Hindawi Publishing Corporation
Advances in Multimedia

Volume 2008, Article ID 628970, 13 pages
d0i:10.1155/2008/628970

Research Article

Rate-Distortion Optimized Frame Dropping
for Multiuser Streaming and Conversational Videos

Wei Tu," Jacob Chakareski,?2 and Eckehard Steinbach’

I Media Technology Group, Institute of Communication Networks, Munich University of Technology, 80333 Munich, Germany

2Vidyo Inc., Hackensack, NJ 07601, USA

Correspondence should be addressed to Wei Tu, wei.tu@tum.de

Received 11 May 2007; Accepted 14 September 2007

Recommended by Zhu Li

We consider rate-distortion optimized strategies for dropping frames from multiple conversational and streaming videos sharing
limited network node resources. The dropping strategies are based on side information that is extracted during encoding and is
sent along the regular bitstream. The additional transmission overhead and the computational complexity of the proposed frame
dropping schemes are analyzed. Our experimental results show that a significant improvement in end-to-end performance is

achieved compared to priority-based random early dropping.

Copyright © 2008 Wei Tu et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

In today’s Internet, video packets are typically transmitted
using best-effort service. The packet forwarding service at
network nodes is significantly degraded if the network is
congested. In this paper, we consider the scenario where K
streaming videos and N conversational videos pass through a
network node (e.g., a multimedia gateway) with limited for-
warding resources, as illustrated in Figure 1. The packets can
be temporarily cached in the node’s buffer, but if the overload
persists, the buffer will overflow and some packets will be
lost. Our goal is to improve the overall quality of the streams
for the given forwarding resource Roy of the node.

For video applications, transcoding [1-3] or pruning of
the video stream can be performed to adapt the source rate to
the available transmission rate. Transcoding is computation-
ally expensive and not suitable for a node that has to rapidly
forward packets of many different users. Furthermore, video
source pruning by random frame dropping may have a dra-
matic influence on the reconstructed video quality. In [4-6],
static priority labels for I-, P-, and B-frames are used to per-
form priority-based random dropping (PRD) for streaming
video. In particular, video frames are dropped according to
their priority labels. Random selection is performed among
frames with the same priority label. Priority-based random
early dropping (PRED) [7] improves PRD by early dropping

of lower priority frames at certain predefined buffer fullness
levels. Nonetheless, static priority labels cannot accurately
describe the importance of video frames. For example, the
first P-frame in a group of pictures (GOP) is in most cases
much more important than the last P-frame, although they
belong to the same priority class. In [8, 9], the decodability
of the video frames is used to make dropping decisions.
Rate-distortion (RD) optimization has been widely em-
ployed to deal with the varying importance of video frames.
In [10], for instance, it is used to achieve RD-optimized
frame scheduling for a single video stream. RD-optimization
for bit allocation between source coding and channel cod-
ing is used, for example, in [11]. RD-optimization is also the
state-of-the-art for coding mode selection in video compres-
sion [12, 13]. An RD-based robust delivery scheme is pro-
posed in [14, 15]. However, all these works focus on the video
encoding at the sender to choose the best encoding and send-
ing strategy according to the constrained transmission rate
and the expected packet loss rate. When RD-optimization is
done at intermediate nodes in the network, side information
has to be transmitted along with the video stream [16-18].
In particular, [16] considers RD-optimization in a broad-
cast networking scenario, and performs optimization only
for a single stream, while [17] employs RD side information
for transcoding at network nodes. Only streaming video is
considered in [18], while in this paper we also examine the
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FIGURE 1: A network node with K incoming streaming videos and
N conversational videos sharing the same outgoing link.

additional case of frame dropping for both streaming and
conversational videos, simultaneously.

In the present paper, we propose RD-optimized video
frame dropping strategies for streaming or conversational
video on overloaded network nodes. For rate shaping
streaming videos, we use a distortion matrix and a rate vec-
tor [19] as side information. We denote our approach as
the cost function-based approach, which minimizes a La-
grangian cost function in order to find the optimum drop-
ping pattern. The cost function employs the following quan-
tities to determine the optimal pattern: the rate vector and the
distortion matrix of all incoming streams, as well as the cur-
rent fullness of the outgoing buffer. The Lagrangian multi-
plier in the cost function is selected as a function of the buffer
fullness and is used to adjust the aggressiveness of the drop-
ping process. The distortion matrix can be extracted only for
GOP structured video. For conversational video with IPPP...
structure, only hint tracks [20, 21] can be calculated and
therefore, the utility-based frame dropping strategy is used
for the conversational videos. Frame dropping decisions are
made only when the buffer does not have enough space to
hold them.

In addition, we also examine the scenario when both
streaming and conversational videos are passing through a
network node. In this case, we propose to use separate clas-
sification buffers combined with a scheduler for dynamic re-
source assignment to the two buffers, which is located be-
tween the two classification buffers and the outgoing link
buffer at the node. For simplicity, in our framework we re-
place continuous time with the discrete frame slots of the
video sequences, which means that dropping decisions will
only be made at multiples of one frame duration. In case the
streams have different frame rates, the dropping decision can
be made synchronized to the stream with the highest frame
rate. Another approach would be to collect a small number of
frames from all incoming streams and then perform a drop-
ping decision. This approach, however, would introduce ad-
ditional delay.

The main contributions of this work include the follow-
ing:

(1) joint rate shaping for both streaming and conversational
videos,

(2) extensive simulation results which provide a compre-
hensive performance comparison of different frame

dropping schemes as well as a reference for parameter
selection,

(3) analysis of computational and storage cost which can be
used as a reference to select different dropping schemes
for a given scenario.

The rest of the paper is organized as follows. Section 2 de-
scribes the side information used for streaming video and the
corresponding frame dropping strategies. Next, the side in-
formation and dropping strategy for conversational video are
introduced in Section 3. An integrated RD-optimized frame-
work for both streaming and conversational video applica-
tions is presented in Section 4. Furthermore, in Section 5
we analyze the memory requirements and the computa-
tional complexity of the techniques considered in this pa-
per. Section 6 presents the simulation results that demon-
strate the improvements achieved by our proposed RD-
optimized frame dropping strategies. Conclusions are drawn
in Section 7.

2. FRAME DROPPING STRATEGIES FOR
STREAMING VIDEO

In this section, we first introduce the priority-based frame
dropping schemes, which are used for comparison in this pa-
per. Then, the definition and the procedure to construct the
side information (distortion matrix and rate vector) for our
approach are presented. Based on this side information, we
propose an RD-optimized frame dropping strategy based on
the current buffer fullness of the network node.

2.1. Priority-based random early dropping (PRED)

PRD makes dropping decisions based on fixed priority la-
bels assigned to the video frames. With current conventional
coding scheme, frames can be prioritized according to their
frame type: I, P-, or B-frame. When frames from multiple
video streams simultaneously arrive at a network node, it is
the I-frames among them that have the highest priority to
be placed into the node’s buffer. It may happen though that
some of these I-frames cannot be placed into the buffer and
therefore they are dropped even before the buffer is totally
full. In this case, P-frames are tried next to be placed into
the buffer, followed then by the remaining (if any) B-frames.
This strategy leads to the most efficient usage of the node’s
buffer. However, the loss of I-frames and P-frames has a dra-
matic influence on the reconstruction video quality.

PRED sets thresholds for dropping according to the
number of priorities available for the video streams. Here, we
only have three priority levels {I, P, B}, so only two dropping
thresholds are needed. But if we have different priority levels
for all P-frames according to their positions in the GOP, we
can set n = Ng/(Np + 1) thresholds, where Ng is the length
of the GOP and N3 denotes the number of B frames between
two I/P-frames. As shown in Figure 2, when the buffer full-
ness reaches T, the least important B-frames are all dropped.
The last P-frame in the GOP is dropped when T is reached.
I-frames have the highest priority level and should not be
early dropped, so all P-frames are dropped when the buffer
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fullness reaches the highest threshold (T,). Early dropping
of less important frames reduces the likelihood of having to
drop more important frames at a later time.

2.2. Distortion matrix (DM) and rate vector (RV)

The distortion matrix proposed in [19] allows us to calcu-
late the distortion caused by dropping frames in a GOP
structured video stream. When calculating the reconstruc-
tion distortion, it is assumed that a simple “copy and freeze
previous frame” error concealment scheme is employed by
the decoder. In particular, a missing frame and all of its
descendants' are replaced, at reconstruction, by the decoder
with the temporally nearest previous frame that has been de-
coded. Note that this is done regardless of the presence status,
at the decoder, of the descendant frames. Hence the name of
the concealment scheme.

Our approach to frame dropping follows this logic. When
a network node drops an arriving video frame, it subse-
quently drops all its dependent frames that arrive at the node
afterwards. Therefore, a video frame drop pattern comprises
in our case an incoming frame that is dropped at present to-
gether with its descendant frames that will be dropped after-
wards.? The increase in reconstruction distortion affecting a
video stream caused by a frame drop pattern is the sum of the
individual increments in reconstruction distortion for the
concealed video frames. That is because the frames that have
been decoded do not contribute to the increase in recon-
struction distortion. The distortion matrix for a GOP with
IBB,PB3B4P,BsBg structure is given in (1), where Dgp
represents the increased distortion in MSE that is observed
when replacing frame Floss by Frep as part of the concealment
strategy. The column left to the matrix shows the replace-
ment frame F, for every row of the matrix. For instance,
Dj, represents the additional reconstruction distortion if the
first B-frame of the GOP is lost and is therefore replaced by
the I-frame of that GOP. R is a frame from the previous GOP
that is used as a replacement for all the frames in the current
GOP if the I-frame of the current GOP is lost. As a worst case
assumption, we use the I-frame of the previous GOP as the
replacement frame in this case:

R: [DF D5 D§ DS D DS Df D§ Dj]
1. |/ Dj Di D Dy Dy D. D Dj
p:|/ + / / Db DY DY DY D

p:\/ / / / / / / Df Dg
Bi:|/ / Dy / /]
Bs:\y / 4/ / / Dy / / /
Bs:\y v Vv v /v / 1/ / D¥

(1

The entries of the rate vector correspond to the sizes of
the video frames expressed in bytes. Then, at a network node,

! These are the frames in the encoding chain that depend on the missing
frame in order to be decoded, that is, decompressed.
2 In case they do arrive at the node.

Buffer fullness

FIGURE 2: Example settings of dropping thresholds for PRED.

the size of an incoming frame and the sizes of its descendant
frames are summed up to determine the rate saving achieved
by dropping these frames.

2.3. Cost function-based video frame dropping

In Section 2.1, we reviewed the idea of PRED and discussed
the benefit obtained by “early” dropping. In this section, a
cost function-based approach is proposed, which takes ad-
vantage of the RD side information to enable more flexible
frame dropping decisions, while still using the buffer fullness
info for early dropping.

If the buffer is empty or is lightly loaded, no frames
should be dropped. However, when the buffer fills up, frames
that have the least impact on the perceived quality at the re-
ceiver should be dropped first. The decision which frames
to drop is jointly made in our approach for all video streams.
Given the RD side information introduced in Section 2.2, the
active network node can perform RD-optimized frame drop-
ping. For this, the node checks the current buffer fullness and
minimizes the Lagrangian cost function

K K
Jp(n) = 3" ADjg(n) = M(n) > AR} (n) (2)
k=1 k=1

in order to determine the optimal drop pattern. In (2), n is
the current (discrete) time instant (slot), ADf,(n) is the addi-
tional distortion introduced in video k for a given drop pat-
tern p, and AR’;,(n) is the corresponding rate saving in bytes.

When the distortion matrix and rate vector described in
Section 2.2 are used, a dropping decision should comply with
the following rules. If the current frame that arrives at the ac-
tive node is an [-frame, we can either drop this frame or send
it to the outgoing link buffer. If we drop it, this means that
all the following P- and B-frames in the same GOP cannot be
decoded and have to be dropped also. This dropping strat-
egy leads to a significant increase in distortion for this GOP
but at the same time allows us to reduce the sending rate to 0
for this GOP. If we do not drop the I-frame at this moment,
we can still decide to drop the subsequent P-frames and B-
frames. This will lead to reduced distortion but also the rate
saving will be smaller. We could also drop the B-frames only
if we decide not to drop the P-frames. Again, the additional
distortion will be reduced but also the rate saving will be even
smaller.

Therefore, if the current incoming frame is an I-frame,
there are in total 4 dropping choices {I, P, B, N}, where I de-
notes dropping the whole GOP, P stands for dropping the
subsequent P- and B-frames in the GOP, while B signifies
dropping the all B-frames in the current GOP only and N
stands for “drop nothing.” If the current frame is a P-frame,
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FIGURE 3: Interpolation of A(n) between Amin (1) and Amax(n) as a function of the current buffer.

the choices are reduced to {P, B, N}. If the current frame is a
B-frame, the choices are also {B, P, N}, where B denotes the
case of dropping all the remaining B-frames in the GOP, in-
cluding the current one, and P stands for dropping the sub-
sequent (relative to the current B-frame) P- and B-frames.

Now, if we denote the number of possible drop patterns
at time # for video k as A*(n), then for K videos we obtain the
dropping set P(n) including [ ,A(n) different drop pat-
terns. One of the drop patterns will minimize (2). This pat-
tern represents the optimal dropping strategy at time #. In
order to perform this minimization, we have to determine a
reasonable value for the Lagrangian multiplier A(n) in (2).
In this work, we determine A(n) as a function of the buffer
fullness B(n). If the buffer is empty, we certainly do not want
to drop any video frames. This has to be reflected by an ap-
propriate choice of A(n). On the other hand, if the buffer is
full, A(n) should be selected such that all incoming frames are
dropped as queueing them in the outlink buffer would fail
anyway. In order to determine appropriate values for A(n)
for any buffer level, we define a minimum buffer fullness
Bmin, below which no dropping should happen and a max-
imum buffer fullness Bnax above which all incoming frames
are dropped. The two buffer fullness levels Bin, Bmax and
the corresponding dropping strategies lead to two extreme
values for the Lagrange multipliers Apin (1) and Amax (7). The
values for A(n) between B, and B,y can be interpolated.
We consider two different interpolation schemes for A(n) in
this work.

Figure 3(a) illustrates a linear interpolation of A(n) be-
tween Anin(#) and Anax () as a function of the current buffer
fullness B(n). Hence, we write

Bmax - B B - Bmin
Ay = Do = B0y Gy 4 BBy )
6

Linear interpolation is the simplest way to interpolate
A(n). An interpolation function that leads to more aggres-
sive dropping if the buffer fullness approaches Bmax can
be realized by quadratic interpolation of A(n), as shown in

Figure 3(b). With three control points A, B, and C, we can
define a quadratic Bézier curve for A(n) with

A= (Ao Ay) = (Bmin, Amin(1)),
B = (B, By) = (Bmax Amin(n)), (4)
C = (Cx, Cy) = (Biax> Amax(n)),
Po=(1—-1)"Ay+2t-(1—1)-By + £2-Cy, (5)
Py=(1-1t"A,+2t-(1-1)-B, +£-C,. (6)

The interpolated point P = (Px,P,) moves on this curve
from A to C by varying the parameter t from 0 to 1. For a
given B(n), we determine ¢ and then A(n) = P, from (6).

In order to determine Amin(7), we evaluate (2) for every
drop pattern and select Amin(#) such that the minimum of
(2) is obtained for the drop pattern where nothing is dropped
in all K video streams. This means that

K K
Jp, () = > ADE (1) = Amin(n) > ARE ()
k=1 k=1

(7)

=<

M=

K
ADJy(n) = Amin(n) > AR (n),
k=1

>~
Il

1

for p € P(n), p#pn

where p, represents the pattern when no frame dropping oc-
curs in any of the video streams. As J,, (1) equals zero, this
leads to

STF ADK(n)

Amin(”) =<
> ARb(n)

, forp € P(n), p#pn (8)

and we pick Amin (1) to be as big as possible while still satisfy-
ing all the inequalities in (8). The value for Amax(n) is derived
in a similar fashion. For this, the minimization of (2) should
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now lead to the decision of dropping as many frames as pos-
sible (drop pattern p,), which leads to

K K
Jpu(n) = > ADE (1) = Amax(n) Y" ARS (1)
k=1 k=1

Ak S ©)

< D" AD(a) = Amax(n) D AR (n),

k=1 k=1
for p € P(n), p#pa.
This results in
K
() = Skt 2RO ZAD0)

> o ARG, (n) — ARj(n) (10)

for p € P(n), p#pa

and we pick Ay, (1) to be as small as possible while still sat-
isfying all inequalities in (10).

3. FRAME DROPPING STRATEGIES FOR
CONVERSATIONAL VIDEO

Compared with streaming video, conversational video is typ-
ically encoded in an IPPPPP... form. B-frames are normally
not used because of the additional delay that would be intro-
duced. Therefore, no “early” or even priority-based dropping
as mentioned in Section 2.1 can be employed for conversa-
tional video. Video frames of multiple users are put into the
buffer in a round robin (RR) way and dropped if the buffer
cannot hold them. As conversational video does not have a
GOP structure, the distortion matrix also cannot be used here
to perform dropping decisions. Hence, we here propose to
use the hint tracks [20, 21] as the side information and per-
form a utility-based frame dropping for conversational video
to selectively drop the least important frames.

3.1. Side information for conversational video

Rate-distortion hint tracks are measured by feeding a spe-
cific loss pattern to the decoder and summing up the result-
ing increase in MSE over all affected frames of the video se-
quence. Without periodic I-frames in conversational video,
there is no resynchronization between the encoder and de-
coder. Therefore, in order to increase the error resilience of
the video stream to packet losses during transmission, slices
(or rows) of macroblocks in video frames are intraupdated
periodically, usually in a round-robin fashion. This is the so-
called partial intraupdate. Figure 4 illustrates the error prop-
agation when frame 7 is lost under the assumption that there
is no remaining error propagating from earlier frames. The
total distortion in this case is the sum of the distortions of all
the following frames until the end of the video stream. How-
ever, with partial intraupdate, we can assume that the error
propagation by the loss of frame # can be totally stopped af-

Ad;

n+M - L

Frame index

FIGURE 4: Error propagation for a single frame loss.

ter an equivalent intraupdate period of M frames.> There-
fore, only the individual distortions up to frame M + n need
to be considered. Please note, here we calculate the hint tracks
under the assumption that the losses of each frame are inde-
pendent, which is the so-called zeroth-order distortion chain
model DC? in [20]. This side information gives accurate dis-
tortion estimation when there is only one frame loss in the M
consecutive frames. We can of course construct higher-order
hint tracks, which can be extracted by feeding some loss pat-
terns with more losses. However, high-order hint tracks have
very high costs in terms of computational complexity as well
as a huge storage requirement.

Since the future frame information for conversational
video is unknown, it is impossible to premeasure the hint
track (DC?) value associated with a given loss pattern. There-
fore, the model proposed in [22] is used to predict/estimate
the distortion values Ad(n + i) associated with future frames
n + i in the case of loss/drop of frame n. In particular,

Ad(n)-ri- (1 - ﬁ), for0<i<M,

Ad(n+i) = (11)

0, otherwise,

where M is the equivalent intraupdate period, as explained
above, and 7 indicates the distance between the future (con-
cealed) frame and the lost frame n. In (11), Ad(n) is the MSE
information sent along with the video stream, representing
the distortion of the current frame n in the case when this
is the only lost frame and it is concealed by copying the pre-
vious frame. The attenuation factor r’ (r < 1) accounts for
the effect of spatial filtering and the term 1 — i/M accounts
for the intraupdate. Finally, the overall additional distortion
AD(n) affecting the video sequence due to the loss of frame
n, including error propagation into future frames, is then cal-
culated as

M
AD(n) = >  Ad(n+i). (12)
i=0

As a “copy and keep on decoding” error concealment
scheme is employed in this case, the rate saving information

3 This is the number of frames needed to intrarefresh all the macroblock
locations in a video frame using this approach.
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AR(n) associated with a given drop pattern is simply the sum
of the size of the dropped frames. Therefore, only the sizes of
the individual frames in bytes or bits need to be sent together
with the hint tracks distortion information.

3.2. Utility-based frame dropping

Unlike streaming video, the importance of future frames in
conversational video is unavailable. Therefore, it does not
make sense to make dropping decisions for conversational
videos until the buffer is unable to hold the new incoming
frames. In particular, all new incoming frames are placed at
the tail of the buffer queue if there is enough space left. Oth-
erwise, we compare the importance of these frames and make
a dropping decision.

In the hint track framework [18], for DC?, the dis-
tortion (AD(n)) and rate (AR(n)) information associated
with a video frame n comprise, respectively, the additional
distortion affecting the reconstructed video sequence and
the corresponding data rate reduction, when a single video
frame n from the compressed video stream is dropped. The
distortion-per-bit utility for a frame is then calculated as the
ratio AD(n)/AR(n) [20]. In our approach, we sort the cur-
rent incoming (nth) frames from all K videos in decreasing
order of their distortion per-bit utility. Then, from the head
of the sorted list, frames are placed into the node’s outgoing
link buffer. If the frame at the current top of the list does not
fit into the buffer, we turn to the next frame in the sorted
list until no additional frame can be placed into the buffer.
Please note, because of the tight delay constraint, optimiza-
tion is done only among newly incoming video frames that
correspond to a single time instant (one frame slot).

4. RD-OPTIMIZED DROPPING FOR STREAMING
AND CONVERSATIONAL VIDEOS

In Sections 2 and 3, we have discussed the side informa-
tion and dropping strategies for streaming and conversa-
tional videos. In this section, we consider the case when both
types of video pass through the network node simultaneously
and share one outgoing link.

4.1. Proposed framework

As shown in Figure 5, the RD-optimizer performs two inde-
pendent dropping decisions for streaming video and conver-
sational video, as proposed in [23]. The surviving (not being
dropped) frames are stored in two independent classification
buffers. The buffer for conversational video is relatively small
in order to limit the forwarding delay experienced by these
frames as this type of video application requires low latency.
On the other hand, the classification buffer for streaming
video is larger due to the more relaxed requirement on the
delivery delay in this case. A scheduler is located behind the
two buffers, which dynamically assigns the shared resource
(forwarding data rate) to the two buffers by fetching video
packets from them and putting them into the shared outgo-
ing link buffer.

Scheduler

Streaming video 1 —§
Classification

Streaming video K —

. buffer 1 Outlink | [
Conversational ~ _| iy
video 1 E_O
Conversational | Classification s et
video N buffer 2 RD-optimizer

O RD-optimized frame dropping

FIGUre 5: Structure of the RD-optimizer for frame dropping of
streaming and conversational videos.

For streaming video, we opt to employ the cost function-
based dropping strategies introduced in Section 2.3. The
distortion-per-bit utility introduced in Section 3.2 is em-
ployed for the conversational video. For streaming video, in-
formation about future frames is taken into account. When
the dropping decision is made for conversational videos, we
can only compare the importance of the current frame with
previous frames. As the selected frame is first put into the
classification buffer, which we assume can be accessed by the
RD-optimizer, frame replacement for this buffer is enabled.
When new frames arrive at the node and the classification
buffer is full, frames in the buffer with lower utility than
the new incoming frame will be marked as dropping candi-
dates. If the buffer space released by dropping these frames
is enough to put in a new frame, they are physically dropped
from the temporal buffer. On the other hand, if the released
space is not enough to hold the new frame, it means the new
frame is either too big or is not important enough for the re-
construction quality of the corresponding stream. Then this
new frame is dropped and the marked frames in the buffer
are recovered. Please note that this approach is equivalent to
that taken in [20] for creating priorities among frames in a
transmission window at a streaming server.

4.2. Scheduling strategies

Two separate classification buffers are employed to limit
the additional delay experienced by the conversational video
streams, as explained earlier. Compressed video has a vari-
able bit-rate, and hence fixed resource assignment in terms
of forwarding data rate sometimes wastes resources and leads
to unnecessary frame dropping. With a dynamic resource as-
signment in place, the multiplexing of the multiple streams
decreases the variation of the bit-rate and provides for more
efficient resource utilization. Here, we propose two schemes
for dynamic assignment of the data rate on the outgoing link.

4.2.1.  Short-term mean-rate-based scheduling

Compressed video streams are typically VBR (variable bit
rate), so when the outgoing link provides a transmission rate
equal to the mean data rate of the incoming video stream,
most likely some packets will be dropped if there is only a
very small buffer at the node. But if we can perform the
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assignment adaptively following the variability of the
stream’s bit-rate, the node’s forwarding resources can be
more efficiently used. Without the knowledge of the sizes of
future frames for conversational video, we can only make an
estimate of the future bit rate, given the knowledge of the
incoming data rate history. Here, we present a straightfor-
ward way to account for this. We take F past frames from
each stream as an estimation window. The current resource
assignment is then calculated as follows:

K i—1
riy=> > R, (13)
k=1j=i-F-1
) N i—1
rey=> R}, (14)
n=1j=i—F-1
Sby = Rou- (15)
cv 15y
Sty = Rout — Sky. (16)

In the equations above, rf, and &y are the sum of bytes from
the previous F frames of K streaming videos and N conversa-
tional videos, respectively. Sk, and St represent the assigned
transmission rate to the two buffers. Ry is the total trans-
mission rate on the outgoing link and it is assumed to be con-
stant during the whole transmission. With the same formulae
(15) and (16), dynamic resource assignment for variable data
rate on the outgoing link rate can also be accommodated by
considering Royt to be a function of time.

4.2.2. Buffer fullness-based scheduling

Buffer fullness-based scheduling is an efficient way for the
scheduler to avoid buffer overflow. When a buffer is heav-
ily loaded, it means its incoming rate of traffic is bigger than
the assigned service rate and therefore new incoming frames
are likely to be dropped. In this case, a large portion of the
outlink rate should be assigned to this buffer. On the other
hand, when one of the two buffers is lightly loaded, it can still
hold some new incoming frames. Hence, more transmission
slots should be assigned to the other buffer then. Further-
more, when the two buffers have roughly the same fullness, it
is not efficient to assign the same amount of resource to each
of them, as their corresponding incoming rates may differ
significantly. This is because the two buffers serve two differ-
ent types of applications: streaming video and conversational
video that usually have different data rates. Hence, we assign
a weight to each buffer according to their incoming rates,
and distribute the forwarding resource among them based
on these weights.

The mean rates calculated with (13) and (14) represent
the most recent (short-term) rates feeding the two buffers.
Since they vary rapidly over time, employing them to deter-
mine the buffer weights may actually be inappropriate in this
case. In particular, they may overly influence the resource al-
location among the two buffers, thereby rendering their in-
stantaneous fullness less important. Therefore, in order to

avoid this effect we employ (17) and (18) instead which sup-
ply more stable cumulative mean rates.

The transmission rate assigned to the streaming videos
at frame i can then be calculated with (19), and the remain-
ing transmission capacity is assigned to the conversational
videos,

K i-1
y = S SR, (17)
K-(i-1) ;=5 !
N i-1
rby = %-Z > RY, (18)
N-(i=1) /=3
vl - BL
v = Rour 57— ——r. (19)

Here rf, and rly are, respectively, the mean incoming rates
of the streaming videos and the conversational videos from
the beginning until frame i — 1. B, and By denote, respec-
tively, the fullness in percentage of the two buffers at the time
instance when the ith frames of every stream arrive at the
node.

5. COMPLEXITY ANALYSIS

In this section, we discuss the computational complexity and
the storage requirements of the two RD-optimized frame
dropping strategies proposed in this paper for streaming and
conversational videos, respectively.

5.1. Memory cost

PRD/PRED are based on the static priority labels assigned to
every frame, which are included in the bitstream, so there is
no additional storage cost for PRD/PRED.

As shown in [19], the distortion matrix has (1/2)Ng *
(3+ Ng/(Ng + 1)) entries for a GOP consisting of N frames
with Np B-frames between two P- or I-frames. However, less
entries need to be stored in reality as in the cost function in
(2), we only consider the overall (cumulative) additional dis-
tortion caused by selecting a dropping choice for a current
frame. In particular, as explained in Section 2.3, there are
at most four possible dropping decisions that can be made
for each frame. Therefore, no more than four distortion val-
ues need to be associated to one video frame. Furthermore,
given that the additional distortion is zero when nothing is
dropped, there are only two remaining choices for which
distortion values need to be stored in the case of P- and B-
frames, and three such values in the case of I-frames. Hence,
the distortion matrix can be compacted into 2 Ng+1 entries
for each GOP.

When the hint track framework based on the DC? dis-
tortion chain model is employed, frame drop patterns are
constructed by considering every video frame independently
[21]. Therefore, only L entries for a video stream with L
frames need to be stored and sent as side information in the
case of hint track DC°. However, when higher-order distor-
tion chain models are used in the hint track framework, the
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TasLE 1: Construction of the test sequences.

Test sequence  Carphone Claire Foreman Grandma Miss America Mother Daughter Salesman Suzie
# of frames 380 270 400 300 150 320 220 150
SV_1.20 5 1,4 3 — 2 6 — —
SV.222 — 5,6 — 4 3 1 2 —
SV_.324 — 4 2 6 3 1,5 — —
SV_426 — 3 — 4 1 2,6 5 —
CVv_1 1 3 4 — — 5 — 2
CvV2 3 — 1 2,6 5 — — 4
Cv.3 — 2 — 3,6 — 1,5 4 —
CV_4 6 3 — — 2 4 1,5 —

memory requirements are more demanding. In particular,
the number of distortion values that need to be stored in-
creases polynomially with the order of the distortion chain.
For example, L (L—1)/2 entries need to be stored in the case
of hint track DC'.

The rate information that needs to be stored is the same
in both approaches and comprises the sizes of the video
frames, as explained in Sections 2.2 and 3.1. Hence, there
are L rate entries for L frames. Furthermore, for a given
drop pattern, the associated rate reduction represents the
sum of the sizes of the dropped frames in the case of the hint
track framework, while for the distortion matrix approach,
this quantity includes in addition the sizes of all dependent
frames.

5.2. Computational complexity

The cost function-based frame dropping strategy for stream-
ing video offers up to four possible dropping choices for ev-
ery frame, which leads to an upper bound of 4X drop patterns
for K incoming streaming videos. As we need to calculate the
distortion and rate saving for every drop pattern to select the
optimal one, the computational complexity is very high in
this case. However, in the cost function in (2) only one A(n)
is used at every frame slot. For this reason, minimizing J(n)
is the same as minimizing ]],f(n) separately for each stream.
Hence, we can rewrite the cost function as

K
argmin/(n) = » argmin/*(n),
& kgl & ? (20)

forp € P(n), forp € Pk(n)

so that the maximum number of possible drop patterns is re-
duced to 4*K. Including the computation of A(n), the total
calculation complexity is O(8Kx*L) for K videos, each of
length L frames. Please note that this is the worst case that in
practice is actually unattainable. That is because frame drop-
ping decisions are only made when the buffer fullness reaches
a predefined threshold. Furthermore, dropping decisions af-
fecting future frames reduce the number of prospective drop
patterns when the optimization is performed again, at the
next frame slot.

With the utility-based approach for conversational video,
the individual frames are considered independently for the
DC? model. Therefore, there are only two possible dropping
choices for every frame, to drop or not to drop and the result-
ing overall computational complexity is O(N* log (N)*L),
where N log (N) is the cost for sorting the importance at
every frame slot. In particular, with the classification buffer
in the hybrid scenario, assume that W frames are in the
temporal buffer and need to be sorted according to their
distortion-per-bit utility, the resulting computational com-
plexity is O((W + N)s log (W + N)*L) in this case.

6. SIMULATION RESULTS

In this section, we examine the performance of several frame
dropping strategies for streaming and conversational videos.
First, we show the improvement achieved by the proposed
RD-optimized frame dropping strategies introduced in Sec-
tions 2 and 3. Then, the performance of the frame dropping
optimizer from Section 4 that considers both streaming and
conversational videos is evaluated.

The videos employed in our simulation experiments are
encoded with the H.264 MPEG-4/AVC codec [24] with a
frame rate of 25 Hz. Long test sequences are generated by
concatenating several short test sequences. For streaming
video, each short sequence is appended at the tail of the re-
sulting long sequence in integer multiples of the associated
GOP length. This means that a number of frames at the end
of a short sequence may be left out if its length is not an inte-
ger multiple of the GOP size. In Table 1, the entries in the first
row under the names of the short sequences represent their
corresponding lengths in number of frames. For example, the
sequence Carphone is 380 frames long. Furthermore, the en-
tries in each of the following rows, when moving towards the
bottom of Table 1, represent the relative order of concatena-
tion of the short sequences, for each of the resulting long se-
quences. For example, the long sequence SV_1_20 represents
a concatenation of the short sequences: Claire, Miss America,
Foreman, Claire, Carphone, Mother&Daughter, in this order.
The test sequences are named SV_X_YY for streaming video,
where YY stands for the length of the GOP and X is the in-
dex of the video. The number of B-frames between two P- or
I-frames is set to be 1 in our experiments. For conversational
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TaBLE 2: Encoding characteristics of the test sequences.

Name SV_1 SV_2 M) SV 4 Sum/Avg
Rate (kbps) 92.44 67.99 69.55 50.60 280.58
Y-PSNR (dB) 38.63 38.32 38.10 38.24 38.33
Name CV_1 CV2 CV.3 CV_4 —
Rate (kbps) 122.07 119.06 67.81 116.42 425.36
Y-PSNR (dB)  37.57 37.26 37.36 37.69 37.47

videos, the name is CV_X. The encoding structure for con-
versational videos is IPPP... with an intraupdate interval of
M =18.

Table 2 summarizes the encoding (rate and quality) char-
acteristics of the eight test sequences employed in our experi-
ments. Furthermore, the entries in the last column in Table 2
represent, respectively, the sum of the mean rates and the av-
erage PSNR values for each of the two categories: streaming
video and conversational video. As shown in Section 5.1, one
GOP streaming video with Ng frames needs 2 Ng+1 and Ng
entries for the distortion and the rate information, respec-
tively. With the assumption that each entry needs two bytes,
each frame in SV_1 needs on average 6.1 bytes, which results
in 0.152 kbps overhead traffic. Compared to the bitrate of the
video stream at 92.44 kbps, this less than 0.2% overhead can
be ignored. For the conversational video, the number of dis-
tortion entries is even smaller and compared to the bitrate
of the video stream the overhead for the side information is
insignificant.

In order to avoid the prospective loss of the very first I-
frame for every test sequence, we assume that these frames
have been forwarded by the network node and that all drop-
ping decisions are made after the arrival of the second frame
of each stream. For this reason, we set 7.5 KB out of 16 KB
(total buffer size) as the initial buffer load in the case of
streaming video when the frame dropping process starts. For
conversational video, because of the strict delay constraint,
the buffer size is set to be 5KB. Again, the influence of the
first I-frames is ignored and the initial buffer load is set to
be 0 byte. The relation between the buffer size and the cor-
responding frame dropping performance and the decisions
have been investigated in [23].

In our simulations, we measure the performance of a
frame dropping strategy through the luminance (Y) PSNR
values of the reconstructed video frames averaged over all
videos. This quantity is computed as

K L 2
— 1 1 255
PSNR = E}; (L;_llOloglO(SEk(i)>), (21)

=1

where K is the number of videos, each of length L frames,
and MSEX (i) is the MSE distortion for frame i of video k.

6.1. Threshold settings for PRED

The implementation of PRED is straightforward and the only
important point here is to select the proper thresholds for

PSNR (dB)
&
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F1GURE 6: Setting of PRED thresholds, R represents the outlink rate
in kbps.

the random dropping of B-frames (T}) and P-frames (T3).
In our experiments, the four streaming videos introduced in
the previous section are employed as test videos. Note that
no conversational videos are employed in the experiments, as
no static priority labels can be established for them ahead of
time. The operation of PRED on such content reduces to ran-
dom dropping without priorities. In our experiments here,
we go through all the possible values for T; from 30% to
100% of the buffer fullness and T is always bigger than or
equal to T;.

In Figure 6, we show the average reconstruction quality
(Y-PSNR) of the four streaming videos as a function of T}
and T, at different outlink transmission rates, which are rep-
resented with different surfaces in the figure. In principle, the
higher the transmission rate, the higher the reconstruction
video quality. However, we can see that at low rates, the per-
formance surface is not flat and a big performance drop can
be observed when large values for T} and T are selected. The
performance at higher rates is more stable, as the observed
reduction in video quality due to an improper selection of
thresholds does not exceed 1~1.5dB here. The upper and
lower performance bounds of PRED are shown in Table 3,
which are the highest and lowest points on each surface in
Figure 6. The normalized rate is the percentage of available
transmission rate versus the mean rate of all users. We can see
from the table that a large performance gap exists between
the two bounds for the case when the transmission rate on
the forwarding link is much smaller than the mean aggregate
source rate of the videos. However, it is not easy in practice
always to select the optimal thresholds such that the upper
performance bound is achieved.

As described in Section 2.1, we can have different drop-
ping thresholds for P-frames depending on their position in
a GOP. For example, if we set the start point for dropping
frames to be at 50% of the buffer size, and then each succes-
sive dropping threshold to be associated with a further incre-
ment of 5%, we achieve the upper performance bound for
the case when only two thresholds are used. This means that
more accurate frame dropping decisions can be made, when
finer priority steps in terms of frame dropping are employed.
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TaBLE 3: Performance bounds of PRED.
Rate (kbps) 80 120 160 200 240 280 320 360
Normalized rate 0.285 0.428 0.570 0.713 0.855 0.998 1.140 1.283
PSNR,,.x (dB) 26.43 27.75 29.37 31.91 35.18 36.83 37.82 38.23
PSNR,in (dB) 14.03 16.67 21.68 28.17 32.77 34.73 36.50 37.47
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FIGURE 7: Performance of DM-based frame dropping, R represents the outlink rate in kbps.
6.2. Cost function-based RD-optimized Bmin larger than 0.5 is fine for linear interpolation and for

frame dropping

In the following, we examine the influence of A on the per-
formance of cost function-based frame dropping for the two
interpolation methods introduced in Section 2.3. In Figures
7(a) and 7(b), we show the results for the cost function-based
frame dropping strategy when using linear and quadratic in-
terpolations for the multiplier A, respectively. In all simula-
tions, we fix Bmax to be 100% of the buffer size.

Quadratic interpolation exhibits a degraded quality
when very high values for Buin are selected at very low out-
link rates, as shown in Figure 7(b). This is because quadratic
interpolation leads to aggressive frame dropping decisions
when the buffer fullness approaches Bmax and is far away
from Bpin. Setting Bmin to be bigger than 0.8 results in late
dropping of less important frames and which in turn causes
unnecessary loss of some frames with high importance. The
curves are smooth and flat when B, is smaller, as the drop-
ping decision is very moderate when the buffer is lightly
loaded. When linear interpolation is used, small values for
Bmin at high outlink rates lead to unnecessary dropping of
some frames with low importance. To summarize, selecting

quadratic interpolation, B, should be selected smaller than
0.6. By selecting Bmin between 0.5 and 0.6, we obtain good
results for both schemes.

6.3. Performance comparison among all frame
dropping schemes for streaming video

In this section, we compare the performance of the frame
dropping schemes for streaming video examined in this pa-
per, as a function of the forwarding data rate on the outgo-
ing link. In Figure 8, PRD denotes the priority-based ran-
dom frame dropping. PRED here fixes the thresholds T} and
T, to be 70% and 90%, respectively, of the buffer fullness,
while the PRED_UB curve in Figure 8 corresponds to the up-
per bound from Table 3. Our proposed RD-optimized cost
function-based dropping strategy that uses the distortion ma-
trix as the side information is shown as the CF_DM curve in
the figure, where Bpin is selected to be 0.6.

PRD performs the worst at all the rates, as can be
seen from Figure 8. PRED also shows a poor performance
at low link rates, while PRED_UB performs much better
by the proper selection of dropping thresholds. CF_DM
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outperforms all other schemes as a result of its accurate dis-
tortion estimation and dynamic adjustment of the dropping
aggressiveness according to the buffer fullness level.

6.4. Utility-based frame dropping for
conversational video

We compare our utility-based frame dropping for conversa-
tional video with the pure random dropping in a round robin
fashion. When a video packet arrives, if the outgoing link
buffer can still hold it, the packet is put into the buffer, other-
wise, this packet is simply dropped. For the utility-based ap-
proach, when N new incoming frames arrive at the node and
the buffer cannot hold all of them, they are sorted according
to their utility and put into the buffer one after another until
the buffer is full.

Table 4 shows the averaged PSNR values of the lumi-
nance (Y) component for the four test conversational videos
at different outgoing link rates. The mean score of the four
videos (boldfaced numbers) presents the overall reconstruc-
tion quality. The utility-based frame dropping outperforms
the random frame dropping in the range of middle-to-high
rates, because at very low rates, consecutively dropping of
a large number of frames leads to an inaccurate estimation
of distortion. However, if we look at the performance of
individual users, it is more fair by using the utility-based
approach (maximum difference from 0.9dB~5.5dB) com-
pared to the pure random dropping approach (maximum
difference from 3.8 dB~10 dB). Therefore, in addition to the
overall quality, our approach also shows a good characteristic
with respect to the fairness among users.

6.5. Joint optimization for streaming
and conversational videos

In this experiment, we compare our joint optimizer for
streaming and conversational videos with a reference scheme
that uses PRED/RR for these two types of video applications,
respectively. In particular, streaming video provides three
types of static priority labels, as explained earlier. Therefore,
in the reference scheme we can perform PRED on the stream-
ing videos by early dropping of B- or P-frames. On the other
hand, for conversational video, all the frames, except the very
first one, are P-frames and hence there is no static prior-
ity difference among them. Therefore, when multiple frames
arrive simultaneously at the network node, a simple round-
robin scheme (over the conversational videos to which these
frames belong) is employed to determine how many of them
can be placed into the corresponding buffer for conversa-
tional video.

Our proposed optimizer uses the distortion matrix for
streaming video and hint tracks for conversational video. In
the case of conversational video, we employ (11) and (12) to
estimate the overall distortion associated with the dropping
of a single frame, as explained in Section 3.1. In the equa-
tions, the equivalent intraupdate period M is set to be 18
frames and the attenuation factor r is set to be 0.997. Finally,
for comparison purposes we also consider the hypothetical

PSNR (dB)
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Total outgoing link capacity (kbps)
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FiGure 8: Performance comparison of different frame dropping
schemes for streaming video.

case when the distortion incurred by dropping frames can
also be precalculated for conversational video.

Figure 9 shows the performance improvement achieved
by the proposed RD-optimized strategy for dropping frames
from both streaming and conversational videos. Several in-
stances of the proposed optimizer are considered in Figure 9.
In particular, RD_FIX denotes the proposed optimizer with
fixed resource assignment of 40% to the streaming videos
and 60% to the conversational videos. Note that this assign-
ment corresponds to the overall average data rates for these
two types of videos. Furthermore, RD_BUF and RD_RAT in
the figure represent the buffer fullness-based and the short-
term mean-rate-based scheduling strategies introduced in
Section 4.2, respectively. In the case of RD_RAT, F in (13) and
(14) is set to be 10 frame slots in this experiment.

First, it can be seen that when the outgoing link rate is
larger than the mean Bpin, incoming rate (when the nor-
malized rate is larger than 1), the performances of the RD-
optimizer and PRED/RR are similar. However, there is still
a performance improvement of 1dB at 900kbps. This is
because even at this rate, frame dropping from the con-
versational videos need to occur in PRED/RR, whenever
the incoming data rate of the video streams peaks, as the
small buffer for conversational videos cannot hold too many
frames at once. The RD-optimizer deals more successfully
with this situation, since the optimized frame dropping has
more opportunities to drop the least important frames even
if they have been in the classification buffer waiting to be
scheduled. At the same time, the dynamic resource assign-
ment saves away some spare transmission slots from the
streaming videos, that can be appropriately reallocated to the
conversational videos afterwards, as explained in Section 4.2.
When the outgoing rate is smaller than the total traffic rate,
an improvement of around 3 dB is observed, as shown in
Figure 9.
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TasLE 4: Comparison of utility-based dropping and random dropping.

Outlink rate (kbps) 120 180 240 300 360 420 480 540
Normalized rate 0.282 0.423 0.564 0.705 0.846 0.987 1.128 1.270
Utility-based frame dropping
CV1(dB) 15.01 19.60 22.53 27.23 29.96 32.20 34.01 36.07
CV2(dB) 15.60 21.07 23.30 28.46 31.11 33.03 35.12 36.45
CV3(dB) 20.50 21.30 23.34 27.23 30.39 32.76 34.25 36.06
CV4(dB) 18.52 21.37 25.12 27.83 31.40 34.02 35.82 36.93
Mean(dB) 17.41 20.83 23.57 27.69 30.71 33.00 34.80 36.38
Random frame dropping
CV1(dB) 13.68 19.96 21.09 25.25 26.57 29.75 31.71 35.17
CV2(dB) 16.40 16.64 21.15 23.52 28.93 28.60 34.43 33.34
CV3(dB) 16.44 26.26 26.25 29.17 31.69 34.99 34.11 37.02
CV4(dB) 23.67 24.49 28.75 29.97 32.61 33.84 36.38 37.21
Mean(dB) 17.55 21.84 24.31 26.98 29.95 31.79 34.16 35.69
TaBLE 5: Assignment of forwarding date rate.

Total_rate (kbps) 200 300 400 500 600 700 800 900
Normalized rate 0.283 0.425 0.567 0.708 0.850 0.992 1.133 1.275
Assigned_rate_SV (kbps) 72.86 104.82 140.40 180.10 227.64 258.44 272.88 279.18
(%) (0.36) (0.35) (0.35) (0.36) (0.38) (0.37) (0.34) (0.31)
Assigned_rate_CV (kbps) 127.14 195.18 259.60 319.90 372.36 441.56 527.12 620.82
(%) (0.64) (0.65) (0.65) (0.64) (0.62) (0.63) (0.66) (0.69)

PSNR (dB)

24 . . . .
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FIGURE 9: Performance comparison of the proposed RD-optimizer
and PRED/RR for streaming and conversational videos.

Furthermore, at low rates, the performances of RD_FIX,
RD_BUF, and RD_RAT are almost the same. However, at high
rates the schemes with dynamic resource assignment per-

form much better, because reassigning some of the resources
from the streaming video buffer to the conversational video
buffer will not influence the quality of streaming video sig-
nificantly, as these resources are typically saved when the
low data rate sections of the incoming streams occur at the
node. But with fixed resource allocation, these unused re-
sources from the streaming video are wasted, which leads
to degraded performance at high outgoing link rates com-
pared to the case of dynamic resource assignment. Table 5
gives the assigned transmission resources to the streaming
videos and conversational videos when the buffer fullness-
based scheduling strategy is used. More transmission re-
sources are assigned to the conversational videos compared
to their mean bitrates. This is the consequence of the small
size of the classification buffer due to the tight delay con-
straint of the conversational videos.

Finally, precomputed hint tracks for conversational video
are not available in practice, but here we compute them any-
how in order to examine if the approximation from (11)
and (12) leads to accurate results. Our experiments show
that precomputed hint tracks (RD_BUF_M) for the conver-
sational videos and the approximation (RD_BUF) obtained
using (11) and (12) lead to almost identical performance re-
sults, as can be seen from Figure 9. The estimation bias from
the model in (11) and (12) does not affect the results, because
the relative values of the distortion-per-bit utility among the
individual frames are preserved in either case.



Wei Tu et al.

13

7. CONCLUSIONS

We have presented RD-optimized frame dropping strategies
for streaming and conversational video applications that can
be applied at active network nodes. The proposed techniques
employ side information about the packetized video content
that is extracted at compression time and that is sent along
the video streams. The only additional information that the
techniques need to operate at an active node is the fullness
of the outlink buffer and the mean traffic rate of the video
streams passing through the node. It is shown through sim-
ulations that a significant improvement in video quality is
achieved over previous approaches, by a judicious selection
of side information and optimized frame dropping strategy.
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