MHAPTIC : : m a n a g e I n t e r f a c e E v e n t (b u t t o n P r e s s e d) ;

/ / S y n c h r o n i z e v i s u a l nodes pose u s i n g h a p t i c nodes
MHNODE: : s y n c h r o n i z e A l l P o s e s () ;

/ / Updates t h e V i s u a l Hand
MHAPTIC : : u p d a t e H a n d s P o s i t i o n () ;

/ / Make V i s u a l Render ing o f t h e V i r t u a l Env i ronmen t
MVISIO : : c l e a r (true , true , t rue) ;
MVISIO : : begin3D (camera) ;

l i g h t −>p a s s () ;
scene −>p a s s () ;
MHAPTIC : : passHands (true , true , f a l s e) ;

MVISIO : : end3D () ;

/ / Make 2D GUI Render ing
MVISIO : : begin2D () ;

MHAPTIC : : p a s s I n t e r f a c e () ;
MVISIO : : end2D () ;

MVISIO : : swap () ;
}

/ / Free Memory
MHAPTIC : : d e i n i t () ;
MVISIO : : d e i n i t () ;

/ / e x i t
re turn 0 ;

}

Appendix III: HSC User Manual

User Manual of the Haptic Scene Creator

Welcome, and congratulations. You have just bought a ticket to the world of the Haptic
Scene Creator. With this tool, you will be able to visualize, augment and simulate a virtual
environment in no time.

This tutorial introduces the Haptic Scene Creator step by step. It is recommended
to follow the chapters in this order as some important concepts are explained in the first
chapters. In this tutorial we will show you how to navigate in the virtual environment, add
and modify the physical properties of the objects, save and load a haptic scene and how to
run the simulation dynamically. Some performance hints are finally given at the end of this
tutorial.

Getting started with the Haptic Scene Creator

This first tutorial is provided to make sure that all components are installed before launch-
ing the Haptic Scene Creator.

First install the Ageia SDK software (current version is 2.6.2). The Core.exe file must
be installed before the SystemSoftware.exe package or it will not work as expected at run-
time.

If you want to compile the source code of the Haptic Scene Creator, (or even the MHap-
tic library), be sure that the following directories are included to your programming envi-
ronment:

Header files:

• . . . \AGEIA PhysX SDK\v2.6.2\SDKs\Physics\include

• . . . \AGEIA PhysX SDK\v2.6.2\SDKs\Foundation\include

• . . . \AGEIA PhysX SDK\v2.6.2\SDKs\Cooking\include

• . . . \AGEIA PhysX SDK\v2.6.2\SDKs\PhysXLoader\include

145

146 APPENDICES

Libraries:

• . . . \AGEIA PhysX SDK\v2.6.2\SDKs\lib\win32

• . . . \AGEIA PhysX SDK\v2.6.2\Bin\win32

In the path of the system, verify that the following environment variable is defined as
well:

• . . . \AGEIA PhysX SDK\v2.6.2\Bin\win32

Once these libraries installed, you are ready to launch the Haptic Scene Creator.

Overview of the interface

This section introduces the Graphical User Interface (GUI) of the Haptic Scene Creator.

The GUI is split in two parts: the four different windows (or viewports) and the toolbar,
which is on the right side. If you are familiar with Autodesk R© 3DS Max for example, you
should easily get used to this layout.

The top-left, top-right and bottom-left viewports represent respectively the left, top and
front point of views. They use orthographic projection and wireframe rendering mode. The
bottom right window renders the scene in perspective mode with textured and lit objects.

The HSC has four different viewports, but only one can be selected at a time. To activate
one of the four viewports, click inside with the left mouse button. A yellow square will
surround the new active window. Try to select the four windows one at a time.

When operations are performed, some messages are displayed to keep you aware of
what happened. Regular messages appear in the small message line on the bottom left of
the screen. Warning messages are displayed in a message box. The number of frames per
second (FPS) is also displayed in the toolbar, on the bottom right of the screen. It is a good
performance indicator, especially when you run the physic simulation.

The toolbar on the right side of the screen contains six subparts (not all are visible at
this time):

• Load and Save: which allows the loading of virtual environments, and the loading
and saving of the haptic information.

• Camera speed: modify the speed of the camera.

• Rendering: display the different elements in the viewports.

• Add geometries: allows to fit collision geometries to the 3D models.

• Materials: modify the material properties of an object.

The details of each subpart will be explained in the next tutorials.

User Manual of the Haptic Scene Creator 147

Loading and saving data files

This subsection explains how to load and save data files in the Haptic Scene Creator. The
commands used for this tutorial are in the toolbar, at the very top of it.

The first thing you need to load is an MVisio file (����) of the scene using the [Load
MVE] button in the toolbar .Be sure that you use the last version of the plug-in when
exporting your environment from Autodesk R© 3DS Max. The loading process is usually
fast but can eventually take some time depending on the complexity of the environment.
This data contains the graphical information of the 3D models in the scene only. The Haptic
Scene Creator does not save MVisio files as it does not need to modify the graphical data.

The second step of this tutorial is to load an ���� file containing the haptic data using
the [Load XML] button in the toolbar. You can also use the shortcut CTRL+O on the
keyboard. If you do not have one, do not worry as we will quickly show how to create one
in the next tutorials. This file contains the haptic data only. When loading a haptic file, be
sure that the ���� is already loaded or the objects will not be correctly linked.

To save the haptic data, use the [Save XML] button in the toolbar. You can also use
the shortcut CTRL+S on the keyboard. The scene can be saved anywhere on the disk (no
need to save it in the folder containing the ���� file) as the haptic data is completely kept
separated from the visual data.

To exit the Haptic Scene Creator, use the [Exit] button in the toolbar.

In the next tutorial, we will show how to navigate in the environment using the mouse
and the keyboard.

Navigation in the virtual environment

This subsection introduces the navigation concepts in the Haptic Scene Creator. The first
step is to load an MVisio environment using the [Load MVE] button in the toolbar. Now
that your 3D environment is loaded, lets take a look at the navigation. The principle is dif-
ferent if you navigate in a window using orthographic projection or perspective projection.
We explain here both modes of navigation.

In an orthographic projection view, it is possible to translate the camera to the left,
right, top and bottom directions by dragging the right mouse button. First select the top
right viewport (top camera view) with the left mouse button. Click with the right button
in the window and move the camera by holding the button pressed. Release the button to
stop moving. Notice how the camera follows exactly the cursor of the mouse. You can also
zoom in and zoom out using the mouse wheel. Zooming in allow you to see the details of
an object. Zooming out gives you a global view of the environment. It is possible to zoom
and translate the camera at any time, as long as the corresponding viewport is selected.
The navigation works exactly the same way in the two other views using orthographic
projections.

148 APPENDICES

Let’s take a look at the navigation in the perspective view, where the concept is slightly
different. Please first select the bottom right window with the left button. To translate the
camera left and right, use the left/right arrows on the keyboard or the s/ f keys. To move
up or down, use the t and g keys. To move forward and backward, do not use the wheel
mouse, because this modifies the Field Of View (FOV). Use instead the up/down arrows or
the e/d keys. Now you can move in the three translational directions (left/right, up/down,
forward/backward). The rotation of the camera is performed by holding the right mouse
button pressed and moving the mouse. To rotate the camera on the left, move the mouse
to the left, same for other directions. Now try to move the camera with the keyboard and
rotate it simultaneously using the mouse. If you are familiar with 3D applications or games
using first-person cameras, you are already mastering it. If not, a little bit of practice will
certainly help.

If you do not like the speed of the camera, you can modify it using the camera scrollbar
in the toolbar.

Selecting an object is quite simple. Just clicking on it with the middle mouse button
will select it. Be sure that the viewport is selected or the command will not be executed.
The texture of a selected object is highlighted and can be recognized easily. Notice how the
three orthographic views are automatically aligned on the object. If you deselect an object
(click anywhere else), the camera will return to the previous position.

Vertex selection allows you to select only the subpart of an object when you want to fit
a collision geometry (this is explained in the next tutorial). This is what makes the Haptic
Scene Creator fast and easy to use. Vertex selection can be done in any viewport. An
object must be selected to be able to select some of its vertices. First, select an object with
the left mouse button. Then, draw a 2-dimensional rectangle with the left button around
the vertices you want to select. Release the button when you the rectangle. The selected
vertices will appear in red on the screen. You can repeat the operation as many times as
needed.

Now that you know how to navigate in the environment, select an object and select
some vertices, we are ready to add some haptic properties to the objects in the next tutorial.

Adding haptic properties to an object

In this tutorial we show how to add haptic properties to an object. An object will interact
in the physical simulation only if an haptic structure is attached to it. If a 3D object in your
scene does not have some haptic information, it will not take part to the simulation.

The haptic structure contains two kind of information: the mass of the rigid body and its
collision geometries. Because the Haptic Scene Creator computes almost all information
automatically concerning the mass (inertial tensor, center of mass . . .), all you need to do
is to attach collision primitives and specify either a mass or a density to the body.

To add a collision geometry to an object, first select it with the middle mouse button.
In the toolbar, the [Add geometry] window will appear. It contains all the buttons to add

User Manual of the Haptic Scene Creator 149

various collision geometries that fits automatically to the selected object.

An object is static by default. If you want to make it dynamic, click in the toolbar on
the [make dynamic] button. You can now enter either the mass [kg] or the density [g/cm3].
Confirm with the [set mass] or [set density] buttons.

The different kinds of collision geometries are now presented in detail. Then, in the
next tutorial we show how to modify the collision geometries with the arcball.

Boxes, spheres and capsules

The basic geometrical primitives are the following: boxes, spheres and capsules (also called
line-swept sphere or capped cylinders). Most simple objects can be approximated by just
using these shapes.

To add a box, a sphere or a capsule, first select an object and eventually select some
vertices if you want to fit the geometry to a subpart of the object. Then, in the toolbar, use
the buttons located in the [Add Geometry] window to fit various kinds of geometries. We
present here the five first kinds of collision geometry that you may want to use to fit your
objects:

• The Axis Aligned Bounding Box (AABB) is a box that aligns on the local frame
of the object. This may be useful in a lot of cases because cubic objects (crates,
walls. . .) have often the faces aligned with the three axis of the local frame.

• The Oriented Bounding Box (OBB) is a box that aligns automatically to the vertices
of the object using principal component analysis (PCA). The main orientations of the
points are extracted and used to orient the box.

• The Outside Capsule is a capsule that is oriented like the OBB.

• The Inside Capsule is similar to the Outside Capsule but it is not strictly a bounding
volume because the two extremities are made shorter.

• The Sphere, which is simply a sphere.

These shapes provide fast and robust intersection tests and should be used in most cases
if possible.

We explain now some three more geometries that you may use in your simulation:
planes, convex meshes and penetration maps.

Planes, convex meshes and penetration maps

We now present three more collision geometries that you may want to fit to your objects:
planes, convex meshes and penetration maps (pmaps).

150 APPENDICES

Planes are robust shapes that split the space in two parts. Any object behind the plane
is considered colliding with it. The normal of the plane is visible in the editor through a
unit vector and indicates the front part of the plane. If you want to modify a plane, click on
the corresponding [edit geometry] and use the plane [flip normal] button. Planes can only
be used on static objects. They can also not be rotated with the arcball widget, but this will
not be necessary as they always fit very well to the selected vertices.

Convex mesh shapes are the best solution when a more accurate collision model of a
complex 3D model is needed. To create a convex mesh, select the part of the object that
you want to fit and click on the [add convex] button in the toolbar. The convex hull is
computed automatically. The maximum number of polygons for a convex mesh is limited
to 256. You will be notified in a message box if the resulting convex hull exceeds this limit.

If you want to create a collision geometry that fits an arbitrary triangle mesh, you can
use the penetration maps. PMaps use a voxel representation of the collision geometry
instead of the triangles that defines its surface. To create a pmap, click on an object and
click on the [Add PMap] button in the toolbar. A pmap can be created only for the whole
object because it uses the volume defined by the object and not the vertices. However, it
may happen that a pmap behave in a strange manner when running the physical simulation.
This is normal, especially when using them on complex concave shapes. Please see the
performance hints at the end of this tutorial for more information.

The next tutorial will explain how to rotate a geometry with the arcball widget.

Modifying primitives with the arcball

In this part we present the arcball widget. Arcball is a very simple tool that allows you to
rotate your rigid bodies.

It may happen that the automatic shape fitting fails or does not orient it as you wanted.
You can still modify the orientation using the arcball widget. Select any of the three ortho-
graphic views and click on the [modify geometry] button corresponding to the geometry
that you want to modify. Now hold the left alt key on the keyboard to make the arcball
appears and draw an arc on the sphere with the left mouse button. Drawing the arc will
make the sphere rotate and the same rotation will be immediately applied to the selected
geometry. You can also reset the rotation by clicking with the right mouse button. Release
the alt key when finished. You can also zoom in (mouse wheel) to apply a more precise
rotation.

You may also want to apply a constrained rotation for a simpler manipulation. You can
apply a constrained rotation by clicking and dragging the mouse outside of the projected
sphere. This can be done in any viewport to simulate a rotation around the x,y and z axis
of the selected object.

Translating a geometry is done by holding the left ctrl key on the keyboard and dragging
with the mouse left button. The geometry will exactly follow the cursor of the mouse at
any zoom. Release the left mouse button and the ctrl key when finished.

User Manual of the Haptic Scene Creator 151

Now that you can create and modify your collision geometries, we briefly present in
the next tutorial the copy-pasting operation.

Copy-pasting

Copy-pasting allows you to copy the haptic properties of an object on an other object. This
is usually performed when copies of objects are placed in the virtual environment. First,
give some haptic properties to one of these object. Once finished, copy the properties by
pressing CTRL+C on the keyboard. Then, select a second object and paste by pressing
CTRL+V on the keyboard. All properties have been duplicated, you can even delete the
haptic data of the first object if needed.

You are now able to create and modify haptic properties of the objects. The next part
shows how to tune the simulation by introducing material properties.

Adding materials

Materials contains three values: restitution, static friction and dynamic friction. These
values can be modified separately for each collision geometry. To access the material prop-
erties of a geometry, click on the corresponding [modify geometry] button in the toolbar.
A new window will appear at the very bottom of the toolbar. You can modify the values
by sliding the scrollbars or clicking on predefined materials. The following materials are
already available: wood, marble, brick, steel, aluminium, glass, carpet, ice and magic ball.
Once that you are satisfied with the parameters, click on the [ok] button in the toolbar to
return to the previous state.

You are now ready to add complex haptic information to any object in the scene using
the Haptic Scene Creator. The next tutorial explains how to run the simulation.

Immediate simulation of the system

This tutorial simply explains how to run the physical simulation of the system.

The simulation mode of the Haptic Scene Creator is immediate. This means that you
can at any time run and observe the behaviour of the objects in real-time. To start the
simulation, simply click on the [simulate] button in the toolbar. The perspective viewport
is then displayed in fullscreen. You can also hide the toolbar by pressing the i key on the
keyboard. You can still navigate as usual. You can even send some balls in the environment
by pressing the spacebar on the keyboard. To return to the editor, click on simulate again.

You are now able to run the simulation dynamically. We finally discuss some perfor-
mance hints in the next tutorial.

152 APPENDICES

Performance hints and conclusion

This last tutorial deals with some performance hints that are especially important in large
environments.

The computations done by a physics library are heavy, especially when dealing with
complex scenes and/or complex objects. If possible, just use boxes, capsules and spheres.
Box and capsules collisions are highly optimized and robust. If you want to use a collision
object that is not a box, but not concave, a convex mesh will perfectly match. If your object
is concave, decompose it into convex parts. According to the AgeiaTM documentation,
penetration maps are legacy objects and should not be used any more.

In building collision shapes for your objects, always remember that simpler is better
and faster. Only resort to more complicated means when absolutely necessary.

If possible, the mass of the bodies should also be set to a value of 1.0. There is no
predefined unit, just like in OpenGL, but the accuracy may suffer otherwise due to floating
point numbers arithmetics. If you notice strange behavior with very light or heavy objects
(actors jumps, vibrates, does not collide properly), you may try to set the mass near 1 and
see if it solves the problem.

Concerning the materials, be aware that the numeric simulation also implies some er-
rors. For example, a sphere that bounces on an horizontal plane may bounce higher than
its original position if the restitutions of both colliding shapes are set to 1.

This tutorial is now finished. Congratulations, you are able to add haptic information
to your virtual environment. You can always save and load the data, modify it, add more
collision geometries to the objects and make them static or dynamic. You are also able to
set materials to tune the surface properties of the shapes and you can run the simulation
and observe the behaviour in real-time.

Renaud Ott

 : Cité-Devant 6

CH-1005 Lausanne

 : (+41) 78 741 30 27

 : renaud.ott@gmail.com

29 years old

Single

Swiss and French citizenship

EDUCATION
Lausanne, Switzerland

2004 –2009

Lyon, France – Lausanne

2002 – 2004

Grenoble, France

2001-2002

Grenoble, France

1999 – 2001

Annecy, France, 1998

PhD in Computer Sciences at the Virtual Reality Laboratory in EPFL. Topic:
“Two-Handed Haptic Feedback in Generic Virtual Environments”.

Master of Computer Sciences and Computer Graphics, with Honors at Claude
Bernard University in Lyon, France.

Bachelor of Computer Sciences, with Honors at Joseph Fourrier University in
Grenoble, France.

Technical Engineer Degree, with Honors in Computer Science at Technological
Institute of Pierre Mendès-France University in Grenoble.

Scientific Baccalauréat in Lycée Berthollet, Annecy, France.

System Administrator of the VRlab – EPFL. Administration of more than 40
Windows/Linux computers, including 3 Windows Server 2003 servers, and 3 GNU/
Linux Debian server (web, mail, intranet, print and file server, Active directory, etc.)

Programmer in the Leibniz Laboratory of IMAG, Grenoble.
http://www-leibniz.imag.fr. Creation of a C++ program solving and optimizing a
mathematical Great Graph Problem.

Programmer at MEDIADOC, the French leader of software for public libraries.
http://www.mediadoc.com. Development of application intended to deploy and
backup DVD/CD-ROM on a network.

Programmer in the ICA Laboratory of INPG, Grenoble.
http://www-acroe.imag.fr. Creation of a 3D Graphical Rendering system of a 3D
physical animation software: Mimesis.

PROFESSIONAL
EXPERIENCE

Lausanne, Switzerland

2004 – 2009

Grenoble

February 2003 to

July 2003

Paris

May 2002 to

July 2002

Grenoble, France

June 2001 to

August 2001

OTHER

Academic and Research

Languages

Computer Skills

Hobbies and Interest

8 publications in International Conferences Proceedings.
3 articles in International Journals.

French: Mother tongue, English: Fluent oral and written, German: Intermediate
oral and written level, but lack of recent practice.

Programming Language: C, C++, C#, Java, ADA, Prolog.
Libraries: NET Framework, JDK, OpenGL, OpenMP.
Web: HTML, CSS, PHP, JavaScript.
Systems: Administration and programming of Windows and Linux OS.
Database: SQL Language and administration of common databases.
Office Applications: MS Office, MS Exchange, LateX.

Sport: Ski, Tennis, Badminton, Squash, Swimming and Scuba Diving.
Interests: Science and music (as listener)
Hobbies: Remote Control Car Competition. Painting. Juggling.

Objective Statement: To put in practice my wide theoretical and practical knowledge of

computer sciences by joining an innovative company with a promising future.

