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Abstract 
We have developed a robotic interface to train hand and finger function. HandCARE is a Cable-Actuated 
REhabilitation system, in which each finger is attached to an instrumented cable loop allowing force 
control and a predominantly linear displacement. The device, whose designed is based on biomechanical 
measurements, can assist the subject in opening and closing movements and can be adapted to 
accommodate various hand shapes and finger sizes. Main features of the interface include a differential 
sensing system, and a clutch system which allows independent movement of the five fingers with only one 
actuator. The device is safe, easily transportable, and offers multiple training possibilities. This paper 
presents the biomechanical measurements carried out to determine the requirements for a finger 
rehabilitation device, and the design and characterization of the complete system. 
 
Keywords: Cable system, hand and finger functions, human-oriented design, rehabilitation robotics. 

1 Introduction 
Post-stroke rehabilitation starts with one-on-one therapy with physiotherapists in acute-care hospitals. To 
limit the cost of treatment, patients are usually sent back home when they are able to walk, even if they 
have not recovered complete function of upper limbs, especially of distal parts, i.e., hands and fingers. In 
most cases, it will take a longer time to recover the functions of extension, abduction, and adduction of the 
fingers, thereby leaving the fingers in a flexed position, resulting in difficulties with activities of daily 
living (ADL) such as grooming, dressing, eating, and personal hygiene [1]–[5]. It is, therefore, usual to 
pursue further rehabilitation at home, with the advantages of practicing skills and developing compensatory 
strategies in the context of one’s own living environment. Stroke patients are generally instructed to 
perform different exercises with the hand in order to restore physical function and skills, mainly by treating 
the motor and sensory impairments using simple nonactuated devices1 (see first three rows of Table I). 
In recent years, robotic devices and game-like virtual reality exercises have been increasingly used across 
industrialized countries, and may redefine rehabilitation by motivating people to train more, without 
clinical supervision. Because these devices can accurately measure variables such as position and force, 
they can be used for treatment as well as to diagnose and assess motor impairments such as spasticity, 
muscle tone, and strength with great accuracy. 

These devices can automate repetitive tasks and provide passive movements, i.e., without voluntary 
muscular contraction by the individual, or active movements, i.e., with voluntary movement of a joint. In 
addition, they can provide assistance adapted to each subject and degree of recovery. Several studies 
suggest that robot-assisted therapy has positive effects on the rehabilitation progress of stroke patients [6]–
[11]. However, interfaces to train the distal components of the upper limbs, e.g., wrist and hand, have 
received little attention so far. 

 

1 http://www.rehabmart.com  
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Different robots have been developed to provide continuous passive motion (CPM) of the hand (see fourth 
and fifth rows of Table I) helping subjects reduce joint stiffness of the fingers together or individually2 3. 
This type of device offers a versatile, comfortable and portable therapy, but lacks the possibility of 
performing active finger movements. 

Several active robotic devices, i.e., with active participation of the patient, have been recently developed to 
train hand function. They can be divided into four groups (see lower rows of Table I). The first type of 
device consists of a hand module added to robotic structures used for rehabilitation of the arm. Masia et al. 
have developed a Hand Robot Alpha-Prototype II, which is mounted at the output of their MIT-MANUS 
system. This device interacts with the palm and can provide high force to train grasp and release, but it may 
be limited by a small range of motion [12]. Riener et al. have also extended their ARMin device to provide 
exercises for forearm and hand. The distal module is characterised by a semi-exoskeleton structure, with the 
arm placed inside an orthotic shell [13]. The Gentle/G system, developed by Loureiro et al. [14], involves a 
6 degree-of-freedom (DOF) hand module with one motor for the thumb metacarpophalangeal (MCP) joint 
and two actuated phalanges for the opposing fingers, and free orientation in roll, pitch, yaw. This module is 
connected to a HapticMaster robot providing three DOF movement, such that subjects can train to grasp 
and move objects in space. 

 
Table I. Review of devices for hand and finger rehabilitation. 

 

 

2 http://www.vqorthocare.com/Products/CPM/index.php  
3 http://www.tyromotion.com/index.php?id=8  
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The second group of active robotic devices has been developed to train specific hand functions. We have 
recently created a two DOF Haptic Knob to train opening and closing movements of the hand, as well as 
pronation and supination of the forearm, so as to simulate interaction with objects [15]–[17]. The HWARD 
(Hand-Wrist Assisting Robotic Device) [18] is a three DOF pneumatically-actuated robotic device that 
assists the impaired hand in grasping and releasing movements. Advantages of these two robots include 
their large ranges of motion and force, although it is not possible to train each finger independently. 
The third group consists of gloves and exoskeletons focusing on finger function. Burdea et al. introduced 
the Rutgers Master II, a haptic glove which serves as an instrumented interface to sample hand positions 
and provide suitable resistive forces [19], [20]. However, the limited workspace and the difficulty that 
patients with spasticity may have in slipping on this type of glove may limit its therapeutic use to laboratory 
and clinical settings. Exoskeletons are also being used for hand and finger rehabilitation. The CyberGrasp 
Exoskeleton developed by Immersion4 allows full range of motion of the hand without obstructing 
movements. A novel exoskeleton, the Gifu Haptic Interface, has been developed by Kawasaki et al. to 
provide a self-training rehabilitation system, allowing patients to perform rehabilitation exercises by 
themselves [21], [22]. However, the limited range of force (5 N), that may not be appropriate for patients 
with severe spasticity, and considerable friction interfering with smooth movement are significant 
drawbacks of this type of system. 

Different types of robotic devices have been developed for dedicated finger exercises. The SPIDAR (SPace 
Interface Device for Artificial Reality) system uses a different approach consisting of a rigid cubic frame 
and several motors with pulleys attached to each corner of the frame. Strings span from each motor-pulley 
unit to the thumb and index finger of the subject to allow different finger movements and grips [23], [24]. 
The low range of force that can be applied at the output may limit the use of this system for hand 
rehabilitation. The HIFE-Haptic Interface, a device based on a tendon-driven transmission system, has been 
developed to train extension/flexion movements of one finger. The low friction and large range of motion 
and force make this system well adapted for finger exercises. However, the use of this system is limited to 
one finger only [25]. 

Table I summarizes the main characteristics of the robotic interfaces described above, namely the specific 
movement that can be trained with the robot, the number of DOF, the maximal force/torque that can be 
applied at the output of the system and the functional workspace within which the hand or the finger can 
move (finger extension/flexion angle is evaluated at the MCP joint, where the origin is defined for a 
proximal phalange aligned with its corresponding metacarpal, negative values represent extension and 
positive values are for flexion). 

This table suggests that the challenges of recovering fine motor control of the fingers have yet to be 
addressed by suitable interfaces. Current active robotic devices for hand rehabilitation are often too large to 
be used at home, have too limited range of force or do not offer the possibility for training each finger 
individually. On the other hand, nonactuated devices cannot control the force, while CPM interfaces do not 
train active movements. 
Our objective is to develop an interface to train distal segments of the upper limbs with the advantages of 
both nonactuated interfaces and active robotic devices. This interface should be safe and compact while 
producing adequate forces within a large workspace. It should enable poststroke patients to train at home or 
in decentralized rehabilitation centers by performing motivating virtual reality (VR) game-like exercises. 
Furthermore, the interface should be flexible such that it can be adapted to patients’ biomechanics, provide 
comfortable interaction, and be cost effective [26]. 

 

4 http://www.immersion.com/3d/products/cyber_grasp.php  
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Fig. 1. View of the HandCARE system used by a stroke patient. The 

main part of the interface is the clutch and control box, which includes 
the motor, the control card, the clutch systems as well as the sensing 

systems. Five adjustable pulley fixtures allow the direction of the 
movements to be modified. Visual, tactile, and audio feedback are 

implemented to keep the subject informed during the training. The 
dimensions of the interface are 60×30×30 cm3 (arm support included). 

Fig. 2. Mean orientation µn with middle finger as 
reference (A) and amplitude (B) of the five 

fingertip trajectories for eight healthy and three 
poststroke subjects. The error-bars indicate the 

standard deviations. 

This paper presents a Cable-Actuated REhabilitation System to train Hand functions (HandCARE) (Fig. 1) 
addressing these requirements. We first examined the different tasks for which this interface is to be used, 
and measured corresponding biomechanical parameters (Section II). The design, determined by these 
specifications, is described in Section III. Material choice, the actuation system, and the implemented 
control schemes are described in Section IV. Experiments were conducted with the interface to evaluate its 
performance (Section V). 

2 Hand biomechanics requirements 
Different dysfunctions such as muscle weakness, spasticity, and compulsory co-activation of antagonistic 
muscles at multiple joints, contribute to impairment of finger and hand function after stroke. Due to 
extensor muscle weakness, the fingers are often locked in a flexed position and stroke patients are not able 
to control finger motion. Thus, the first function the robotic interface should train is finger extension. Then, 
finger flexion should be trained to strengthen weak muscles and reduce the effects of synergies. Sufficient 
versatility of the robot is required to allow individual movements for each finger, grasping with all five 
fingers, or more precise functions such as pinching between two fingertips or tripod pinch. 
A simple experiment was performed to identify the biomechanical constraints of the human hand. Eight 
healthy subjects between 21 and 32 years of age, all right-handed, as well as five chronic stroke patients 
participated in this experiment [27]. These patients, two females and three males, were between 54 and 
91 years of age, all right-handed with right hemiplegia. Subjects were first asked to open the hand until the 
fingers were maximally extended at the MCP joint and then to close the hand until the fingertip of the 
thumb touched the fingertips of the four opposing fingers. The movement of the fingertips was constrained 
to a plane. 
To determine the natural orientation µn and amplitude of finger movements, measurements were made 
when the five fingers were at the extreme open and closed positions. Fig. 2 presents the orientations as well 
as the amplitudes of the finger trajectories. The orientation of the fingers during movement is different for 
healthy and poststroke subjects because of limited finger abduction of the latter. In particular, the 
orientation angle of the thumb is significantly smaller. Due to joint stiffness, muscle contracture, flexor 
synergy, or spasticity, the stroke patients were all unable to place the thumb in opposition to the other four 
fingers. 

The five patients had difficulty in opening the hand, but in terms of passive range of motion, there was no 
notable difference with the healthy subjects. The averaged maximal grasping force for poststroke subjects 
was 240 N for male and 120 N for female, and, respectively, 450 N and 300 N for healthy subjects. 
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3 Design of the rehabilitation system 
Cable interface designs such as the SPIDAR (Table I) or the Mantis Workstation developed by Mimic5, 
which have shown the high potential of cable-based haptic interfaces, attracted our interest and served as a 
starting point for our design. The HandCARE is also a cable-driven robotic tool, where each finger is 
attached to a cable loop allowing predominantly linear displacement approximately equal to the 
measurements presented in Section II (Fig. 2). The interface can assist or resist the subject in opening and 
closing movements. The device consists of four main parts. 

• A cable-driven system with a frame and pulleys that convey the cable (Figs. 3 and 4). 

• A clutch actuation system providing assistive or resistive forces to the fingers (Fig. 5). 

• A sensing system to measure interaction between the subject and the interface (Fig. 6). 

• An arm support, i.e., a versatile system to support the forearm of the subject (Fig. 1). 

To actuate all five fingers, the system would in principle require five motors. However, a clutch system was 
developed to allow training of different movements with only one single actuator. With the five clutches, it 
is possible to train grasping and pinching as well as independent movements of each finger using the single 
motor. 

3.1 Cable Driven System 
Five adjustable pulley support fixtures guide the cables which move the fingers. Fig. 4 illustrates how the 
pulley fixtures can slide along the frame for adjusting the orientation of the cable to fit the natural 
orientation of finger trajectories µn, defined in Section 2. The cables cross within the workspace and so 
precautions must be taken to avoid interference. 

3.2 Clutch System 
One clutch is used for each finger, and can be manually switched between three different modes (Fig. 5). 

• Fixed mode: The driving cogwheel is fixed and the cable blocked. The finger is thus maintained at 
a fixed position to allow for training of isometric force tasks.  

• Free mode: The driving cogwheel is free to move. The finger can move without restriction along 
the path defined by the cable.  

• Active mode: The driving cogwheel is engaged with the motor shaft and the torque generated by the 
motor is applied to the finger. 

The clutch system allows the subject to train a variety of combinations of finger movements, e.g., with five 
fingers [Fig. 4(A) and (B)] or with the tripod thumb-index-middle [Fig. 4(C)]. While switching between the 
various clutch modes is performed manually in this interface, it can easily be automated using simple and 
cheap servomotors, as has been implemented in the second generation of HandCARE.  

3.3 Differential Force Sensing  
One limitation of this cable driven system is that any noncolinear force will perturb the tension in the cable. 
A conventional implementation of force measurement, for instance, the use of a force sensor at the output, 
has the disadvantage of being sensitive to these noncolinear forces, thereby causing the measurement of 
finger force to be biased. Therefore, a differential sensing system has been developed, which is based on 
the three-roller principle, consisting of an external elastic component that measures cable tension [Fig. 
6(A)]. Fig. 6(B) illustrates how the differential method compensates for the effect of noncolinear force by 
mechanically compensating for the tension in the two cable strands attached to the finger. 

 

5 http://www.mimic.ws  
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Fig. 3. Drawing of the HandCARE (A) with expanded view of 

the finger–robot interaction (B). 

 

 
Fig. 5. A 5-clutch system used to train the five fingers 

independently. The clutch mechanism allows three operation 
modes for each individual finger: i) rest mode—the cogwheel 

and the cable are blocked by a pin and the finger cannot move 
(clutches 2 and 5), ii) passive mode—the cogwheel is free to 
rotate so the finger can move freely (clutch 3), and iii) active 
mode—the cogwheel is driven by the motor, which moves the 
finger (clutch 4). In order to select the mode, a pin is engaged 

in one of three positions corresponding to the described modes. 

 
Fig. 4. Hand in closed (A) and open position (B). The 

fixtures can be adjusted to change the orientation µ of 
finger trajectories (C). Different movements can be 

trained, e.g., opening/closing with five fingers (A), (B) or 
with tripod thumb-index-middle fingers (C). 

 

 
Fig. 6. Methods to measure cable tension. (A) 

Implementation and diagram of the three-roller principle. 
This method allows tension in the cable to be measured 
with a static force sensor while the cable is moving. (B) 

Implementation and diagram of a differential method to 
compensate the cable deflection when the force applied is 

not colinear with the direction of the cable (C). 

 

 
Fig. 7. Measurement of one of the five force sensors (+) and 
motor current required to maintain a constant position of 

one finger (middle finger) when different forces are applied 
at the output. The theoretical relations are superimposed. 
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Table II. Features of the HandCARE. 

 

Table III. Friction coefficients. 

 
 

 

 
Fig. 8. Measurement of the sensitivity to cable deflection for a conventional system (A) and the compensated system (B), (C). 
The direction of forces applied at the output can be defined by two angles, ϕ (corresponds to finger extension/flexion) and ψ. 
The force is applied by the finger at reference point R and the direction of the cable is represented by the black arrows. The 
crosses represent the measurements. The coefficient ρ is the ratio between the force F̂ measured by the sensor and the force 

F applied at the output. 

 
The key elements of the differential systems are the five “MilliNewton” 2 N force sensors6 used to 
determine the force applied by each finger. These sensors use the piezoresistive properties of thick films. 
The sensing element is an alumina cantilever with a thick-film piezoresistive Wheatstone bridge and is 
soldered onto a thick alumina base, which contains the (thick-film) conditioning circuit [28], [29]. This 
construction allows batch fabrication of simple yet fully amplified and calibrated sensors. The practical 
measuring range of the cantilever geometry, up to ca. 2 N, limited by the strength of the cantilever and the 
solder joint, is sufficient to measure the cable tension, provided that its deflection angle is relatively small. 

Fig. 6(B) shows how the pulleys P1 and P2 must be placed to compensate for noncolinear forces. The force 
F̂ measured by the sensor is 

F̂ = M / L (1) 

where the moment M depends on the forces F1 and F2 resulting from the tensions T1 and T2 in the two cable 
strands 

 

6 http://lpm.epfl.ch  
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M = F1·(l+ε) - F2·l (2) 

Fi = Ti·sin θi, i = 1,2 (3) 

The distances is that the measured force F equals zero when a force normal to the cable is applied by the 
subject: F = 0 when when T1 = T2 > 0. Equations (1)–(3) leads to the following condition for the placement 
of the pulleys P1 and P2: 

sin θ2 = sin θ2·(l+ε)/l  (4) 

The force F̂ measured by the sensor can vary with two factors. 

• The direction ϕ of the applied force F [Fig. 6(C)], assuming there is negligible deflection  (d ≈ 0) 

F̂ = F·sin ϕ (5) 

• The position α of the finger along the cable, due to the cable deflection d [Fig. 6(C)]. Assuming that 
the force F is normal to the cable (ϕ = 0°) and the distance ε is small (θ = θ1 = θ2), the contributions 
of the forces F1  and F2  to the force F̂ are thus identical. From relations (1)–(3) 

F̂ = (T1-T2)·sin θ·l/L (6) 

where 

T1·cos α = T2·cos β (7) 

and 

cos α = a/Ca and cos β = b/Cb (8) 

The distances Ca and Cb are 

Ca = (a2+d2)0.5 (9) 

Cb = (b2+d2)0.5 (10) 

and Hooke’s law 

F = k·[(Ca+Cb)–(a+b)] (11) 

completes the set of equations. The coefficient k of 40 N/mm is the compliance of the system. The force is 
significantly biased when the force F is applied near one of the pulleys P1 and P3. Therefore, the 
workspace is constrained to a central interval, i.e., 3.5 < a < 21.5 cm, where the variation of the force 
represents less than 3% of the nominal force. The variation is linear within this interval, i.e., the correlation 
coefficient with the linear fit is 0.96. 

This sensing system is suitable for our purpose as only forces parallel to the cable are measured. 

3.4 Arm and Finger Fixation 
The support for the forearm and elbow was designed to provide comfort, while mechanically isolating the 
hand from other body movements. The support can be adjusted to change the position ( 10 cm) and the 
orientation (±30°) of the forearm (Fig. 1). 
Different techniques for finger attachment are possible [30]. The use of gloves is precluded in our 
application as stroke patients with spasticity may have difficulty in donning them. A first method was tested 
where the subjects inserted their fingers into sewing thimbles. The size of the thimbles was not adjustable 
and subjects reported discomfort due to perspiration after using them for more than 20 min. A better finger 
fixture consisted of a Velcro loop within a metal ring to which the two ends of the cable were attached (Fig. 
4). The finger can be inserted partially or completely into the Velcro loop, i.e., just the fingertip (distal 
phalange), or as far as the intermediate or the proximal phalange. Insertion of just the fingertip was mostly 
used for the feasibility study with stroke patients. 
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4 System implementation 

4.1 Materials and Components 
Materials for the cable were compared according to their compliance, friction around a pulley, breaking 
strength and creep. Polyester, polyester reinforced with carbon fibers, polyethylene fiber, and steel wire 
were tested and it was found that steel cable (diameter of 0.5 mm) had the most suitable combination of 
these factors. The 30 pulleys used to guide the cables are made of POM (polyoxymethylene, or Delrin) and 
are mounted on standard ball bearings. 
Cogwheels, which are used for the clutch system, made from POM or steel were tested for durability and 
transmission smoothness. Plastic cogwheels wore out quickly, therefore, steel cogwheels were more 
suitable for our purpose. 

4.2 Actuation and Control 
The interface is actuated by one brushed dc motor (Maxon motor, Switzerland; RE40, 150 W; encoder 500 
counts/rev; control card EPOS 24/5). The gear ratio between the motor shaft and the clutch is 2. The 
interface is controlled by a program written in LabView 8.2 (National Instruments) that runs on a PC 
(Pentium 4,4 GB RAM, 233 MHz). The main program is divided into subtasks to separate control, display, 
and data acquisition, and thus distributes the tasks and allows faster control. Data from the EPOS 
controllers of the motor (positions, velocities and currents) are read at a frequency of 100 Hz and 
transferred to the main program using an RS232 protocol. Data from force sensors are sampled at 1000 Hz 
by a data acquisition card (USB-6211, National Instruments). The main control program analyzes position 
and force inputs and calculates commands to send to the motor at 100 Hz. This frequency is sufficient for 
control because 
friction in the system provides stability and because human motion is characterized by a low 
bandwidth [31]. Indeed, the mechanical bandwidth of human movement is around 7 Hz (2 Hz for normal 
speed movements) [32]. A display loop has been implemented to provide visual feedback at a refresh rate 
of 20 Hz. 

4.3 Safety and Psychological Factors 
Safety is the first requirement for an interface that physically interacts with humans. To prevent any harm 
or damage, both software and hardware emergency systems are implemented as described in [33]. Five 
mechanical stops have thus been installed (Fig. 4) and an emergency switch actuated by a technician or a 
physiotherapist can stop the motor anytime. Moreover, a safety pneumatic switch is held by the subject 
during the experiment and stops the system if squeezed. 
Psychological factors related to the design are important for the comfort and security of the patient and the 
therapist. To this end, all electronics and the drivetrain have been enclosed in a box and external parts have 
been rounded for safety. 

5 System performance 
A. General Features 
Table II summarizes the characteristics of the completed prototype. The workspace consists of five linear 
paths of 8 cm length corresponding to a finger extension/flexion angle range of 0-70° at the MCP joint (for 
a finger length of 9 cm). The maximal opening is 19 cm and the minimal closing is 1.5 cm between thumb 
and the opposing fingers. The maximal continuous force that can be generated is 15 N per finger, while 
inherent friction is less than 0.8 N in any position of the workspace. 
The system is backdrivable and Fig. 7 shows the current generated by the motor to maintain a position and 
the force F̂ measured by the sensor when a force F, parallel to the cable (ϕ = 90° toward opening and 
ϕ = 270° toward closing movement), is applied at the output. The theoretical sensor voltage V is deduced 
from relations (1)-(3) 
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V = c·F̂+V0 = c·F·sin θ·l/L+V0 (12) 

where c = 0.2 V/N is the calibration coefficient and is the offset of the differential sensing system. The 
theoretical current of the dc motor is proportional to the sensor voltage. Sensor and motor measurements 
are highly linear and are close to the theoretical prediction within the range of [-15, 15] N. 

5.1 Friction Identification 
Friction was identified from the output force for different velocities and configurations, i.e., while varying 
the number of clutches engaged with the motor. To obtain consistent results, the measurement was 
performed three times and a linear fit was used to determine the viscous friction (slope of the line) and the 
Coulomb coefficients (output force for a velocity equal to zero). Table III summarizes these coefficients 
and shows that Coulomb friction increases with the number of fingers actuated by the motor, while the 
viscous friction is similar for any configuration (except a lower coefficient when no clutch is engaged).  

5.2 Force sensing 
Fig. 8 compares the ratio 

ρ(ϕ,ψ) = |F̂| / |F| (13) 

of the two sensing principles described in Section III-C, when a force is applied at reference point , i.e., 
at the center of the cable-loop. In (13), ϕ and ψ define the orientation of the applied force . This figure 
shows that the conventional method without compensation is highly sensitive to forces applied 
perpendicularly to the cable (ϕ = 0° and ϕ = 180°), which creates a deflection increasing the overall cable 
tension. For instance, this experiment shows that forces measured by the force sensors are three times 
higher than the actual forces applied at the output when the direction of this force is perpendicular to the 
cable [Fig. 8(A)]. The differential system [Fig. 8(B) and (C)] markedly reduces the effect of noncolinear 
forces and is sensitive mainly to forces generated along the cable, thus offering a solution adapted to our 
purpose. The measurements are close to the theoretical curve based on (5). 

6 Conclusion 
A new interface for hand and finger rehabilitation has been developed, based on patients’ requirements in 
terms of biomechanics, comfort, and safety. By providing movements of the five fingers with large range of 
motion and force, the device can help patients train functions such as finger flexion and extension, 
coordination between the fingers, and independence of each finger, which are necessary for most activities 
performed with the hand. The HandCARE has been designed to be adaptable to most hands and was 
successfully tested with healthy and disabled subjects. 

The design consists of a frame that guides five adjustable cables on which the fingers are positioned. The 
interface is compact and can be transported and placed on a table. Main features of the interface are the 
clutch system, which allows independent movement of the five fingers with only one actuator, and the 
differential force sensing system, that is used to provide feedback to the patient. The encoder and force 
sensors allow the patient’s progress to be monitored during training sessions. 
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