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Abstract—We consider the problem of rate-distortion (RD)
optimized media streaming in unstructured peer-to-peer (P2P)
overlay networks. We formulate the aforementioned problem
as a distributed rate allocation problem. To solve the problem
for all the participating peers in the overlay, we apply classical
decomposition techniques so that the network-wide utility of the
media distortion is minimized. Information exchange between the
peers is employed to ensure updates on the price of the locally
calculated rate allocation. Media packets are also piggybacked
with RD preambles that contain information regarding their
impact on the decoder distortion and their size. The benefit
of the aforementioned approach is that peers can convert the
calculated optimal rate allocation into simple forwarding or
dropping actions allowing thus a lightweight implementation.
Our simulation results indicate that significant quality benefits
can be achieved when the precise RD characteristics of a media
description are taken into account by the streaming algorithm.

Index Terms—Video streaming, peer-to-peer network, dis-
tributed rate allocation, rate-distortion model.

I. INTRODUCTION

Peer-to-peer (P2P) networks have emerged as an alternative
solution to IP multicast for point-to-multipoint media distribu-
tion [1], [2]. A P2P network is basically an overlay network
that consists of unicast sessions between the cooperating peers.
The main task of the peers is to act as proxies that cache a
portion of the received packets which are then forwarded to
other peers in the network. One of the main benefits of this
delivery model is that it offers a scalable way of distributing
on-demand or live video over a large number of receivers since
the capacity of the system grows with the number of peers.
Large-scale on-demand and live P2P multimedia streaming are
used with great success [3]. The performance characteristics
of these systems, depend primarily on the overlay construction
and maintenance algorithms [4], [5].

Probably the most important problem with P2P networks is
that the structure of the overlay is affected by the dynamic
behavior of the participating peers. Therefore, if the overlay
is organized as a tree, bandwidth fluctuations and peer failures
that reside close to the root of the tree may cause buffer
underflow at a large group of downstream nodes. To alleviate
these problems, mesh-based overlay protocols enable data
dissemination between peers with no explicit support from
a regular overlay structure [3]. With this approach, a peer
randomly selects a subset of target peers to push recently
received media packets to them while simultaneously receiving

Fig. 1. Simple scenario that indicates media distribution through an overlay.
The overlay node P4 must deliver the packets that maximize the quality both
at clients C1 and C2.

segments pushed packets from other peers. The gossiping
process that precedes the actual data delivery is responsible
for the highly robust data distribution. Nevertheless, it is not
straightforward to apply this delivery model for on-demand
streaming, since it may fail to achieve a timely delivery.
Another disadvantage is that by allowing gossiping between
neighboring peers, excessive data duplication could occur
which can be an important overhead for high-bandwidth video
streaming applications. Despite the wealth of research on P2P
media streaming, most of the existing works have focused on
the performance of different application-layer overlay delivery
models [2]. Although very important, the communication
model and the overlay maintenance algorithms have been
developed and studied independently from the actual nature
of the content that is being disseminated. More specifically,
there is a lack of a generic framework that considers the
impact of individual media packets on the quality of P2P
media streaming.

In this paper, we take one step in this direction by
adopting a distributed media flow optimization approach that
employs rate-distortion (RD) optimized packet scheduling
and streaming that is independent of the overlay structure.
RD-optimized streaming algorithms have been successfully
employed for end-to-end applications [7], and therefore they
provide another way of studying media distribution under a
more generalized communication model like a P2P overlay
network. In the majority of P2P media streaming works, the
level of abstraction at which media flows are modeled only



considers the QoS requirements like maximum acceptable
delay, minimum bandwidth, and minimum packet loss rate.
However, the precise impact that particular media packets
have on the quality of a decoded media stream has not been
taken into account. Media packets have different importance
with respect to their contribution to the rate-distortion (RD)
performance of a decoded media stream [7]. Only recently
there was some work towards this direction. For example
in [6] the authors considered also RD-optimized streaming in
a P2P network, but they focused on progressive and multiple
description coding. We believe that taking into account the
RD characteristics of media packets is an important concept
that allows the evaluation of different overlay topologies on
the quality of media streaming at a finer granularity.

II. SYSTEM MODEL

To avoid limiting our scheme in specific topologies, we
assume a mesh-based P2P delivery model where participating
peers form a randomly connected and directed mesh (i.e.,
unstructured overlay). The connection between two peers is
uni-directional which means that data is delivered from a
parent to a child peer. Each peer in the overlay has multiple
parents and multiple children. We assume that a peer can
obtain a list of the currently active peers from a central server.
Specifically, this bootstrapping server maintains a list of all
participating peers and provides a subset of participants to each
new peer. Each of the participating peers forwards a subset of
the media flows that are delivered through the same overlay.
Such an overlay topology can be modeled as a directed acyclic
graph G = {N, A} where N is the set of all overlay nodes
while A is the set of directed links connecting peers between
them. Let us also define as M the number of media flows
currently being delivered by the overlay. Also, let Am denote
the set of links between peers that are used for delivering
media flow m. Fig. 1 presents a simple topology with two
media flows being delivered through the overlay.

We consider media flows at the packet-level since different
media packets have different impact on the video quality
if they are not decoded. Let the index of a media packet
from media stream m be denoted as km. Similar to related
works, e.g. [7], the RD information associated with this packet
consists of its size R(km) and the importance of the packet for
the distortion of the reconstructed video stream that is denoted
as ∆D(km). In practice ∆D(km) is the total increase in the
mean square error (MSE) distortion that will affect the video
stream if the packet is not delivered to the receiver by its
prescribed deadline [7]. In the next section, we proceed with
the definition of the global rate allocation problem.

III. PROBLEM FORMULATION

The objective of the proposed approach is to calculate the
optimal bandwidth allocation for each media flow that is
forwarded by a peer [8]. This is a distributed rate allocation
problem that can be formulated as a constrained optimization
of a utility function. Before proceeding with the formal
definition of the aforementioned problem, we introduce the

necessary notation first. Let D
(i,j)
m (r(i,j)

m ) denote the distortion
associated with flow m ∈ µi when it is sent over the link
between peers i and j at a rate r

(i,j)
m . Let also µi denote the

group of incoming media flows at peer i. Then, the overall
distortion of all flows being delivered over the link (i, j) can
be expressed as

D(i,j) =
∑

m∈µi

γmD(i,j)
m (r(i,j)

m ), (1)

where γm is an importance factor that peer i can assign to me-
dia flow m when performing rate allocation over the outgoing
link (i, j). This weight factor expresses the importance of flow
m in terms of its delivery requirements. It indirectly affects
the rate that is allocated to that particular flow. In addition, let

r(i,j) =
∑

m∈µi

r(m)(i, j) (2)

denote the overall rate of the flows sent over link (i, j),
where r

(i,j)
m is the rate assigned to flow m ∈ µi. Using the

previous expression for the total distortion that is introduced
at a particular link between two peers, we can express the
average media distortion for all peers and all the flows that
are transported in the overlay network as follows:

DN =
∑

(i,j)∈A

D(i,j) (3)

We are interested in minimizing the network distortion DN

such that the available bandwidth R(i,j) on each link (i, j) ∈
A is not exceeded. Hence, the optimization problem under
consideration can be formally written as follows:

min DN (4)
s.t. r(i,j) ≤ R(i,j), ∀ (i, j) ∈ A

In the next section we focus on deriving a distributed solution
to the previous problem.

IV. DISTRIBUTED SOLUTION

A. Global Rate Allocation

Now the goal is to allow each peer to solve the optimization
problem with minimal coordination and message passing [9],
[10]. Since the RD curve is concave and twice differentiable
we can directly apply Lagrange duality for solving the previ-
ous constrained optimization problem. Furthermore, the utility
function is separable and a distributed solution to this problem
can be derived after the dual decomposition. We can apply
Lagrange duality to the constraint in (4), and produce the
partial Lagrangian as follows:

L = DN +
∑

(i,j)∈A

Λ(i,j)r
(i,j) (5)

In this equation Λ(i,j) > 0 is the Lagrange multiplier for link
(i, j) at peer i. The dual function is then defined as

g(Λ) = max
Λ>0

L(Λ), (6)



where Λ is the vector of the Lagrange multipliers at every
peer. Therefore, the dual problem is:

min g(Λ)
subject to Λ ≥ 0 (7)

Now the Lagrange multiplier expresses the ”price” of each
selected rate allocation. It is known that if Λ∗ is the optimal
solution for the dual problem, then r∗(i,j)(Λ∗) is the optimal
solution to the primal problem defined in (4). Furthermore,
this Lagrange multiplier decomposes the primal problem into
individual streaming rate allocation problems at every peer that
can be optimized individually. In particular, each peer i must
solve for the optimal rate allocation:

r∗(i,j) = arg min
{

D(i,j) + Λ(i,j)r
(i,j)

}
(8)

The convergence of the dual algorithm to optimal solution
has been proven for distributed flow control problems with a
convex utility function [11]. For calculating the Lagrange mul-
tiplier Λ(i,j) at every peer i, we employ a gradient method [12]
that updates Λ(i,j) according to

Λ(i,j) = max
{
0, Λ(i,j) − β

(
R(i,j) − r∗(i, j)

)}
(9)

every time after rate allocation is performed.

B. Multi-Flow Rate Allocation at a Single Peer

At the next level of the optimization, the optimal rate
allocation is calculated for the flows that are sharing a common
outbound link at a peer. This is done based on the impor-
tance of the forwarded media flows and reflected through the
gradient factor λm = δDm(R)/δR. This factor describes
the trade-off between data rate and signal distortion for a
media flow m. In particular, on the operational rate-distortion
curve Dm(R) for flow m we select the point where it holds
γmδDm(R)/δR ≈ Λ(i,j). The rate value associated with this
point on the curve is the optimal value that should be assigned
by peer i to the incoming flow j on the outgoing link (i, j).
Let this optimal value be denoted as r

∗(i,j)
m . Then, the overall

forwarding rate for the peer on the link introduced in (8) is
computed as ∑

m∈µi

r∗(i,j)m . (10)

Since a media flow is already assigned its outgoing rate
r∗m(i, j), a peer can easily allocate this rate to every individual
packet comprising that flow without any further optimization
steps. Recall from Section II that information on the rate-
distortion characterization is piggybacked with each individual
packet. Since each packet k is labeled with ∆D(km) and
∆R(km), a peer can easily calculate the per-packet gradient
∆D(km)/∆R(km). Furthermore, since the link Lagrange
multiplier Λ(i,j) is already available locally at each peer,
then packets with a gradient ∆D/∆R greater than Λ(i,j) are
forwarded. Otherwise, they are simply dropped from the local
buffer and they are not forwarded in the overlay. Therefore, the
problem for each peer is reduced to forwarding or dropping

Fig. 2. Each peer maintains multiple buffers for the incoming media flows.
Media packets are propagated in the overlay depending on the result of the
rate allocation algorithm.

the packets depending on their relative importance that is
expressed through their RD characteristics.

V. PERFORMANCE EVALUATION

In this section we present simulation results that compare
the performance of different packet scheduling algorithms that
are employed at the participating peers. We implemented the
proposed algorithms as part of the ns-2 packet-level simulator.
TCP with selective acknowledgments (SACK) is used for data
transfer between the peers of the overlay. We tested peers
with different upload capacities while we assumed that their
download speed is 8 times higher in order to represent residen-
tial users with asymmetric last mile access links. Regarding
the creation of the overlay network, the main principles we
explained in Section II. More specifically, each peer requests
from the central server a list of five peers from which it
can receive content. This list is populated so as to distribute
evenly the incoming requests. Therefore, no particular overlay
maintenance algorithm is employed.

We compare the performance of the proposed RaDiO
streaming algorithm, an earliest deadline first (EDF) scheduler,
and a greedy algorithm that applies no particular scheduling
technique (NO-SCHED). Instead of using actual video data,
we created artificial and pre-formatted media content [13].
This form of artificial data units resemble a sequence of video
frames that are temporally equidistant while they are also
characterized by dependencies between them. By adopting
this simulation approach the main advantage is that it allows
us to focus precisely on the properties of the the underlying
streaming algorithms which is the focus of this paper. Frames
are composed of data units that are organized hierarchically
depending on their importance for the receiver. All data units
have the same size, set to 200 bytes. The increase in quality
associated with a data unit is defined in units of quality. For
example units that correspond to the same Intra-coded frame
have an distortion value of 10. The quality by successful on-
time reception of the media units is measured at each peer.
Finally, the frame rate of the pre-formatted data is set to 30
frames per second while the initial pre-roll delay is 4 seconds.



A. Results

For our evaluation, we investigate the performance of the
proposed streaming system in a static network that consists
of 50 overlay nodes and two delivered flows. In Fig. 3(a),
we present the average quality that is measured over all the
clients in the overlay when one initial source (seed) of the
data is employed in the experiment. We assume that a portion
of these peers willingly forward/seed packets of a media flow.
This represents more realistic conditions since the number of
peers that altruistically contribute their resources is usually
low. The important observation from the results in this figure
is the ability of the RaDiO scheme to achieve improved quality
by utilizing a reduced portion of the available channel capacity.
The reason is of course that the RaDiO scheduler ensures
that the data packets that are needed for successful decoding
of subsequent packets are propagated throughout the overlay.
Of course with sufficient additional initial pre-roll delay and
increase in the available local memory resources at each peer,
the delivered quality can be improved.

In Fig. 3(b), we observe similar results for the same number
of overlay nodes but an increased number of peers that seed
after they have received parts of the media description (50% of
the population). As expected, the optimal quality is possible
with a lower requirement on the upload capacity of a peer
for all the scheduling schemes under test. Note that packets
are propagated in the overlay even if they arrive late for
their prescribed playback deadline since they may be used
by subsequent packets for decoding.

VI. CONCLUSIONS

In this paper we presented a framework for RD-optimized
media streaming in P2P overlay networks. Our scheme allows
peers to forward through the overlay network media packets
that have the highest impact on the quality of the reconstructed
media sequence. This is accomplished by an optimization
step that executes distributed rate allocation on a system-
wide scale. Subsequently, peers enforce the calculated optimal
rates by either forwarding or dropping packets. Our simulation
results indicate significant performance improvement over
techniques that do not consider the precise RD characteristics
of media packet during the delivery in a P2P overlay network.
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