What is Aperture Synthesis?

- Using **N** telescopes, \(\binom{N}{2} \) possible pairing (visibilities).
- And baselines undergo Earth rotation!
- Example:
 - Each telescope pair = one elliptical path.

CLEAN Mathematical Model (Högjom, 1974 [1]):

- Problem: In matrix notation, find \(I \in \mathbb{R}^{N^2} \) from
 \[d = B I, \quad \text{with} \quad B = F' MF \]
 - Dirty map \(d \)
 - Circulant matrix, i.e., convolution \(B \)
 - Diagonal matrix, i.e., the visibility mask \(F' \)
 - Fourier basis, i.e., \(F' = F.u \)
- Assume \(I \) sparse in space, i.e., in the canonical (Dirac) basis.
- CLEAN is a (\(\gamma \) damped) Matching Pursuit in the Dictionary B.
- Other methods: Multi-scale CLEAN, MR CLEAN, MEM, ...

BP and BP\(^+\) Reconstruction

- **Compressed Sensing Model: Fourier Acquisition**
 \[y = \Phi I = SFI, \quad \text{with} \quad I = \Phi \Psi u \quad \text{sparse in} \quad \Psi \]
 - Sensing matrix, \(y \in \mathbb{C}^m \)
- Visibility Selection
 \[M \in \mathbb{R}^{8 \times 8} \]
 \[S \in \mathbb{R}^{m \times N^2} \]
- Context similar to Magnetic Resonance Imaging MRI
- We may use Basis Pursuit [2]:
 \[\alpha_{est} = \arg \min_u ||u||_1 \quad \text{s.t.} \quad y = \Phi \Psi u \quad \text{(BP)} \]
 - Or, if positive image (additional prior)
 \[\alpha_{est} = \arg \min_u ||u||_1 \quad \text{s.t.} \quad y = \Phi \Psi u, \quad \Psi u \geq 0 \quad \text{(BP\(^+\))} \]
- Or, noisy version:
 \[y = \Phi \Psi u + n, \quad n \sim N(0, \sigma^2), \quad y = \Phi \Psi u \quad \Leftrightarrow \quad \|y - \Phi \Psi u\|_2 \leq \epsilon \]
- Solver: Proximal Methods and Douglas-Rachford Splitting [3]
- **Simulations**: random interferometer, \(\Psi = \text{Dirac}, 1.8^\circ \times 1.8^\circ\)

Cosmic String Enhancement in AS

- **Cosmic Microwave Background (CMB) signal** = \(C_{\text{Gaussian Noise}} \) + String signal (no gradient here)
- Laboratory to test cosmological models
 - Very low SNR for string signal (i.e. low string tension) : -30 dB !
 - String signals not yet observed but simulated [4]
- Prior Information: string signal follows GGD in wavelet space
 - GGD scale and shape parameters deduced in steerable wavelets [5]
 \[\pi_j(u_w) \sim \exp \left| w_j \rho_b \right|^{\alpha_j}, \quad \text{with} \quad u = (j, \theta_k, \phi_l) \]
- Reconstruction: Statistical BP DeNoise (with some \(s_j < 1 \))
 \[\arg \min_u ||u||_2 \quad \text{s.t.} \quad ||Wy - W\Phi\Psi u||_2 \leq \epsilon \quad \text{(SBP\(_j\))} \]
 \[\text{with} \quad ||u||_2 = \sum_w |w_j|^2 |\rho_j|^2, \quad \epsilon = 99\% \text{ percentile } \chi^2(2m) \]
- **Solver:** re-weighted \(\ell_1 \) with SPGL1 toolbox

Conclusion

- CS is a flexible framework for image reconstruction from radio-interferometric data through convex optimization.
- The inclusion of prior knowledge on the signal under scrutiny improve the quality of signal reconstruction.
- In progress: control of the actual visibility coverage, inclusion of TV sparsity term, mosaicking.

References