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Abstract. In order to numerically study the effects of Ion Cyclotron Resonant Heating (ICRH)
on the fast particle distribution function in general plasma geometries, three codes have been
coupled: VMEC[1] generates a general (2D or 3D) MHD equilibrium including full shaping and
pressure anisotropy. This equilibrium is then mapped into Boozer coordinates. The full-wave code
LEMan[2], [3] then calculates the power deposition and electromagnetic field strength of a wave
field generated by a chosen antenna using a warm model. Finally, the single particle Hamiltonian
code VENUS[4, 5] combines the outputs of the two previous codes in order to calculate the evolution
of the distribution function. Within VENUS, Monte Carlo operators for Coulomb collisions of the
fast particles with the background plasma have been implemented, accounting for pitch angle and
energy scattering. Also, ICRH is simulated using Monte Carlo operators on the Doppler shifted
resonant layer. The latter operators act in velocity space and induce a change of perpendicular
and parallel velocity depending on the electric field strength and the corresponding wave vector.
Eventually, the change in the distribution function will then be fed into VMEC for generating a
new equilibrium and thus a self-consistent solution can be found. This model is an enhancement of
previous studies in that it is able to include full 3D effects such as magnetic ripple, treat the effects
of non-zero orbit width consistently and include the generation and effects of pressure anisotropy.
Here, first results of coupling the three codes will be shown in 2D tokamak geometries.
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INTRODUCTION

In present day fusion devices, radio frequency (RF) heating of minority species becomes
more and more important. Especially, RF heating in the ion cyclotron range of frequen-
cies (ICRH) is considered to be one of the major contributors to additional heating in
ITER and other machines. Moreover, 3D effects such as magnetic ripple are expected
to be important not only in stellarators, but also in ITER. This work proposes a 3D
self-consistent numerical approach for studying the effects of ICRH on the equilibrium
quantities such as temperature, density and pressure. First, the MHD equilibrium and
stability codes VMEC[1] and TERPSICHORE [6, 7] (the latter used for mapping into
Boozer coordinates) have been updated for including the effects of an anisotropic distri-
bution function which can be written as [8]
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where m is the mass of the particle, nc the hot particle density at B = Bc, E = mv2/2
the particle energy, µ = mv2

⊥/2B the magnetic moment, T⊥,‖ the perpendicular/parallel
temperature and ψ a flux label. Also, the VENUS code has been updated to incorporate
the effects of anisotropic pressure within the Hamiltonian equations of motion [9].

Recently, a new module has been added to the VENUS code which calculates the
new pressure and temperature profiles including the effects of Coulomb collisions of
the fast ions on the background plasma and an ICRF wave field. This wave field is
calculated using the full-wave code LEMan, which has also been updated in order to
include anisotropic equilibria. The derivation of the corresponding dielectric tensor is
shown in the next section.

DIELECTRIC TENSOR

Following Refs. [10, 11], we have derived the dielectric tensor for the fast particles
modelled by the distribution function (1) to zeroth order in both εe = ρ/L and εp =
ρ/λ⊥, where ρ is the Larmor radius, L a characteristic length scale of the stationary
plasma and λ⊥ a characteristic wave length of the perturbing electromagnetic field in the
poloidal direction. We linearise the Vlasov equation, introduce the cylindrical variables
in velocity space (v⊥,α,v‖) and pass into Fourier space for the variables (t,y,z,α). We
then find equations for the perturbed Fourier amplitudes fn as a function of the velocity
derivatives of the equilibrium distribution function, where n is the mode number with
respect to the pitch angle α . The perturbed current density becomes finally [11]
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qπ
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0
v⊥dv⊥

∫
∞
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{
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}

, (2)

where the sum is over all species. For the calculation of f±1 and f0 we use the equilib-
rium distribution function given by Eq. (1). Finally, the dielectric tensor can be found
with j = σE and E = 1− iσ/ωε0. The calculations are somewhat lengthy and therefore
not presented here. The resulting dielectric tensor is

• For B≥ Bc:
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FIGURE 1. Value of first element of the hot particle dielectric tensor. The white line indicates where
B = Bc: a) & b) On-axis heating, b) & d) off-axis heating. a) & b) isotropic, c) & d) anisotropic (T⊥/T‖=10)
case.
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Here, v2
‖T = T‖/2m is the fast particles’ thermal parallel velocity and
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and ω2
p the plasma frequency of the species s. We can highlight a few observations:

First of all, one can see that we exactly recover the zeroth order results obtained in
Refs. [11] and [10] in the limit where T⊥/T‖→ 1 and Bc→ 0 (i.e. Fh→ FM). However,
the additional parameter Bc in the distribution function has the effect that even if we
consider the isotropic case T⊥ = T‖, some of the additional terms do not vanish and
introduce poloidally dependent corrections to the dielectric tensor.

NUMERICAL RESULTS

Dielectric tensor

A more intuitive understanding of what happens to the dielectric tensor can be ob-
tained when we compare the two cases graphically. Fig. 1 shows the dielectric tensor



element Exx in both the isotropic and the anisotropic case for on- and off-axis heating.
The equilibria used for the calculations are JET-like (R0=3.1, a=1m, κa=1.4, δ=0.4,
B0=3.38T) and done keeping beta constant with values of βtot = 0.5% and βh = 0.2%
for total and hot beta respectively. We chose a background composed of thermal deu-
terium ions and electrons and minority heating on hydrogen fast ions at the first har-
monic, which is at 52/46 MHz for on-/off-axis heating respectively, which corresponds
to Bc=3.38/3.00T. For the chosen densities (thermal particles nth=2×1019(1− s), hot
particle density nh = 0.05nth(1− s)), the ICRF power deposition was one order of mag-
nitude higher on the fast ions than on the background plasma.

In Fig. 1 one can easily see the poloidal dependence of the dielectric tensor in the
anisotropic cases c) and d). Also, the region of high values of the dielectric tensor are
clearly much more localised around the resonant layer in the isotropic case.

Temporal evolution

In order to study the effects of ICRH on the fast particles, the schematics shown
hereafter have been implemented. The different stages are as follows:

(1) The equilibrium is calculated using
the anisotropic version of VMEC[7]
and converted into Boozer coordinates
by TERPSICHORE.

(2) In order to calculate the wave field
and power deposition, LEMan is used
with a warm model and incorporating
the newly derived anisotropic dielec-
tric tensor. Minority heating on hydro-
gen ions in a background of deuterium
ions and electrons is used.
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(3) The evolution of the distribution function is simulated with the single particle
Hamiltonian code VENUS, including Monte Carlo operators for Coulomb scat-
tering and ICRF heating.

(4) The updated distribution function moments are fed back into VMEC and LEMan
for the next cycle.

The implemented Monte Carlo operators are equal to those described in Ref. [12] and
include pitch angle and energy scattering due to Coulomb collisions on the background
ions and electrons as well as kicks in perpendicular and parallel velocity due to the
ICRF wave field. Note that we do not include explicit kicks in the toroidal canonical
momentum Pφ , since the corresponding effects (such as radial diffusion of trapped
particles [13]) are intrinsically included in the following of the particle’s orbits. The
kicks in velocity space are proportional to the magnitude of the electric field and are
only applied when a particle crosses the Doppler shifted resonant layer, i.e. when
ωr f − k‖v‖ = nΩc, where ωr f is the wave frequency, Ωc the cyclotron frequency of the
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FIGURE 2. Effect of ICRH on the perpendicular pressure through anisotropy after one iteration.
β⊥ = 2µ0 p⊥/B2

0. a) Initial β⊥ surfaces, b) newly developed anisotropy after one run, d) β⊥ surfaces
after first iteration. The white line represents the resonant layer B = Bc.

fast ions and n the label of the harmonic.
After each VENUS run, new inputs to LEMan and VMEC have to be computed. For

this, first the moments of the hot distribution function nh(ψ,θ), ph
‖,⊥(ψ,θ) are computed

as described in Ref. [8] and then the relations presented in Ref. [7] for B≥ Bc are used.
The needed inputs are the anisotropy T⊥/T‖ and the hot pressure amplitude ph for VMEC
and additionally the hot particle density and parallel temperature for LEMan. In order to
find these, we move from the centre along θ = 0 (using B≥ Bc) until we hit the resonant
layer and then follow the latter to the wall (using B = Bc). The explicit relations are [7]
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1−T⊥/T‖ (1−B/Bc)
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Figure 2 shows one complete iteration of the code as described above. We start with
an isotropic equilibrium, where the thermal beta is about ten times higher than the hot
particle beta. The initial parameters are R0 = 3.1m, a = 0.95m, κa = 1.4, δa = 0.4,
B0 = 3.4T, Bc = 3T, βth = 0.3%, βh = 0.02%, Tth = 5keV, T⊥,h = 65keV. The wave
frequency is f = 46MHz, the total absorbed power is 7MW and the simulation is stopped
arbitrarily after 10ms.

As expected, we see that even if we start from an isotropic equilibrium, ICRH has
its effect not only in raising the hot particle’s temperature, but more precisely mainly
raising the hot particle’s perpendicular temperature and thus creating an anisotropic
equilibrium. Fig. 2b) shows that perpendicular anisotropy develops at the resonant layer
around ρ ≈ 0.4. It is worth noting that this first iteration represents the first time a non-
constant (in radius) anisotropy was fed into VMEC.

It is important to note here that Fig. 2 is not to be understood as real physical
result: We have stopped the simulation arbitrarily after 10ms without any requirement
of convergence to a physical state. Here, the emphasis is on the feasibility of such a
numerical model rather than the physical results themselves. The next step is to iterate



the cycle more often until a certain saturation is reached where the equilibrium does not
change anymore. This would then represent an equilibrium we would expect for long
time ICRF heating at the chosen frequency in the considered plasma. This work is still
in progress and no such results can therefore be shown here.

CONCLUSIONS

We have presented here a self-consistent numerical model for simulating the effects of
ion cyclotron heating in an arbitrary (2D or 3D), fully shaped plasma. The dielectric
tensor for an anisotropic plasma has been derived and implemented into the full-wave
code LEMan. It could then be shown that the anisotropic dielectric tensor becomes
dependent on poloidal angle. Then, the codes VMEC and TERPSICHORE for the
equilibrium, LEMan for the wave field and VENUS for the evolution of the distribution
function have been coupled and a first iteration could be demonstrated. As expected,
we see a developing of perpendicular anisotropy at the resonant layer and as a result a
poloidally localised raising of the perpendicular pressure.

In the near future, several iterations will be necessary in order to find a converged
equilibrium where Coulomb collisions and ICRH balance each other. Also, numerical
convergence studies and benchmarks with other codes will have to be performed. It
will also be interesting to explore the changing of the dielectric tensor due to growing
anisotropy and its effect on the wave field and ultimately the particle orbits.
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