
May 7, 2008 20:52 WSPC/123-JCSC 00399

Journal of Circuits, Systems, and Computers
Vol. 16, No. 6 (2007) 1011–1026
c© World Scientific Publishing Company

A SIMPLIFIED 8 × 8 TRANSFORMATION AND
QUANTIZATION REAL-TIME IP-BLOCK FOR
MPEG-4 H.264/AVC APPLICATIONS: A NEW

DESIGN FLOW APPROACH

IHAB AMER∗, WAEL BADAWY† and
GRAHAM JULLIEN‡

Advanced Technology Information Processing Systems (ATIPS),
2500 University Drive, NW, Calgary, AB, Canada T2N 1N4

∗amer@atips.ca
†badawy@atips.ca
‡jullien@atips.ca

MARCO MATTAVELLI

Signal Processing Laboratory-3, Signal Processing Institute,
Ecole Polytechnique Fèdèrale de Lausanne (EPFL),

CH-1015 Lausanne, Switzerland
marco.mattavelli@epfl.ch

ROBERT TURNEY

DSP Systems Engineering, DSP Division, Xilinx Inc.,
115 South 4th Street, Watertown, WI 53094, USA

robert.turney@xilinx.com

Current multimedia design processes suffer from the excessively large time spent on
testing new IP-blocks with references based on large video encoders specifications (usu-
ally several thousands lines of code). The appropriate testing of a single IP-block may
require the conversion of the overall encoder from software to hardware, which is difficult
to complete in the short time required by the competition-driven reduced time-to-market
demanded for the adoption of a new video coding standard. This paper presents a new
design flow to accelerate the conformance testing of an IP-block using the H.264/AVC
software reference model. An example block of the simplified 8 × 8 transformation and
quantization, which is adopted in FRExt, is provided as a case study demonstrating the
effectiveness of the approach.

Keywords: Design flow; H.264; advanced video coding; DCT; hardware; IP-block; VLSI;
FPGA; transform; quantization; SystemC; rapid prototyping; platform; video coding.

1. Introduction

Digital video coding currently has a significant impact on the computer,
telecommunications, and imaging industry. Especially with the remarkable progress

1011

May 7, 2008 20:52 WSPC/123-JCSC 00399

1012 I. Amer et al.

in the development of products and services offering full-motion digital video trans-
mitted on heterogeneous networks at different resolutions and on different termi-
nals. This explains the reason for the existence and success of industry standards
for compressed video representation achieving extremely high coding efficiency and
enhanced robustness to different network environments.1

Open, interoperable international video coding standards have always been
the enabler for the commercial success of digital video appliances. The
ITU-T H.264/MPEG-4 (Part 10) advanced video coding (commonly referred as
H.264/AVC) is the latest and most advanced member of the family of international
video coding standards.2

Most of the H.264/AVC standard applications are based on software imple-
mentations. Nevertheless, hardware implementations are also desirable for con-
sumer products since they provide consistent advantages in terms of compactness,
low power, robustness, low costs, and, most importantly, real-time operation up
to HDTV rates. In our previous work,3–8 hardware implementations of different
blocks in the initial H.264 transformation hierarchy model and entropy coding have
been presented, while in Refs. 9 and 10, a design flow to accelerate the process
of testing the quality of developed IP-blocks with the H.264 software reference
model has been specified and described. In this paper, a high-performance hard-
ware implementation of the simplified 8× 8 transform and quantization module of
the H.264/AVC standard is presented. The proposed design flow is used to assess
the quality and the conformance with the standard within a reduced time win-
dow. The design flow and the hardware architecture block have been included
in the draft of the second edition of the MPEG-4 Part 9 Reference Hardware
Description.11

The paper is organized as follows. Section 2 provides an overview of the
H.264/AVC video coding standard. Section 3 briefly describes the simplified 8 × 8
transformation and quantization that has been chosen to be implemented in hard-
ware. In Sec. 4, a description of the stages of the proposed design flow is pro-
vided, followed by Sec. 5, where more details about the IP-block design features are
described. Sections 6 and 7 show the methodology necessary to apply some of the
steps in the design flow so that a speedup in the process of designing the IP-block
and testing its conformance with the H.264/AVC reference software is achieved.
Section 8 presents some simulation results and the achieved performance. Finally,
in Sec. 9, considerations on the proposed design flow are discussed; and Sec. 10
concludes the paper.

2. Overview of the H.264/AVC Video Coding Standard

H.264/AVC was developed by the Joint Video Team (JVT), which was formed to
represent a formal cooperation between the ITU-T Video Coding Experts Group
(VCEG) and the ISO/IEC Moving Picture Experts Group (MPEG), working on the

May 7, 2008 20:52 WSPC/123-JCSC 00399

A Simplified 8 × 8 Transformation and Quantization Real-Time IP-Block 1013

development of a new international standard that is appropriate for conversational
and nonconversational audio/video applications.12–14

H.264/AVC presents many new video coding tools that make it the most pow-
erful state-of-the-art standard as compared to the currently existing video coding
families.14 Network friendliness and compression performance, which has never been
achieved before, at high and low bit rates, are the two most important features that
distinguish H.264/AVC from other standards.15–19

Unlike other standards, H.264/AVC presents a transformation hierarchy using
exactly integer arithmetic-based algorithms. Such specifications eliminate the pos-
sible mismatch issues between the encoder and the decoder that have been observed
even when the 8× 8 DCT/IDCT transform implementation is fully compliant with
the IEEE 1180 recommendation providing the specifications for required accu-
racy for approximations of the floating point implementations.15,20 In the initial
H.264/AVC standard, which was completed in May 2003, the transformation was
primarily in the form of 4 × 4 blocks, which helps reduce blocking and ringing
artifacts.

Fidelity range extensions (FRExt, Amendment I), a new amendment that was
added to the H.264/AVC standard in July 2004 is currently receiving wide attention
in the industry. It actually demonstrates further coding efficiency against current
video coding standards, potentially by as much as 3:1 for some key applications.
The FRExt project produced a suite of some new profiles collectively called high
profiles. In addition to supporting all features of the prior main profile, all the
high profiles support an adaptive transform-block size and perceptual quantization
scaling matrices.14 The concept of adaptive transform-block size has proven to be
an efficient coding tool within H.264/AVC video coding layer design.21 This has led
to the proposal of a seamless integration of a new 8 × 8 integer approximation of
DCT (and prediction modes) into the specification with the least possible amount
of technical and syntactical changes to give significant compression performance at
standard definition (SD) and high definition (HD) resolutions.22–24

3. H.264 Simplified 8 × 8 Transform and Quantization

The use of block sizes smaller than 8 × 8 is limited at SD resolutions and higher.
This has led to the proposal of an integer approximation of 8 × 8 DCT in FRExt
to be added to the JVT specification.24 This transform is applied to each block in
the luminance component of the input video stream. It allows for bit-exact imple-
mentation for all encoders and decoders. Despite being more complex compared to
the 4 × 4 DCT-like transform that is adopted by the initial H.264 specifications,
the 8 × 8 DCT transform provides excellent compression performance when used
for high-resolution video streams requiring a number of operations comparable to
the number of operations required for the corresponding four 4×4 blocks using the
fast butterfly implementation of the existing 4 × 4 transform.22,23

May 7, 2008 20:52 WSPC/123-JCSC 00399

1014 I. Amer et al.

The 2D forward 8×8 integer transform is computed in a separable way as a 1D
horizontal (row) transform followed by a 1D vertical (column) transform as shown
in Eq. (1):

W = CfXCT
f . (1)

The Matrix Cf is given by expression (2):

Cf =




8 8 8 8 8 8 8 8
12 10 6 3 − 3 − 6 − 10 − 12
8 4 − 4 − 8 − 8 − 4 4 8

10 − 3 − 12 − 6 6 12 3 − 10
8 − 8 − 8 8 8 − 8 − 8 8
6 − 12 3 10 − 10 − 3 12 − 6
4 − 8 8 − 4 − 4 8 − 8 4
3 − 6 10 − 12 12 − 10 6 − 3




· 1/8 . (2)

Each of the 1D transforms is computed using three-stages fast butterfly operations,
as shown in Table 1.23

As can be shown from the previous butterfly operations, the 2D transform oper-
ation can be implemented using signed additions and right-shifts only, avoiding
expensive multiplication implementations. The post-scaling and quantization for-
mulas are provided in Eqs. (3)–(5):

qbits = 15 + (QP DIV 6) , (3)

|Zij | = SHR(|Wij | · MF + f, qbits + 1) , (4)

Sign(Zij) = Sign(Wij) , (5)

QP is a quantization parameter that determines the level of coarseness of the quanti-
zation process. It enables the encoder to accurately and flexibly control the trade-off
between bit rate and quality. It takes an integer value that ranges from 0 up to 51
(with low values representing less quantization, hence, better quality of the recon-
structed frame). Zij represents an element in the quantized transform coefficients

Table 1. 1D transform three-stages butterfly operations.

Stage 1 Stage 2 Stage 3

a[0] = x[0] + x[7] b[0] = a[0] + a[3] w[0] = b[0] + b[1]

a[1] = x[1] + x[6] b[1] = a[1] + a[2] w[1] = b[2] + (b[3] � 1)

a[2] = x[2] + x[5] b[2] = a[0] − a[3] w[2] = b[0] − b[1]

a[3] = x[3] + x[4] b[3] = a[1] − a[2] w[3] = (b[2] � 1) − b[3]

a[4] = x[0] − x[7] b[4] = a[5] + a[6] + ((a[4] � 1) + a[4]) w[4] = b[4] + (b[7] � 2)

a[5] = x[1] − x[6] b[5] = a[4] − a[7] − ((a[6] � 1) + a[6]) w[5] = b[5] + (b[6] � 2)

a[6] = x[2] − x[5] b[6] = a[4] + a[7] − ((a[5] � 1) + a[5]) w[6] = b[6] − (b[5] � 2)

a[7] = x[3] − x[4] b[7] = a[5] − a[6] + ((a[7] � 1) + a[7]) w[7] = − b[7] + (b[4] � 2)

May 7, 2008 20:52 WSPC/123-JCSC 00399

A Simplified 8 × 8 Transformation and Quantization Real-Time IP-Block 1015

Table 2. Multiplication factor (MF) for the prototyped architecture.

M (i, j) ∈ G0 (i, j) ∈ G1 (i, j) ∈ G2 (i, j) ∈ G3 (i, j) ∈ G4 (i, j) ∈ G5

0 13107 11428 20972 12222 16777 15481
1 11916 10826 19174 11058 14980 14290

2 10082 8943 15978 9675 12710 11985
3 9362 8228 14913 8931 11984 11295
4 8192 7346 13159 7740 10486 9777
5 7282 6428 11570 6830 9118 8640

∗G0: i = [0, 4], j = [0, 4]; G1: i = [1, 3, 5, 7], j = [1, 3, 5, 7]; G2: i = [2, 6], j =
[2, 6]; G3: (i = [0, 4], j = [1, 3, 5, 7]) ∩ (i = [1, 3, 5, 7], j = [0, 4]); G4: (i = [0, 4],
j = [2, 6]) ∩ (i = [2, 6], j = [0, 4]); G5: (i = [2, 6], j = [1, 3, 5, 7]) ∩ (i = [1, 3, 5, 7],
j = [2, 6]).

matrix. MF is a multiplication factor that depends on (m = QP mod 6) and the
position (i, j) of the element in the matrix, as shown in Table 2. SHR() is a pro-
cedure that right-shifts the result of its first argument a number of bits equal to
its second argument. f is defined in the software reference model as 2qbits/3 for
intra-blocks and 2qbits/6 for inter-blocks.12,13

4. Design Flow of an H.264 HW/SW Video Encoder

This section provides a general description of the complete process used to design
the proposed IP-block, starting with a HW/SW partitioning of the reference soft-
ware, passing through functional verification, and ending with physical implemen-
tation on a Xilinx Virtex II FPGA. Figure 1 gives the flow chart of the complete
design flow.9

First, an extensive analysis to validate the choice of converting the integer 8×8
DCT transform from software to hardware is performed. Then, a description of
the hardware design to be realized, followed by the functional verification using
SystemC for the formalism and simulation environment. After the functional verifi-
cation, simulation at the RTL level of abstraction is performed using the University
of Calgary Rapid Prototyping Platform (UCRPP).25,26 Then, the process ends with
system synthesis followed by place and rout, which is a vendor-dependent step, and
the physical programming of the FPGA itself.

5. Hardware Prototyping of the IP-Block

Figure 2 shows a block diagram of the developed IP-block architecture. The IP
accepts the following inputs: 8 × 8 parallel blocks, QP, a synchronizing clock, and
an enabling signal (input valid). It outputs the quantized transform coefficients
matrix and the signal (output valid).

The architecture is designed to perform pipelined operations. This drastically
reduces the required memory resources and accesses, avoids any stall states, and

May 7, 2008 20:52 WSPC/123-JCSC 00399

1016 I. Amer et al.

Fig. 1. A flowchart of the complete design flow.

dramatically improves the throughput of the architecture. Figure 3 provides a
detailed block diagram of the architecture showing the data flow between the
components.

The architecture consists of two main stages. The first one contains two blocks;
the “Transform” block, which is composed of three stages of the fast butterfly oper-
ations mentioned in Sec. 2, repeated twice (for horizontal and vertical transform),
and the “QP-processing” block, which is responsible for calculating the intermedi-
ate parameters needed for quantization, such as f , qbits, and (P0 − P5), which are
the values of the multiplication factors at the six different groups of positions in
the matrix, as shown in Table 2. Finally, the quantization process takes place in
the second main stage of the design. This is done by performing the addition and
multiplication operations in the arithmetic block, and finally the shifting operations
in the shifter block.

May 7, 2008 20:52 WSPC/123-JCSC 00399

A Simplified 8 × 8 Transformation and Quantization Real-Time IP-Block 1017

8x8 Forward
Transform and
QuantizationQP

Input Valid

CLK

Input Block
(X00-X77)

Output Valid

Quant. Trans. Coeff.
(Z00-Z77)

Fig. 2. A block diagram of the proposed hardware architecture.

X00-X77

W00-W77

P0-P5

f

qbits

Z00-Z77

S00-S77

QP

8x8 Forward Transform

Horizontal Transform

Vertical Transform

S
ta

g
e

I

S
ta

g
e

II

S
ta

g
e

II
I

S
ta

g
e

I

S
ta

g
e

II

S
ta

g
e

II
I

QP-Processing

Input Valid

CLK

R00-R77

A
ri

th
m

et
ic

S
h

if
te

r

Quantization

Output Valid

Quant. Enable

Fig. 3. A detailed block diagram of the proposed hardware architecture.

May 7, 2008 20:52 WSPC/123-JCSC 00399

1018 I. Amer et al.

6. Functional Verification Using SystemC

Design productivity is the key to reduced time-to-market. It is an essential element
that should be considered when releasing a new design. Hence, early functional
verification is one fundamental step for successful IP providers to avoid prolonged
products development phases. This is what gives special importance to the SystemC
verification step in the design flow, although a direct transition from abstract design
blocks to HDL description blocks is also possible.

SystemC is a hardware design concept that enables the designer to perform early
functional verification of developed hardware blocks by facilitating their integration
with software in a unified platform. It provides hardware-oriented constructs within
the context of C++ as a class library implemented in standard C++. This facilitates
the process of integrating SystemC-emulated hardware blocks with any software
reference model as they are all originated from the same environment.

In Ref. 10, hardware definition switches enabling concurrent development and
testing of different hardware blocks (represented in SystemC) with the JM H.264
software reference model is described. This approach facilitates the development
process of hardware blocks during the software stabilization phase. One of the
major goals was to reduce as much as possible the modifications required to the
code for the inclusion of the corresponding HW described blocks. Figures 4 and 5
provide examples of the modifications that have been introduced to the code in
order to embed the described HW block presented in the previous section.10

By using this approach, it has been possible to perform behavioral simulations
to the DCT block, showing that it is functionally compliant with the reference
software.

7. The Rapid Prototyping Platform

A PCMCIA prototyping FPGA card, shown in Fig. 6, has been chosen as the
platform to integrate the HDL implementation of the IP-block with the reference
software.25 It connects the FPGA HW with a portable host computer through the
PCI bus by plugging it into a standard PCMCIA socket, as shown in Fig. 7.25

//The "#define" entries for the hardware accelerator
#define DCT_8x8_HW_ACCELERATOR 1

//notice that
//'0' is a value for pure software implementation
//'1' is a value for a SystemC block

//The prototype of the SW function
void sw_dct_8x8(int[][MB_BLOCK_SIZE], int[][8]);

Fig. 4. Examples of the required modifications to the JM file (global.h).

May 7, 2008 20:52 WSPC/123-JCSC 00399

A Simplified 8 × 8 Transformation and Quantization Real-Time IP-Block 1019

//To initiate the hardware module only once
int firstHW_Call = 1;

//Grouping the code in a modular form to facilitate
//HW/SW switching (e.g. 8x8 DCT Function)
void sw_dct(int m[][MB_BLOCK_SIZE], int n[][8]){

.

.
}

//Hardware/Software Switch (e.g. 8x8 DCT Calling)
 if (!lossless_qpprime)

 if(DCT_8x8_HW_ACCELERATOR){
 sc_dct_8x8(img->m7, firstHW_Call);

 firstHW_Call = 0;
 }
 else{

 sw_dct(img->m7, m6);
 }

Fig. 5. Examples of the required modifications to the JM file (block.c).

Fig. 6. Wildcard II card acting as the prototyping platform.

Some of the components of the prototyping platform are located in the host
system, while others are in the pluggable FPGA card.26 The host side is the main
general purpose processor and support chips for a standard PCI bus. Its main
storage holds the FPGA device configuration files and the software part of the sys-
tem (i.e., the H.264 software reference model). Optionally, the host direct memory
access (DMA) and interrupt controller can be parts of the design, targeting an
increased system performance. The data communication bottlenecks between the
hosting computer and the card can be minimized by the use of direct memory access

May 7, 2008 20:52 WSPC/123-JCSC 00399

1020 I. Amer et al.

Fig. 7. Wildcard II connects with a portable host computer through the PCI bus.

Fig. 8. A block diagram of the DCT/Q module integration using the rapid prototyping platform.

and interrupt-based control. On the other hand, the FPGA card hosts the FPGA
chip, programmable clock generator, and a PCI-bus interface controller. A block
diagram of the DCT/Q module integration using the rapid prototyping platform is
shown in Fig. 8.27

The process of integrating the hardware block in the platform is performed
through an improved system IP hardware interface controller, which provides an
easy way for the IP-block to exchange data between the host system and the memory
space on the WildCard II. The controller has a set of interface signals with the

May 7, 2008 20:52 WSPC/123-JCSC 00399

A Simplified 8 × 8 Transformation and Quantization Real-Time IP-Block 1021

memory spaces to deal with the memory operations required by the IP-block. Data
are passed from software to hardware through simple virtual socket API function
calls.27

8. Simulations and Results

In our experiments, the design flow introduced in Sec. 3 was used to acceler-
ate the development process of the IP-block introduced in Sec. 4. We first embedded
the SystemC-emulated architecture to the JM FRExt 2.2 project, and compared
the output stream (with HW switch set to “1”) with the output from the original
software (HW switch set to “0”). Figure 9 reports a visual comparison between the
output video streams before and after embedding the SystemC blocks.

In addition to the visual comparison, we performed a statistical comparison by
comparing the PSNR of the luminance and chrominance components of the recon-
structed video sequences with HW switch set to “0”, and the corresponding values
with HW switch set to “1”. We were able to show that the results in both cases
are identical, except for the required simulation time, which, as expected, increases
when the emulated SystemC block is used due to the overhead of the hardware
emulation stage. Figures 10 and 1110 provide a summary of results reported by JM
FRExt 2.2 before and after embedding the 8 × 8 DCT SystemC block.

Then, the UCRPP enables us to test the block starting from the RTL level
of abstraction. Simulation was performed using the Mentor Graphics c© ModelSim
5.4 r© simulation tool, and synthesized using Synplify Pro 7.1 r© from Synplicity c©.
The target technology is the FPGA device XC2V4000 (BF957 package) from the
Virtex-II family of Xilinx c©. Table 3 summarizes the performance of the prototyped
architecture.8

(a) (b)

Fig. 9. Output video stream (a) before and (b) after embedding the SystemC block.

May 7, 2008 20:52 WSPC/123-JCSC 00399

1022 I. Amer et al.

Parsing Configfile encoder.cfg..
-------------------------------JM FREXT ver.2.2-------------------------------
 Input YUV file : foreman_part_qcif.yuv
 Output H.264 bitstream : test.264
 Output YUV file : test_rec.yuv
 YUV Format : YUV 4:2:0
 Frames to be encoded I-P/B : 2/1
 PicInterlace / MbInterlace : 0/0
 Transform8x8Mode : 1

 Frame Bit/pic WP QP SnrY SnrU SnrV Time(ms) MET(ms) Frm/Fld I D
0000(NVB) 176
0000(IDR) 21784 0 28 37.4332 41.3158 43.0858 1301 0 FRM
0002(P) 8816 0 28 36.8903 40.8079 42.3439 2294 321 FRM 18
0001(B) 2656 0 30 36.1340 41.0615 42.8278 4537 1261 FRM 0 1

 Total Frames: 3 (2)
 LeakyBucketRate File does not exist; using rate calculated from avg. rate
 Number Leaky Buckets: 8
 Rmin Bmin Fmin
 166275 21784 21784
 207840 21784 21784
 249405 21784 21784
 290970 21784 21784
 332535 21784 21784
 374100 21784 21784
 415665 21784 21784
 457230 21784 21784

 Freq. for encoded bitstream : 15
 Hadamard transform : Used
 Image format : 176x144
 Error robustness : Off
 Search range : 16
 No of ref. frames used in P pred : 5
 No of ref. frames used in B pred : 5
 Total encoding time for the seq. : 8.132 sec
 Total ME time for sequence : 1.582 sec
 Sequence type : IBPBP (QP: I 28, P 28, B 30)
 Entropy coding method : CAVLC
 Profile/Level IDC : (100,40)
 Search range restrictions : none
 RD-optimized mode decision : used
 Data Partitioning Mode : 1 partition
 Output File Format : H.264 Bit Stream File Format
 Residue Color Transform : not used
------------------ Average data all frames -----------------------------------
 SNR Y(dB) : 36.82
 SNR U(dB) : 41.06
 SNR V(dB) : 42.75
 Total bits : 33432 (I 21784, P 8816, B 2656 NVB 176)
 Bit rate (kbit/s) @ 30.00 Hz : 334.32
 Bits to avoid Startcode Emulation : 0
 Bits for parameter sets : 176

Exit JM FREXT encoder ver 2.2

Fig. 10. Summary of results reported by JM FRExt 2.2 before embedding the 8×8 DCT SystemC
block.

May 7, 2008 20:52 WSPC/123-JCSC 00399

A Simplified 8 × 8 Transformation and Quantization Real-Time IP-Block 1023

Parsing Configfile encoder.cfg..
-------------------------------JM FREXT ver.2.2-------------------------------
 Input YUV file : foreman_part_qcif.yuv
 Output H.264 bitstream : test.264
 Output YUV file : test_rec.yuv
 YUV Format : YUV 4:2:0
 Frames to be encoded I-P/B : 2/1
 PicInterlace / MbInterlace : 0/0
 Transform8x8Mode : 1

 Frame Bit/pic WP QP SnrY SnrU SnrV Time(ms) MET(ms) Frm/Fld I D
0000(NVB) 176
0000(IDR) 21784 0 28 37.4332 41.3158 43.0858 26999 0 FRM
0002(P) 8816 0 28 36.8903 40.8079 42.3439 47598 692 FRM 18
0001(B) 2656 0 30 36.1340 41.0615 42.8278 39216 1700 FRM 0
1

 Total Frames: 3 (2)
 LeakyBucketRate File does not exist; using rate calculated from avg. rate
 Number Leaky Buckets: 8
 Rmin Bmin Fmin
 166275 21784 21784
 207840 21784 21784
 249405 21784 21784
 290970 21784 21784
 332535 21784 21784
 374100 21784 21784
 415665 21784 21784
 457230 21784 21784

 Freq. for encoded bitstream : 15
 Hadamard transform : Used
 Image format : 176x144
 Error robustness : Off
 Search range : 16
 No of ref. frames used in P pred : 5
 No of ref. frames used in B pred : 5
 Total encoding time for the seq. : 113.813 sec
 Total ME time for sequence : 2.392 sec
 Sequence type : IBPBP (QP: I 28, P 28, B 30)
 Entropy coding method : CAVLC
 Profile/Level IDC : (100,40)
 Search range restrictions : none
 RD-optimized mode decision : used
 Data Partitioning Mode : 1 partition
 Output File Format : H.264 Bit Stream File Format
 Residue Color Transform : not used
------------------ Average data all frames -----------------------------------
 SNR Y(dB) : 36.82
 SNR U(dB) : 41.06
 SNR V(dB) : 42.75
 Total bits : 33432 (I 21784, P 8816, B 2656 NVB 176)
 Bit rate (kbit/s) @ 30.00 Hz : 334.32
 Bits to avoid Startcode Emulation : 0
 Bits for parameter sets : 176

Fig. 11. Summary of results reported by JM FRExt 2.2 after embedding the 8×8 DCT SystemC
block.

May 7, 2008 20:52 WSPC/123-JCSC 00399

1024 I. Amer et al.

Table 3. Performance of the prototyped architecture.

Critical path (ns) CLK freq. (MHz) # of i/p buffers # of o/p buffers

14.598 68.5 583 1217
of I/O reg. bits # of reg. bits not inc. (I/O) Total # of LUT # of clock buffers
1219 16893 29018 1

A 14.598ns critical path is estimated by the synthesis tool. Since the architecture
outputs a complete 8× 8 encoded block with each clock pulse at steady state, then
the time required to encode a whole SD frame of 704×480 pixels can be calculated
as follows8:

Time required per CIF frame

= Time required per block × Number of blocks per frame

= 14.598 ns× (#pixels per frame)/(#pixels per block)

= 14.598 ns× (704 × 480)ppf/(8 × 8)ppb

≈ 77.1 µs.

This value is about 216 times faster than the 16.67ms time required for continu-
ous motion (assuming a refresh rate of 60 frames/s). Similarly, the time required to
encode a complete high definition television (HDTV) frame of a 720× 1280 pixels
resolution, and a 60 frames/s frame rate is 0.21ms, which is about 79 times faster
than the 16.6ms time required for continuous motion. Hence, the architecture pre-
sented in this paper easily satisfies the real-time constraints for SD, HD, and even
higher resolution video formats.8

9. Comments on the Proposed Design Flow

In this paper, a high-performance IP-block of the simplified 8×8 transformation and
quantization, which was recently adopted by the H.264/AVC standard, is developed.
The architecture was shown to satisfy the real-time constraints required by different
high-resolution digital video applications. A novel design flow that facilitates early
functional verification of developed IP-blocks, by assessing the conformance to the
reference specification as well as the overall system behavior before physical imple-
mentation, was used. The methodology of the design flow accelerated the process
of testing the quality of the IP-block by using the H.264/AVC software reference
model itself. The presented design flow methodology can obviously be applied to
the development of any HW-block, thus constituting an integrated framework for
the transformation of pure SW specifications into a real hybrid SW/HW implemen-
tations. The design flow tools, the support platform, and a library of IP-blocks are
in the process of being included in the ISO/IEC MPEG-4 Part 9 Technical Report
called (Reference Hardware Description).

May 7, 2008 20:52 WSPC/123-JCSC 00399

A Simplified 8 × 8 Transformation and Quantization Real-Time IP-Block 1025

Acknowledgments

The authors would like to thank the Advanced Technology Information Processing
Systems (ATIPS) Laboratory, the Alberta Informatics Circle of Research Excellence
(iCORE), the Alberta Ingenuity Fund (AIF), the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC), CMC Microsystems, Micronet R&D,
Canada Foundation for Innovation (CFI), and the Department of Electrical and
Computer Engineering in the Schulich School of Engineering at the University of
Calgary for supporting this research.

References

1. A. M. Tekalp, Digital Video Processing (Prentice-Hall, Inc., New Jersey, USA, 1995).
2. ITU-T Rec. H.264 | ISO/IEC 14496-10 AVC, Draft text of final draft international

standard for advanced video coding, http://www.chiariglione.org/mpeg/working
documents.htm, March 2003.

3. I. Amer, W. Badawy and G. Jullien, A proposed hardware reference model for spatial
transformation and quantization in H.264, to appear in J. Visual Commun. Image
Rep. (Special Issue on Emerging H.264/AVC Video Coding Standard).

4. I. Amer, W. Badawy and G. Jullien, Hadamard transform in H.264/MPEG-4 part
10: a hardware prototype, Proc. Int. Computer Engineering Conf., Cairo, Egypt,
December 2004.

5. I. Amer, W. Badawy and G. Jullien, Towards MPEG-4 part 10 system on chip: A
VLSI prototype for context-based adaptive variable length coding (CAVLC), Proc.
IEEE Workshop on Signal Processing Systems, Austin, Texas, USA, October 2004,
pp. 276–279.

6. I. Amer, W. Badawy and G. Jullien, A VLSI prototype for Hadamard transform with
application to MPEG-4 part 10, Proc. IEEE Int. Conf. Multimedia and Expo, Vol. 3,
Taipei, Taiwan, June 2004, pp. 1523–1526.

7. I. Amer, W. Badawy and G. Jullien, Hardware prototyping for the H.264 4× 4 trans-
formation, Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, Vol. 5,
Montreal, Canada, May 2004, pp. 77–80.

8. I. Amer, W. Badawy and G. Jullien, A high performance hardware implementation
of the H.264 simplified 8× 8 transformation and quantization, Proc. IEEE Int. Conf.
Acoustics, Speech, and Signal Processing, Vol. 2, Pennsylvania, Philadelphia, USA,
March 2005, pp. 1137–1140.

9. I. Amer, W. Badawy and G. Jullien, A design flow for an H.264 embedded video
encoder, Proc. Int. Conf. Information and Communication Technology, Cairo, Egypt,
December 2005, pp. 505–513.

10. I. Amer, M. Sayed, W. Badawy and G. Jullien, On the way to an H.264 HW/SW
reference model: A SystemC modeling strategy to integrate selected IP-blocks with the
H.264 software reference model, Proc. IEEE Workshop on Signal Processing Systems,
Athens, Greece, November 2005.

11. ISO/IEC TR 14496-9, Information technology — Coding of audio-visual objects —
part 9 reference hardware description, 2nd edn., July 2005.

12. I. E. G. Richardson, H.264/MPEG-4 Part 10: Transform and quantization, a white
paper, http://www.vcodex.com, March 2003.

13. I. E. G. Richardson, H.264 and MPEG-4 Video Compression: Video Coding for Next-
Generation Multimedia (Wiley, Sussex, England, 2003).

May 7, 2008 20:52 WSPC/123-JCSC 00399

1026 I. Amer et al.

14. G. Sullivan, P. Topiwala and A. Luthra, The H.264 advanced video coding standard:
Overview and introduction to the fidelity range extensions, SPIE Conf. Application
of Digital Image Processing XXVII, Colorado, USA, August 2004.

15. Emerging H.264 standard: Overview and TMS320DM642-based solutions for real-time
video applications, a white paper, http://www.ubvideo.com, December 2002.

16. T. Wiegand, G. J. Sullivan, G. Bjontegaard and A. Luthra, Overview of the
H.264/AVC video coding standard, IEEE Trans. Circuits Syst. Video Technol. 13
(2003) 560–576.

17. K. Denolf, C. Blanch, G. Lafruit and A. Bormans, Initial memory complexity analysis
of the AVC codec, IEEE Workshop on Signal Processing Systems, 2002 (SIPS’02),
October 2002, pp. 222–227.

18. T. Stockhammer, M. M. Hannuksela and T. Wiegand, H.264/AVC in wireless envi-
ronments, IEEE Trans. Circuits and Syst. Video Technol. 13 (2003) 657–673.

19. M. Horowitz, A. Joch, F. Kossentini and A. Hallapuro, H.264/AVC baseline profile
decoder complexity analysis, IEEE Trans. Circuits Syst. Video Technol. 13 (2003)
704–716.

20. H. S. Malvar, A. Hallapuro, M. Karczewicz and L. Kerofsky, Low-complexity trans-
form and quantization in H.264/AVC, IEEE Trans. Circuits Syst. Video Technol. 13
(2003) 598–603.

21. M. Wien, Clean-up and improved design consistency for ABT, Joint Video Team
(JVT) of ISO/IEC MPEG and ITU-T VCEG, doc. JVT–E025.

22. S. Gordon, D. Marpe and T. Wiegand, Simplified use of 8× 8 transform — Proposal,
Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, doc. JVT–J029.

23. S. Gordon, D. Marpe and T. Wiegand, Simplified use of 8 × 8 transform — Updated
proposal and results, Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG,
doc. JVT–K028, Munich, Germany, March 2004.

24. S. Gordon, Simplified use of 8 × 8 transform, Joint Video Team (JVT) of ISO/IEC
MPEG and ITU-T VCEG, doc. JVT–I022, San Diego, USA, September 2003.

25. I. Amer, C. A. Rahman, T. Mohamed, M. Sayed and W. Badawy, A hardware-
accelerated framework and IP-blocks for application in MPEG-4, Proc. IEEE Int.
Workshop on System on Chip, Banff, Alberta, Canada, July 2005, pp. 211–214.

26. T. Mohamed and W. Badawy, Integrated hardware–software platform for image pro-
cessing applications, Proc. IEEE Int. Workshop on System on Chip, Banff, Alberta,
Canada, July 2004, pp. 145–148.

27. Y. Qiu and W. Badawy, An integration of the MPEG-4 part 9 reference hardware
into the virtual socket co-design platform, ISO/IEC JTC1/SC29/WG11 M12794,
Bangkok, Thailand, January 2006.

28. H. Huber, SOC for evolving standards: A new challenge for rapid prototyping using
FPGAs?, a white paper, http://www.lsilogic.com.

