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Modeling and Analysis of Distortion Caused by
Markov-Model Burst Packet Losses

in Video Transmission
Zhicheng Li, Jacob Chakareski, Xiaodun Niu, Yongjun Zhang, and Wanyi Gu

Abstract— This paper addresses the problem of distortion
modeling for video transmission over burst-loss channels char-
acterized by a finite-state Markov chain. Based on a detailed
analysis of the error propagation and the bursty losses, a
distortion trellis model is proposed, enabling us to estimate at the
both the frame level and sequence level the expected mean-square
error (MSE) distortion caused by Markov-model burst packet
losses. The model takes into account the temporal dependencies
induced by both the motion-compensated coding scheme and the
Markov-model channel losses. The model is applicable to most
block-based motion-compensated encoders, and most Markov-
model lossy channels as long as the loss pattern probabilities for
that channel is computable. Based on the study of the decaying
behavior of the error propagation, a sliding window algorithm is
developed to perform the MSE estimation with low complexity.
Simulation results show that the proposed models are accurate
for all tested average loss rates and average burst lengths. Based
on the experimental results, the proposed techniques are used to
analyze the impact of factors such as average burst length on
the average decoded video quality. The proposed model is further
extended to a more general form, and the modeled distortion is
compared with the data produced from realistic networks loss
traces. The experiment results demonstrate that the proposed
model is also accurate in estimating the expected distortion for
video transmission in real networks.

Index Terms— Burst-loss channel, distortion modeling, error
propagation, Markov-model loss process, video transmission.

I. INTRODUCTION

PACKET loss is a key factor degrading the reconstructed
video quality in multimedia streaming services such as

video conferencing and internet protocol television [1]. Mod-
eling the effect of packet loss on the end-to-end video quality
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is often critical for constructing joint source-channel rate-
distortion optimized schemes [2] and channel error control
techniques such as inter/intra mode switching [3] and forward
error correction (FEC) [4].

When modeling the packet-loss-induced distortion, the net-
work loss characteristics should be known a priori. Many
researchers have studied the actual network loss behavior,
and most of these studies agree that internet packet loss
often exhibits finite temporal dependency [5]. For example,
if current packet is lost, the next packet is also likely to
be lost. This leads to bursty packet losses [6], [7]. Still, to
the best of our knowledge, a complete mathematical model
relating the channel-induced distortion and the bursty packet
loss process has not been proposed yet. In particular, very little
analytical work has been done on 1) estimating the expected
distortion at the encoder given a burst-loss channel model
and 2) for such a channel and a given average loss rate,
how average burst length affects the average video quality at
the receiver. Answering these questions can help improving
existing error resilient techniques for video transmission over
burst-loss channels. The above problems highlight the need
for modeling the distortion caused by bursty packet losses.

So far, many distortion models for video transmission over
lossy channels have been proposed. However, in these existing
works, the packet loss events are modeled as independent
and identically distributed (i.i.d.) random variables with an
average loss rate that can be characterized by a Bernoulli-
model loss process. Examples are the well-known recursive
optimal per-pixel estimation method in [3] and its extensions
in [8] and [9], the macroblock (MB) level distortion model
in [10], the frame level channel-induced distortion models
in [11] and [12] and the group of picture (GOP) level distortion
model in [13]. These models mainly focus on characterizing
the specific coding behavior but do not pay further attention
to the loss behaviors of the underlying network. For example,
the model in [12] takes into account almost all popular coding
features, including intra prediction and deblocking filtering, in
order to accurately estimate the expected channel distortion
in terms of mean-square error (MSE). However, that work
assumes that the underlying network packet losses are i.i.d.
and therefore employs a Bernoulli model to this end. All the
above distortion models only consider the average loss rate
in the absence of another factor, i.e., the burst length, and
therefore are less efficient for the case of video transmission
over burst-loss channels.

1051-8215/$26.00 © 2009 IEEE
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The work in [14] shows that at the same average loss rate,
different loss patterns lead to different decoding distortion
values, which indicates that the burst length does matter.
Similarly, the distortion chain model in [15] predicts the
end-to-end distortion for arbitrary loss patterns based on a
set of distortion values measured a priori at the encoder for
a smaller set of loss pattern samples. However, both of these
works do not consider explicitly in their analysis the channel
correlation that exists between the individual packet losses
when computing the expected distortion at the receiver.

In this paper, we develop a mathematical framework denoted
as the distortion trellis model for estimating the expected MSE
distortion caused by bursty packet losses. The model aims to
answer satisfactorily the unresolved issues in video distortion
modeling raised above.

Before constructing our distortion model, we analyze first
the bursty loss process of the transmission channel. The work
in [5] validates that the finite-state Markov chain is more accu-
rate than the Bernoulli model to characterize the bursty packet
losses in the Internet. Many other works such as [16]–[19]
have shown that Markov-models are a good approximation of
the actual packet loss processes for both wired and wireless
channels. Therefore, in our subsequent analysis we assume that
the channel loss behavior can be characterized by a finite state
Markov-model. Without loss of generality and for simplicity,
we derive our distortion model for a two-state Markov loss
model, or the Gilbert model [20]. Note that the proposed
techniques are applicable to more general cases, i.e., they can
be easily extended to most finite state Markov loss models,
for example, the Markov-models studied in [17] and [21]. We
also extend the proposed distortion model to the case of an
(m+1)-state Markov loss model, which is studied in [17]. It is
worth noting that our objective is not to demonstrate specific
bursty loss models but rather to show how to model the video
decoding distortion given such a channel model.

The contributions of this paper can be summarized as
follows: 1) based on an in-depth analysis of both the error
propagation and the loss burstiness, a distortion trellis model is
established, enabling us to estimate at the encoder the expected
MSE distortion at both frame and sequence level given Gilbert
channel packet losses. The model is designed to be applicable
to most block-based motion-compensated encoders. The model
also allows for any temporal error concealment at the decoder;
2) based on the study of the decaying behavior of the error
propagation, a sliding window algorithm is developed to
compute the MSE distortion estimate with low complexity.
Using the sliding window algorithm, in most cases more than
90% of the computational burden can be saved compared to the
original distortion trellis model; 3) simulations are conducted
to validate our proposed model and algorithm. Based on
the simulation results, the proposed techniques are also used
to study the impact of bursty losses and factors such as
average burst length on the average decoded video quality; and
4) finally, we extend the aforementioned proposed model to
estimate the expected distortion given (m + 1)-state Markov
channel losses. Then, the modeled distortion is compared
with the data produced from realistic network packet loss
traces.
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Fig. 1. Gilbert channel model.

The paper is organized as follows. Section II covers the
related preliminaries and formulates the considered problem of
distortion modeling. In Section III, we presents the framework
of the proposed distortion trellis model, while in Section IV,
we describe the sliding window algorithm for calculating the
MSE distortion with low complexity. In Section V, we study
the performance of the proposed techniques through simula-
tion experiments. In Section VI, we extend the proposed model
to a more general form and compare the modeled distortion
with actual measured data in realistic networks. Section VII
concludes the paper and discusses prospective future work.

II. PRELIMINARIES

In this section, we provide the necessary preliminaries and
then formulate the problem under consideration. First, let us
state some general assumptions in this paper.

A. General Assumptions

We assume that at the encoder, a raw video sequence is
separated into GOPs and each GOP starts with an I-frame
followed by P-frames. Because the loss of a B-frame generally
does not interfere with other frames, we do not consider
B-frames in this paper. However, the proposed distortion
model can be easily extended to the case with B-frames. In
a P-frame, MB intra-refreshing can be used for either coding
efficiency or error resilience. Subsequently, we assume that
all the MBs in a frame are grouped into one slice and each
slice is coded into one network packet. Note that the results
in this paper can also be easily extended to the case when
one frame is separated into multiple slices.1 We assume that
the channel losses can be characterized via a Gilbert model,
and the channel drops or delivers the packet according to
the current channel state. At the decoder, we assume that
certain temporal error concealment strategy is applied when
a P-frame is lost. We assume that the correct reception and
decoding of the I-frame can always be guaranteed. Hence,
error propagation is only due to the loss of P-frames.

B. Channel Model

The presence of temporal memory and correlation in packet
losses in wired/wireless internet suggests the use of a Markov-
model to describe the long-term network packet loss. Here

1In the case when the content of one video frame is spread over multiple
network packets, the issue of burst loss may actually be less relevant. More
packets per frame will mean that burst losses will actually concentrate on
affecting individual frames, rather than spread across multiple frames, as
studied in [22].
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we use a two-state Markov-model, or the Gilbert model,
to emulate the loss process. Note again that our proposed
techniques can be extended to most finite state Markov-model
loss processes. Gilbert first proposed a two-state Markov-
model in his studies to characterize the bursty losses [20]. In
this model, the channel switches between the error state and
the error-free state. When the channel is in the error state, the
transmitted packet is always lost, while in the error-free state
the packet is always correctly received. Let State 0 and State 1
respectively denote the error-free and the error states. As
shown in Fig. 1, the parameter p is the transition probability
from State 0 to State 1, and q denotes the probability of the
opposite transition. Normally p + q < 1. If p + q = 1,
the Gilbert model reduces to a Bernoulli model. From the
definition, the stationary probability for State 0 and 1, denoted
by π0 and π1, can be computed as π0 = q/(p + q) and
π1 = p/(p + q), respectively. Then, the mean packet loss
ratio PLR equals π1, and the average burst length ABL is
given by 1/q. Thus, given PLR and ABL, the Gilbert model
is determined.

C. Problem Formulation

Let xi
n and yi

n denote the reconstructed pixel values for
frame n and pixel i at the encoder and at the decoder,
respectively. Then, the average MSE distortion for frame n
for channel realization c can be calculated as

dc
n = Ei

{(
xi

n − yi
n

)2
}

= 1

XY

XY∑
i=1

(
xi

n − yi
n

)2
(1)

where Ei{·} denotes the computation of the average MSE
over all pixels in frame n, and X and Y respectively denote
the frame width and height in pixels. Finally, the expected
distortion of frame n can be defined as

dn = Ec
{
dc

n

} = Ec

{
Ei

{(
xi

n − yi
n

)2
}}

(2)

where Ec{·} denotes the expectation taken over all possible
channel realizations. Note that the definition of dn is generic
and hence applies to most existing coding technologies and
channel realizations.

When calculating dn for a Bernoulli channel, an important
problem is to model the error propagation due to decoding
dependencies between temporally adjacent frames. In the case
of a Gilbert channel, the channel states, or the packet losses
also exhibit temporal dependencies. Hence, when calculating
dn for a Gilbert channel, the decoding dependencies and the
loss dependencies should both be considered. Therefore, it is
more complex to model dn for Gilbert losses than for Bernoulli
losses.

This paper mainly focuses on modeling dn for video trans-
mission over a Gilbert channel. In the following sections,
through analysis we present a mathematical model of the
distortion caused by Gilbert losses. We also develop a sliding
window algorithm allowing us to calculate the expected distor-
tion with low complexity. At the end, we extend the proposed
model to a more general form, for estimating the distortion
caused by (m + 1)-state Markov losses.
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Fig. 2. (a) Packet loss in a Bernoulli channel and (b) Packet loss in a Gilbert
channel. A white circle denotes a received packet while a black dot denotes
a lost packet.

III. PROPOSED DISTORTION TRELLIS MODEL

A. Framework of the Distortion Trellis Model

The problem we will address in this subsection is how to
perform the operation Ec{·} from (2) on frame n, in the case of
a Gilbert-model loss process. Then, we will derive the general
form of the proposed distortion trellis model.

In motion-compensated video coding, decoding error in a
previous frame may propagate into the current frame. In such
a case, the distortion of the current frame is affected not
only by the transmission state (“Lost” and “Received”) of
the current frame, but also by the transmission states of all
previous frames in the same GOP. In other words, it is affected
by the loss patterns of all transmitted frames in the same GOP
(including the current frame). For a frame sequence of length
n, the total number of all possible loss patterns is 2n . Thus,
theoretically, after decoding the nth frame in a GOP, the total
number of all possible distortion values of the nth frame at
the decoder is also 2n .

In a Bernoulli channel, a packet is either lost with a
probability PLR or received with a probability 1 − P L R,
independently of other loss events, as shown in Fig. 2(a).
Thus, when calculating dn , we do not need to calculate all
2n possible distortions. Instead, most existing models define
another two distortions d L

n and d R
n . The former is the expected

distortion given that frame n is lost, while the latter denotes
the expected distortion for the case when frame n is received.
Often, d L

n and d R
n are calculated in a recursive approach to

account for the error propagation. In such a case, we only
need to calculate two distortions for each frame. Finally, dn is
calculated as

dn = Ec
{
dc

n

} = P L R · d L
n + (1 − P L R) · d R

n . (3)

In a Gilbert channel, packet losses are no more i.i.d. but
exhibit dependencies over time. Note that correct reception
of the I-frame can always be guaranteed (as assumed in
Section II-A), hence we only consider P-frame losses. Ob-
served from the sender, the loss process of all P-frames in a
GOP is a two-state Markov process, as shown in Fig. 2(b).
In such a case, when calculating dn , we need to consider all
2n cases for frame n, which adumbrates a rather elaborate
calculation process.
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Fig. 3. Statistical dependencies {dr
n , n = 1, 2, . . .}.

To numerically analyze the loss dependencies, we first study
the statistic of the Gilbert-model loss process. Consider the
impairments for a transmitted packet (frame) sequence of
length n as an n-bit binary random variable Kn = {B j }n

j=1.
The random variable B j is over the binary alphabet {0, 1}.
B j = 1 indicates that the j th frame is lost. Then, the total
number of all possible values of Kn is 2n . Define moreover
an ordered set In = {kr

n}, r = 1, . . . , 2n , where kr
n is an n-bit

binary number and k1
n =

nbits︷ ︸︸ ︷
0 . . . 0, kr

n = 1 + kr−1
n , r = 2, . . . , 2n .

Furthermore, we assume that the r th value of Kn is kr
n , the r th

element in In . Note that in our analysis this is an important
assumption, based on which we can recursively derive In from
In−1 in a simple way. Hereafter, we refer to kr

n as the r th loss
pattern of a frame sequence of length n.

Let P(kr
n) denote the probability that loss pattern kr

n occurs,
i.e., P(kr

n) = Pr (Kn = kr
n). Note that different loss patterns

lead to different distortion values. Let dr
n be the decoder

distortion of the nth frame in a frame sequence of length n
under loss pattern kr

n . Then, dr
n can be defined as

dr
n = Ei

{(
xi

n − yi
n,r

)2
}

(4)

where yi
n,r denotes the decoder reconstructed value of pixel i

in the nth frame for an n-length frame sequence under loss
pattern kr

n . Thus, from the definition of dr
n , we can obtain an

important probability relation as follows: Pr (at the decoder
the distortion of frame n is dr

n ) = P(kr
n).2

In essence, the definitions of kr
n and dr

n lay a foundation for
the proposed model. First, they establish the relation between
various loss patterns and their corresponding decoding dis-
tortions. Second, they enable us to recursively analyze the
loss dependencies and decoding dependencies. Third, they
supply the knowledge and means to develop a low-complexity
algorithm for distortion estimation. The second and third items
will be discussed later. Fig. 3 shows the statistical depen-
dencies between the elements of the set {dr

n , n = 1, 2, . . .}.
Furthermore, since the packet loss dependencies of the channel
loss process and the distortion/decoding dependencies of the

2Note that for different r and r ′, maybe the distortion value dr
n could be

nearly equal to dr ′
n . However, from the definition of dr

n , the probabilities
Pr(distortion = dr

n) and Pr(distortion = dr ′
n ) cannot be the same, because we

are dealing with distinct loss patterns. In this sense, we believe the probability
equation Pr(at the decoder the distortion of frame n is dr

n ) = P(kr
n) is true.

video frames can both be depicted by a trellis graph, as
illustrated in Figs. 2(b) and 3, respectively, we refer to the
proposed distortion estimation method as the distortion trellis
model.

Then, we can calculate the expected distortion of frame n
by taking an expectation over all possible decoder distortion
values for frame n

dn = Ec{dc
n}

=
2n∑

r=1

dr
n · Pr

(
distortion of frame n is dr

n

)

=
2n∑

r=1

dr
n · P

(
kr

n

)
, n = 1, 2, . . . (5)

The formula in (5) is the general form of the proposed
distortion trellis model. From (5), it is clear that the computa-
tion of dn necessitates knowledge of both dr

n and P
(
kr

n

)
, r =

1, . . . , 2n . We must emphasize that (5) is applicable to most
channel models and hence is general. For different channel
models, the only difference in using the distortion trellis model
is the computation of P

(
kr

n

)
, because generally the same

loss pattern occurs with different probabilities in different
channels. On the other hand, dr

n is uncorrelated with a specific
channel model but only depends on the video sequence. That
is why the distortion trellis model can be easily extended
to arbitrary finite-state Markov loss model. In a Bernoulli
channel, (5) can be reduced to (3), which will be discussed
in the following sections. In a Gilbert channel, P

(
kr

n

)
can be

derived recursively, as follows. From the definition of {kr
n}, it

is clear that given P
(
kt

n−1

)
, t = 1, . . . , 2n−1, the loss pattern

probabilities can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

P
(

k4r−3
n

)
= (1 − p) · P

(
k2r−1

n−1

)
P
(

k4r−2
n

)
= p · P

(
k2r−1

n−1

)
P
(

k4r−1
n

)
= q · P

(
k2r

n−1

)
P
(

k4r
n

)
= (1 − q) · P

(
k2r

n−1

)
, r = 1, . . . , 2n−2.

(6)

The computation of the loss pattern probabilities is illus-
trated in Fig. 4, which reveals the loss dependencies for the
Gilbert channel and is also in a trellis shape. The remaining
task in this section is how to calculate dr

n .

B. Recursive Computation of dr
n

In this section, we aim to establish a generic distortion
model for calculating dr

n that is able to capture the effect of er-
ror propagation and is applicable to most block-based motion-
compensated coding schemes. Related models are proposed
in [3], [11], [12], where some recursive distortion models are
developed. However, they are methods for calculating d L

n and
d R

n (as mentioned in Section III-A) rather than dr
n . On the

other hand, most of them are overly complex for our objective.
Hence, using the recursion-based analytic methodology, we
aim to obtain a more explicit and more generic model. Recall
that our purpose is to calculate dn by (5) and then to analyze
the impact of bursty losses on average video quality. Therefore,
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we attempt to establish a distortion model that can well
account for bursty losses and is compatible with our distortion
trellis framework. Additionally, we would like the model to
be convenient for deriving a low-complexity algorithm for
distortion estimation.

From the definition of kr
n , it can be observed that for loss

pattern k2r−1
n , the nth packet is received, while for loss pattern

k2r
n , the nth packet is lost, where r = 1, . . . , 2n−1. Thus, given

that the loss pattern of the previous n−1 frames is kr
n−1, d2r−1

n
is the frame-average distortion if the nth frame is received
while d2r

n denotes the same quantity for the case when the nth
frame is lost. Next, we separately consider computing d2r−1

n
and d2r

n .
1) Computation of d2r

n : We first develop the recursion
model for computing d2r

n . In our assumption, if a frame is
lost, all MBs in this frame are recovered using some temporal
error concealment strategy, regardless whether they are coded
in inter or intra mode. Let fl(i) denote the index of the lth
pixel in frame n−1 that is used to estimate pixel i in frame n.
Then the final concealed value of yi

n,2r can be expressed

as �l

(
y fl (i)

n−1,r

)
, where �l represents the pixel operation on

y fl (i)
n−1,r for all l used in obtaining the final concealed value

of yi
n,2r . For example, in video coders using sub-pixel motion

estimation, �l denotes the interpolation operation. For another
example, in video coders using deblocking filters, �l denotes
the deblocking operation. For previous frame copy conceal-
ment, �l

(
y fl (i)

n−1,r

)
= yi

n−1,r . �l could also denote weighted
prediction and so on. It is a reasonable assumption that �l is a
linear pixel filtering operation and can be considered the same
for different frames. Then, d2r

n can be derived as follows:

d2r
n = Ei

{(
xi

n − �l

(
y fl (i)

n−1,r

))2
}

= Ei

{(
xi

n − �l

(
x fl (i)

n−1

)
+ �l

(
x fl (i)

n−1

)
− �l

(
y fl (i)

n−1,r

))2
}

= Ei

{(
xi

n − �l

(
x fl (i)

n−1

))2
}

+ Ei

{(
�l

(
x fl (i)

n−1

)
− �l

(
y fl (i)

n−1,r

))2
}

= ECDn

+ Ei

{(
�l

(
x fl (i)

n−1 − y fl (i)
n−1,r

))2
}

, r = 1, . . . , 2n−1

(7)

where ECDn = Ei

{(
xi

n − �l

(
x fl (i)

n−1

))2
}

. Note that ECDn is

the average error concealment distortion of frame n. Given
specific coding scheme and error concealment strategy, �l

and fl(i) are determined and then ECDn is determined. It
is worth noting that ECDn is the new added distortion if

frame n is lost. Ei

{(
�l

(
x fl (i)

n−1 − y fl (i)
n−1,r

))2
}

is the temporal

propagation distortion from frame n − 1. Note that the third
identity in (7) is based on the assumption that the concealment
error xi

n − �l

(
x fl (i)

n−1

)
and the propagation error �l

(
x fl (i)

n−1

)
−

�l

(
y fl (i)

n−1,r

)
are uncorrelated [11], [12]. The fourth identity is
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Fig. 4. Computation of the loss pattern probabilities {P(kr
n), n = 1, 2, . . .}.

based on the assumption that �l is linear, and we believe that
this is reasonable in most cases.

Furthermore, as is well known in the video coding commu-
nity, that when the error in a previous frame propagates into
the current frame, it is typically attenuated by the adoption of
some coding schemes such as deblocking filtering and sub-
pixel motion estimation [23], whose effect can be regarded
as a spatial filter or more precisely as an error attenuator. In
other words, the temporal propagation distortion in the current
frame can be considered as the filtered output of the distor-
tion in a previous frame. Following this reasoning, the term

Ei

{(
�l

(
x fl (i)

n−1 − y fl (i)
n−1,r

))2
}

in (7) can be approximated as

Ei

{(
�l

(
x fl (i)

n−1 − y fl (i)
n−1,r

))2
}

= u · Ei

{(
xi

n−1 − yi
n−1,r

)2
}

= u · dr
n−1. (8)

Then (7) can be rewritten as

d2r
n = ECDn + u · dr

n−1, r = 1, . . . , 2n−1 (9)

where u is the error attenuation factor for a lost frame.
Then, d2r

n can be estimated as a sum of two separate parts.
One part is the average concealment distortion ECDn , which
can be directly calculated at the encoder just after encoding
frame n. A related problem here is that some error-resilient
video communication techniques, such as joint source-channel
rate-distortion optimized schemes, operate before encoding the
current frame. Hence, at that moment, xi

n is not available.
Several strategies have been proposed to solve this problem.
For example, in [11], ECDn is estimated by the product of
the MSE between the original frames n and n − 1 by a
factor α and then the estimated ECDn are used in an adaptive
mode selection and a rate control scheme. Nevertheless, in
this paper we mainly aim to propose and validate a distortion
model. Therefore, when we evaluate the proposed model via
simulations in Section V, we measure the ECDn by running
the decoder error concealment algorithm on xi

n . In other
words, ECDn is regarded as precalculated data. Still, using the
proposed model in some error-resilient techniques may require
estimating ECDn which in turn may affect the accuracy of the
proposed model.

The second term in (9) denotes the temporal propagation
distortion and indicates the relation between d2r

n and dr
n−1. In

particular, this term reveals the numerical relationship between
the distortions of frame n −1 and n when frame n is lost. For
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a practical application, the parameter u has to be estimated
for the specific video coder and content that are employed.
The estimation method is important for the performance of
the proposed model. In this paper, we use simulation data to
estimate u, which will be described in detail in Section V.

2) Computation of d2r−1
n : We now turn to computing

d2r−1
n . As is well known, a received frame may still contain

distortion due to error propagation from an impaired previous
frame. In such a case, the coding modes should be considered
because the distortions in received inter-coded MBs and intra-
coded MBs are different. We first consider the case when all
MBs are coded in inter mode, and then we will extend our
result to the more general case of having mixed MB coding
modes in a frame. Let gl(i) denote the index of the lth pixel
in frame n − 1 that is used to estimate pixel i in frame n.
Note that gl(i) may differ from fl(i). Then, at the encoder,
the predicted value of xi

n can be expressed as �l

(
xgl (i)

n−1

)
,

where �l represents the pixel operation on all xgl (i)
n−1 used for

obtaining the predicted value of xi
n , such as when performing

interpolation or deblocking filtering. We also assume that �l

is linear and has the same form for different frames. Similarly,
at the decoder, the predicted value of yi

n,2r−1 is �l

(
ygl (i)

n−1,r

)
.

Then, d2r−1
n can be derived as follows:

d2r−1
n = Ei

{(
�l

(
xgl (i)

n−1

)
− �l

(
ygl (i)

n−1,r

))2
}

= Ei

{(
�l

(
xgl (i)

n−1 − ygl (i)
n−1,r

))2
}

, r = 1, . . . , 2n−1.

(10)

As in the case of d2r
n , the operator �l can be regarded

as a spatial filter that will attenuate the error propaga-
tion. Hence, we similarly employ v0 · dr

n−1 to approximate

Ei

{(
�l

(
xgl (i)

n−1 − ygl (i)
n−1,r

))2
}

and therefore we can rewrite

(10) as
d2r−1

n = v0 · dr
n−1, r = 1, . . . , 2n−1 (11)

where v0 is the error attenuation factor for a received frame,
in which all MBs are coded in inter mode.

The development of (11) assumes that all MBs in a P-frame
are coded in an inter mode. However, a P-frame often contains
intra-coded MBs, which will effectively restrain the error prop-
agation [3], [12]. For example, if constrained intra prediction is
used, the distortion in received intra-coded MBs equals to zero.
Regardless whether constrained intra prediction is employed
or not, the effect of macroblock intra refreshing can also be
considered as an attenuator that attenuates the error signal from
an impaired previous frame [23]. Therefore, to take this into
account we introduce a new constant λ and rewrite (11) as

d2r−1
n = v · dr

n−1, r = 1, . . . , 2n−1 (12)

where v = λ · v0.
Note that (12) is also applicable to the case when uncon-

strained intra prediction is employed, such as in an H.264
codec [24], mainly because the error in a received intra-coded
MB, if any, also comes from an impaired previous frame,
and is also attenuated by the intra refreshing. In essence, (12)

reveals the numerical relation between the distortions of frame
n − 1 and n when frame n is received. Finally, as in the case
of u from the previous section, the parameter v needs to be
estimated, which is discussed in Section V.

So far, an explicit and generic distortion model is established
by the two recursion formulae in (9) and (12). This model is
suitable for most motion-compensated coding schemes. Note
that although we have assumed in Section II-A that one
transmission packet contains exactly one frame, the distortion
model in (9) and (12) is also applicable to the case when one
frame is packetized into multiple packets. Moreover, the model
enables us to calculate dr

n for all 2n lost patterns, and therefore
can be used in (5) to calculate the expected distortion dn .

C. Recursive Computation of dn and Further Analysis

Based on (9) and (12), we can recursively obtain the
distortion dr

n for r = 1, . . . , 2n . The loss pattern probability
P(kr

n) can be recursively calculated with (6). Then, using (5),
the expected distortion dn for Gilbert channel packet losses
can be estimated as

dn =
2n∑

t=1

dt
n · P

(
kt

n

)

=
2n−2∑
r=1

[
P
(

k4r−3
n

)
d4r−3

n + P
(

k4r−2
n

)
d4r−2

n

+P
(

k4r−1
n

)
d4r−1

n + P
(

k4r
n

)
d4r

n

]
(13)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

P
(

k4r−3
n

)
= (1 − p) P

(
k2r−1

n−1

)
, d4r−3

n = v · d2r−1
n−1

P
(

k4r−2
n

)
= p · P

(
k2r−1

n−1

)
, d4r−2

n = ECDn + u · d2r−1
n−1

P
(

k4r−1
n

)
= q · P

(
k2r

n−1

)
, d4r−1

n = v · d2r
n−1

P
(

k4r
n

)
= (1 − q) P

(
k2r

n−1

)
, d4r

n = ECDn + u · d2r
n−1

r = 1, . . . , 2n−2.
(14)

It can be seen that dn depends on u, v, ECDn, p, and q. The
former three parameters depend on the video sequence. The
parameter pair p and q is used to describe the Gilbert channel
and is equivalent to another parameter pair PLR and ABL,
which are more commonly used. Then, for video transmission
over a Gilbert channel, given the average packet loss ratio PLR,
the average burst length ABL, the initial probability distribution
P(k1

1) and P(k2
1), and the initial distortion distribution d1

1 and
d2

1 , the expected distortion of each frame in a GOP can be
estimated in a frame recursion approach using (13) and (14).

Next, the cumulative expected distortion over the entire
GOP DN can be defined as DN = ∑N

n=1 dn . Note that the
sequence level expected distortion DN can be used as an
objective metric to assess the average video quality. Using the
proposed method, DN can be directly derived as explained
in the following. Recall first that a GOP consists of one
I-frame and N P-frames and that we assume that I-frames
are never lost. Then, we define D(kr

n) as the total distortion
of a sequence from the first P-frame to the nth P-frame, for a
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given loss pattern kr
n . Hence, DN can be estimated by taking

an expectation over all possible loss patterns as follows:

DN =
2N∑

r=1

D
(
kr

N

) · P
(
K r

N

)
. (15)

With the help of the distortion model in (9) and (12), D(kr
n)

can be calculated as follows:{
D
(
k2r

n

) = D
(
kr

n−1

)+ d2r
n

D
(
k2r−1

n

) = D
(
kr

n−1

)+ d2r−1
n , for r = 1, 2, . . . , 2N−1

(16)
where P(kr

N ) in (5) and d2r
n , d2r−1

n in (16) can be calculated
using (14). Then, using (16), the total distortion for an arbitrary
loss pattern can be calculated. The formula in (5) provides a
way to estimate and analyze the impact of the bursty loss
behavior on the average video quality.

Based on the distortion trellis model, let us go back to
discuss the case of a Bernoulli channel. We know that the
Bernoulli channel is a special case of a Gilbert channel when
p + q = 1. Substituting p = PLR and q = 1 − PLR
into (14), we have P

(
k2r−1

n

) = (1 − PLR) · P
(
kr

n−1

)
and

P
(
k2r

n

) = PLR · P
(
kr

n−1

)
. Then with the help of (9) and (12),

(13) can be rewritten as

dn,Bernoulli =
2n−1∑
r=1

[
P
(

k2r−1
n

)
d2r−1

n + P
(

k2r
n

)
d2r

n

]
= (1 − PLR)d R

n + PLR · d L
n (17)

where

d R
n =

2n−1∑
r=1

P
(
kr

n−1

)
d2r−1

n =
2n−1∑
r=1

P
(
kr

n−1

)
v · dr

n−1

= v · dn−1,Bernoulli, (18)

d L
n =

2n−1∑
r=1

P
(
kr

n−1

)
d2r

n =
2n−1∑
r=1

P
(
kr

n−1

) (
ECDn + u · dr

n−1

)
= ECDn + u · dn−1,Bernoulli. (19)

From (17), we can see that when p + q = 1, the Gilbert
channel reduces to a Bernoulli channel and the proposed
distortion trellis model in (5) reduces to the traditional model
in (3), as mentioned in Section III-A. In general, the distortion
trellis is applicable to an arbitrary channel model, as long
as the loss pattern probability P(kr

n) is computable for that
channel.

Using the distortion trellis model, one can estimate the ex-
pected distortion dn caused by Markov-model bursty losses, at
the encoder/sender. However, the model often fails to compute
dn within acceptable time. In particular, when calculating dn ,
one needs to compute the terms dr

n and P(kr
n) associated with

r = 1, . . . , 2n . Consequently, the complexity for calculating dn

is O(2n) while that for calculating DN is O(N2n). Thus, it is
desirable to develop a low-complexity algorithm for distortion
estimation.

IV. SLIDING WINDOW ALGORITHM

The distortion trellis model assumes that the loss pattern of
all previous frames in the same GOP could affect the distortion
of the current frame, mainly because of the error propagation
effect. However, the propagation of error typically decays
in magnitude over the subsequent frames due to the intra
refreshing and the spatial filtering [22], [24]. In fact, when
the distance between a previous frame and the current frame is
big enough, the influence of an error in that previous frame on
the current frame can be ignored. Therefore, it is a reasonable
assumption that the distortion of frame n is independent of
the transmission state of frame m, when |m − n| > W , where
W is an integer constant. Based on the assumption, we now
propose a sliding window (SW) algorithm to calculate dn for
n > W with low complexity. When n ≤ W , we employ the
same approach described in Section III to calculate dn .

The basic methodology of the SW algorithm is that when
calculating dn for n > W , we only consider the loss patterns of
the previous W frames rather than all previous frames. Assume
that frame n, for n > W , has a corresponding sequence
segment, or a window W , comprising frames n − W + 1 to
n, which loss patterns only are considered for calculating the
corresponding distortion. In particular, we assume that the first
frame in the segment n − W + 1 is either received with prob-
ability P(k1

1) or lost with probability P(k2
1), independently of

any frame prior to it, and the corresponding distortion is d1
1

and d2
1 , respectively. The loss process of the frames within

W is also considered to be a two-state Markov process, or
a Gilbert process. In such a case, there are in total 2W loss
patterns that should be considered for each frame n > W .
That means when calculating dn using (5), we only need to
calculate 2W corresponding decoder distortion values rather
than 2n . The window slides ahead one frame at a time, and
the expected distortion dn for all n > W can be obtained in
this manner. It can be seen that, instead of considering the
loss process of all P-frames in a GOP as Markovian, the SW
algorithm limits the Markov loss process within each window
W and ignores the frames outside the window. As a result, the
SW algorithm always underestimates the expected distortion.
The overall SW algorithm is summarized in Algorithm 1.

The window length W is an important parameter of the SW
algorithm. Generally, a big W leads to more accurate predic-
tion but increases the algorithm’s complexity. An appropriate
W implies that the tradeoff between the estimation accuracy
and the computation complexity is achieved. From (9) and
(12), we can see that parameters u and v determine the
distortion fading speed over the subsequent frames, which can
be considered when selecting the appropriate W . Generally, a
small to middle u and v indicate a quick fading, in which case
a relatively small W may be acceptable.

The SW algorithm provides an efficient way to calculate dn .
To obtain dn for n > W based on the SW algorithm, we need
only to compute the quantities dr

n and P(kr
n) associated with

r = 1, . . . , 2W . Together with (15) and (16), the GOP level
expected distortion can also be calculated. In this paper, we
find that a window size W ≤ 16 is sufficient to achieve ac-
ceptable prediction accuracy for most examined cases. Hence,
the computation cost is reduced significantly compared to the
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Algorithm 1 SW for calculating dn for n = 1, . . . , N
1: Input: PLR, ABL, u, v, W, N , {ECDn, n = 1, . . . , N };
2: Output: the expected distortion dn for n = 1, . . . , N ;
3: Procedure:
4: Initialization: d1

1 = 0, d2
1 = ECD1, P(k1

1) = 1 − PLR,
P(k2

1) = PLR, p = PLR/(ABL(1 − PLR)), q = 1/ABL;
5: for n = 1 to N do
6: if n ≤ W then
6: Compute dn using (13) and (14), note that when

n = W, P(k j
W ), j = 1, . . . , 2W are obtained;

7: else
7: Reset the initial distortion values: d1

1 = 0,
d2

1 = ECDn−W+1;
8: for i = 2 to W do
9: for j = 1 to 2i−1 do

9: d2 j−1
i = vd j

i−1, d2 j
i = ECDn−W+i + ud j

i−1;
10: end for
11: end for
11: After the two for loops, d j

W , j = 1, . . . , 2W

are obtained, then the output is
dn =∑2W

j=1 P
(

k j
W

)
d j

W ;
12: end if
13: end for

original distortion trellis model. For example, when we use the
SW algorithm with W = 15 to calculate dn, n = 1, . . . , N for
a GOP with N = 36, the number of iteration cycles that need
to be run reduces from

∑36
n=1 2n to

∑15
n=1 2n + (36−15) ·215.

This translates to a more than 90% reduction in computational
complexity.

V. SIMULATION RESULTS

A. Simulation Setup

The H.264 reference software encoder JM12.2 [25] with the
baseline profile is used to encode the test sequences used in our
experiments. Four QCIF sequences are used, the low-motion
sequence News, the moderate motion sequence Foreman, and
the high motion sequences Stefan and Football. The former
three are coded at 15 frames/s, while the sequence Football is
coded at 30 frames/s. All sequences are coded with a constant
QP = 28. The first frame is coded as an I-frame, while
the remaining frames are coded as P-frames with a forced
intra refresh rate of 9/99 (every nine frames a row of MBs
is intra refreshed in a round-robin fashion). Intra prediction
and 1/4-pel motion estimation are enabled. Inter pixels are
not used for intra prediction. The search range is set to 16.
The reference frame is set to be the previous frame. We use
one slice per frame and one frame per packet. At the decoder,
the simple frame-copy scheme is used for concealment, so
that ECDn for each sequence can be easily premeasured using
ECDn = (1/XY )

∑XY
i=1

(
xi

n − xi
n−1

)
, where X and Y once

again respectively denote the width and the height of frame n
in pixels. The concealment frame is displayed instead of the
missing frame, and is also stored in the reference frame buffer
for decoding subsequent frames.

To validate the accuracy of the proposed estimation methods
and to study the impact of the Gilbert losses on the average
video quality, extensive simulations are conducted. The aver-
age loss rates in our simulations range from 3 to 10%, and the
average burst length is set to 1, 1.5, 2, . . . , 5. Each pair of PLR
and ABL values is translated into the corresponding p and q
values for the Gilbert channel. Then, with each pair of p and q
we simulate a Gilbert packet loss process and generate 50 000
to 90 000 loss traces with random loss patterns. For each loss
trace, we decode the video and calculate the MSE distortion
between each transmitted and received P-frame. The expected
distortion for each frame is then obtained by averaging the
distortion of that frame over all traces. The GOP size for each
sequence used is 390 for Foreman, 240 for Football, and 200
for both News and Stefan.

To estimate the model parameters u and v , we use the
least square fitting method based on training data. In this
estimation, we apply least square fitting to the proposed model
for Bernoulli losses in (17) rather than that for Gilbert losses
in (13), because (17) is much simpler. Remember that the
parameters u and v only depend on the sequence/content, and
are not correlated with the transmission channel. Therefore,
although we apply least square fitting to (17) to determine u
and v , the so-derived parameters are also accurate for (13)
and will fit the simulation data well. For instance, when
we determine the values of u and v for QCIF Foreman,
we first simulate a Bernoulli channel and generate 50 000
loss traces, so that the measured distortion dn,measured can be
obtained by averaging the MSE distortion of frame n over
all traces. Then, the parameters u and v are determined by
minimizing

∑
n

(
dn,measured − dn,Bernoulli

)2, where dn,Bernoulli
is the estimated distortion of frame n and can be replaced by
(13). Note that in the estimation, the used sequence contains
390 frames for Foreman, 240 frames for Football, and 200
frames for both News and Stefan. In such a case, although
in the following experiments we will use different GOP sizes
sometimes, for each tested sequence we still use one pair of
parameters u and v , which will be validated rather accurate.

B. Simulation Results and Discussion

In the first set of experiments, the measured expected
distortion, the estimate using the original distortion trellis
model, and the estimate based on the SW algorithm are all
compared. Fig. 5(a) plots the average expected distortion for
PLR values from 3 to 10% at ABL = 2. Due to the high
complexity of the original distortion trellis model, which is
used as the performance benchmark here, we test the model
over short sequence segments in this simulation. Particularly,
we encode 20-frame segment starting at different positions
in the original sequence. For each tested PLR and ABL pair,
we generate 50 000 loss traces for each segment. The average
expected distortion is then obtained by averaging all segments
and all loss traces.

It can be seen that the original distortion trellis model
provides better prediction of the expected distortion than the
SW algorithm along the whole tested PLR range. Although the
SW algorithm is less accurate, it still matches the measured
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Fig. 5. (a) Average distortion comparison and (b) average expected distortion over all P-frames of Foreman versus window length.
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Fig. 6. Average distortion versus PLR for both ABL = 2 and 5; The corresponding distortions for a Bernoulli channel are also shown.

expected distortion quite well. As expected, we see that the
estimation curve using the SW algorithm is always under the
experimental curve and that its performance improves as the
window length increases. These plots indicate that the SW
algorithm could be used as a very good approximation of the
original model, especially at larger window lengths.

To examine the influence of the window length on the
accuracy of the SW algorithm, Fig. 5(b) plots the average
expected distortion over all P-frames of Foreman versus the
window lengths from 12 to 19 at PLR = 5% and ABL = 2,
based on the same simulation data set as used in Fig. 5(a). We
clearly see that the SW algorithm generally underestimates
the expected distortion. This is because when calculating
the expected distortion of the current frame, the distortion
from frames outside the sliding window is ignored by the
SW algorithm. In particular, we observe that smaller window
lengths lead to larger estimation error values, because a smaller
window ignores more distortion components from the past.
We also observe that with the increase of the window length
W from 12 to 16, the performance of the SW algorithm
increases gradually, as discussed in Section IV. However,

increasing the window length further does not bring as much
performance gain. We believe that this is because the fading
behavior of the impulse channel distortion often follows an
exponential decay curve [26], or at least follows a similar
degrading trend. That is why the SW algorithm performance
does not increase linearly with the window length. In our
experiments, the SW algorithm with W ≤ 16 is good for most
examined cases, whereas for some fast decaying sequences
even smaller W also provides acceptable results. Hereafter,
we will use only the SW algorithm to estimate the expected
distortion for much longer sequences.

Next, the average expected distortion over all P-frames (i.e.,
the quantity DN /N ) versus from 3 to 10%, for both ABL = 2
and 5, is plotted in Fig. 6. The tested sequences include Fore-
man and Football. For Foreman, the first 390 frames are coded,
while for Football, the first 240 frames are coded. For each
tested PLR and ABL pair, we simulate a Gilbert loss process
and generate 90 000 random loss patterns. For each loss pat-
tern, the distortion model in (16) is used to predict the decoder
distortion. The window length used in the SW algorithm is 16
for Foreman and 15 for Football. The average expected distor-
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Fig. 7. Average distortion versus burst length of 1, 1.5, . . . , 5 for a given packet loss rate (3% or 8%).

tion for the case of a Bernoulli channel at the same loss rate is
also plotted in the same figure for comparison, where 1000 loss
traces are generated at each loss rate for this channel model.

We can see that the SW algorithm accurately estimates the
average expected distortion over most of the range of the
average loss rate. At high loss rate, the SW is less accurate,
but still matches well with the actual distortion curve. The
good match between the theoretical data and the measured
data tells us that the proposed model can be used to estimate
and analyze the impact of bursty losses on the average video
quality. Moreover, we see that though the window length used
for Football is smaller than that for Foreman, the accuracy of
the SW algorithm is similar. We will discuss this later. From
both figures, we also see that at the same ABL, the average
distortion increases linearly with the PLR.

Interestingly, we observe from Fig. 6 that for the same
average loss rate the expected distortion for the Gilbert channel
can be smaller or larger than that for the Bernoulli channel
depending on the video content. Specifically, for the Foreman
sequence the former is larger, while for the Football sequence
the opposite is true. Even more interestingly, we observe that
increasing the average burst length does not always contribute
to a larger expected distortion, for a given average loss rate.
For example, in the case of Foreman, a larger ABL leads
to a larger expected distortion, at the same PLR, as seen
from Fig. 6(a). However, the opposite holds in the case of
Football, as seen in Fig. 6(b). To the best of our knowledge,
the aforementioned experimental result is reported for the first
time here. This proves again that the burst length does matter,
i.e., it does affect the video quality.

To study further the impact of the average burst length
on the average video quality, in Fig. 7 we show the average
expected distortion over all P-frames (DN /N ) versus burst
length of 1, 1.5, . . . , 5 for a given packet loss rate (3% or
8%). The tested sequences include News, Foreman, Stefan,
and Football. For each sequence, the first 200 frames are
coded. The examined loss rates include 3 and 8%. For each
tested PLR and ABL pair, 60 000 loss traces are generated.

From Fig. 7, we see that the estimated distortion matches the
measured data well along the whole tested burst length range
at both tested loss rates.

From Fig. 7, we clearly observe that the average expected
distortion DN /N does NOT always increase as the average
burst length increases at the same average loss rate. For the
sequences Stefan and Football, increasing the average burst
length will reduce DN /N . This confirms the earlier findings
from Fig. 6 that at the same average loss rate, a larger average
burst length does not always lead to a larger distortion in the
case of a Gilbert channel.

It is worth noting that the above observations seem different
from those in [14], where it can be found that “longer burst
length always causes larger MSE distortion.” We believe that
this is due to a difference in the experimental setup. In
particular, [14] aims to test whether burst length matters, and
therefore it measures the total distortion at the decoder versus
varying burst lengths, implying that the average loss rates that
are used are proportional to each burst length; while in our ex-
periment we consider how the average burst length affects the
expected distortion if the average loss rate remains constant.
In particular, from the Gilbert channel model shown in Fig. 1,
we can see that increasing ABL while keeping PLR constant
implies at the same time reducing the parameters q and p
proportionally (recall that ABL = 1/q and PLR = p/(p +q)).

In the following, we analyze our experimental results using
the proposed distortion trellis model. From (15), it is clear that
DN is the sum of 2N components, i.e., DN =∑2N

r=1 D
(
kr

N

) ·
P
(
hr

N

)
. Define Dr = P

(
kr

N

) · D
(
kr

N

)
as the r th component.

We observe that several components are much larger than
almost all the other components. For the DN versus ABL
curve, these large components will determine its trend. Many
other components are relatively small and thus make less
contribution to DN , though they may still affect the shape
of the DN versus ABL curve.

We first try to explain why DN /N is an increasing function
of ABL for Foreman and News. Specifically, we employ
multiple 10-frame segments taken at different positions in the



LI et al.: MODELING AND ANALYSIS OF DISTORTION CAUSED BY MARKOV-MODEL BURST PACKET LOSSES IN VIDEO TRANSMISSION 927

1.5 2 2.5 3 4 4.5 5
0

10

20

30

40

50

D
is

to
rt

io
n 

co
m

po
ne

nt
s 

(M
SE

)

Average burst length

Foreman, PLR = 3%

3.5
240

250

260

270

280

290

T
ot

al
 d

os
to

rt
io

n 
(M

SE
)

Fig. 8. Distortion components Dr , r = 1, . . . , 210 of D10 versus ABL. The
red curve is D210 . The green solid curve is D10. The green dash curve is
D10 − D210 . The yellow curve is D1+29 .

Foreman sequence to calculate an “average D10” and plot all
components of the average D10 versus ABL in Fig. 8. We
discover that some relatively large components monotonically
increase with ABL, which makes D10 an increasing function
of ABL. Although many other components decrease with ABL,
they are relatively small and thus cannot influence the overall
trend of DN as a function of ABL. Note that the component
D210 (the red curve in Fig. 8 increases quite quickly and
becomes much larger than all the others starting from ABL =
3.5. The quantity D10 − D210 is also plotted with a dashed
line. We see that without D210 , the total distortion becomes
a decreasing function of ABL for ABL ≥ 4. This implies that
the single component D2N contributes the most to make DN

increase with ABL at high average burst lengths. Additionally,
note that component D1+29 (plotted in yellow) is the main
decreasing component. Although the results are obtained by
analyzing short segments of Foreman, we believe it also holds
in more general cases. Applying the same analysis based on
distortion components can help to explain the upward trend of
the DN versus ABL curve for the News sequence. Note that
this figure is not included here in order to conserve space.

Moreover, it is an interesting observation from Fig. 7(a)–(d)
that the rate of increase of the average distortion DN /N
gradually decreases as ABL increases. We believe this is
because there are still many components of DN decreasing
with ABL, as shown in Fig. 8. Though these components are
too small to make the trend of DN versus ABL curve change
from upward to downward, they still slow down the increasing
rate of DN as a function of ABL. In other words, they gradually
decrease the slope of the DN versus ABL curve.

Next, we apply the same analysis to explain why DN /N is a
decreasing function of ABL for Stefan and Football. Using the
same approach as used for creating Fig. 8, we compute the 10-
frame average D10 for the Football sequence and plot in Fig. 9
all components of D10 for ABL from 1.5 to 5 at PLR = 3%.
Compared to the corresponding graphs from Fig. 8, it can be
seen that many distortion components in Fig. 9 have a similar
shape, however, exhibiting different relative magnitudes. For
example, the component D210 (the red curve in Fig. 9) is not
that large now, while D1+29 becomes a large and important
component. Finally, from Fig. 7(g, h) we can see that the

50

100

150

D
is

to
rt

io
n 

co
m

po
ne

nt
s 

(M
SE

)

Average burst length

Football, PLR = 3%

1.5 2 2.5 3 3.5 4 4.5 5

800

900

1000

T
ot

al
 d

os
to

rt
io

n 
(M

SE
) 

0

Fig. 9. Distortion components Dr , r = 1, . . . , 210 of D10 versus ABL. The
red curve is D210 . The green solid curve is D10. The yellow curve is D1+29 .

rate of decrease of the average distortion DN /N reduces as
ABL increases. This is due to the fact that many small but
increasing components slow down the decreasing rate of DN

as a function of ABL, as shown in Fig. 9. The results for Stefan
can be explained in a similar fashion and are not included here
for space considerations.

Although we know that the trend of the DN versus ABL
curve is affected by the sequence characteristics, we should
point out that the above results do not answer specifically how.
A plausible explanation in our opinion can be the following
observation: Stefan and Football both have small values for
the parameter v compared to News and Foreman. Heuristically,
it is a reasonable conjecture that in a Gilbert channel at the
same average loss rate, for sequences with small parameter
v , especially smaller than u, increasing the average burst
length may decrease the average distortion and vice versa.
We leave the detailed investigation of this conjecture as future
work.

From Fig. 7 we can see that the SW algorithm better
matches the measured data in the case of Stefan and Football
relative to Foreman and News, for the same window length.
That is because the parameter v for Stefan and Football is
smaller. In particular, in the case of Foreman and News the
distortion in a lost frame decays over the subsequent frames
more slowly, which implies that a larger window length is
needed to achieve the same prediction accuracy.

Fig. 10 shows the expected distortion versus frame number
for Foreman and Football at PLR = 8% and ABL = 3. For
each sequence the first 100 frames are coded. We see that the
estimated distortion using the SW algorithm with W = 16
fits the measured distortion values well. This tells us that
the proposed model predicts well the frame level expected
distortion and therefore can be employed to improve the
performance of some frame-based error resilient techniques
for video transmission over burst loss channels.

In order to understand how the average loss rate and the
average burst length jointly affect the video quality, Fig. 11
plots the average expected distortion versus both parameters
PLR and ABL for the sequences Foreman and Football. The
predicted data is obtained by the SW algorithm. The tested
window length is 15 for Foreman and 14 for Football. In order
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Fig. 10. Expected distortion versus frame number: (a) Foreman and (b)
Football. PLR = 8% and ABL = 3.
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Fig. 11. Average expected distortion versus both ABL and PLR. The black
mesh denotes the measured data and the red mesh denotes the estimated data
by the SW algorithm.

to more easily differentiate the measured and the theoretical
data in the 3-D graphs, we use smaller window lengths
than those used in Fig. 7. The tested PLRs are from 3 to
10%, and the tested ABLs are 1.5, 2, . . . , 5. First, we see
from Fig. 11 that at all tested PLR and ABL values the SW
algorithm provides a rather accurate prediction of the expected
channel distortion. Next, we observe that at the same ABL, the
expected distortion increases linearly with the PLR. Finally,
we also observe that for the same PLR, as the ABL increases,
the expected distortion increases with a decreasing rate for
Foreman, while for Football the expected distortion decreases
with a decreasing rate. This last observation matches what we
saw earlier in Fig. 7.

At the end of this section, we would like to study the com-
plexity of the proposed SW algorithm with simulations. We
consider the distortion estimation complexity for all P-frames
in a GOP, using SW with window length W . According
to Algorithm 1, for estimating dn, n ≤ W one needs to
calculate both dr

n and P
(
kr

n

)
, for r = 1, . . . , 2n , i.e., to run

the loops from 6 to 7 in Algorithm 1, which approximately
include 3 · 2n multiplication operations and 3 · 2n−1 addition
operations, while for estimating dn, n > W , one only needs
to calculate the distortion within the sliding window, i.e., to
run the procedures from 8 to 12 in Algorithm 1. These proce-
dures approximately include 2 · 2W multiplication operations
and 3 · 2W−1 addition operations. In summary, to calculate
dn, n = 1, . . . , N , the SW algorithm with window length W
requires totally (N − W ) · 2W+1 +∑W

n=1 3 · 2n multiplication
operations and (N − W ) · 3 · 2W−1 +∑W

n=1 3 · 2n−1 addition
operations. To show some specific examples, we use the SW
algorithm to estimate dn for the first 100 P-frames of the QCIF
Foreman, and the used window lengths are 13, 14, 15, and 16.
Simulations were run on Intel Core2 Duo T8100 2.10 GHz

with 2-GB RAM. Table I lists the complexity results. The
second column indicates the total cost of the multiplication
operations when calculating dn for all 100 P-frames, while the
third column indicates the total cost of the addition operations.
Table I also gives the average elapsed time per frame in the
fourth column. From Table I, we can see generally that the
computational cost increases linearly with the window length
W . It also shows that the computation can be completed within
acceptable time.

VI. DISTORTION TRELLIS FOR EXTENDED

GILBERT CHANNEL

The distortion trellis model described before focuses on
the case of the two-state Markov loss process or the Gilbert
loss process. However, researchers have proposed many other
models for the internet loss process. For example, the work
in [17] proposes a more general finite-state Markov-model
(so-called extended Gilbert model) to characterize the internet
packet loss. We now show given the extended Gilbert loss
model, how the distortion trellis works.

Fig. 12 shows the Markov chain of the extended Gilbert
loss model with m +1 states. In this model, State 0 represents
“packet received” and State k, 0 < k < m represents “follow-
ing a received packet, k or more consecutive packets lost” and
State m represents “m consecutive packets lost.” In the view
of [17], State m can be considered as a bursty loss event over
a window of size m. The detailed model description can be
found in [17]. Define p(k−1)k as the transition probability from
State k − 1 to State k, k = 1, 2, . . . , m. Then, the transition
probability matrix for the extended Gilbert model with (m+1)
states can be set up as

P =

⎡
⎢⎢⎢⎢⎢⎣

1 − p01 1 − p12 1 − p23 . . . 1 − p(m−1)m 1 − pmm

p01 0 0 . . . 0 0

0 p12 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . p(m−1)m pmm

⎤
⎥⎥⎥⎥⎥⎦ .

Then, the stationary probability πππ = (π0, π1, . . . , πm) can
be computed as follows:

πππ · P = πππ,

m∑
i=0

πi = 1 (20)

where 1−π0 equals the mean packet loss ratio. It can be seen
that in an extended Gilbert model with (m + 1) states, the
transmission state (“Lost” or “Received”) of current packet
is affected by the past (up to) m consecutive loss events.
Note that the two-state Gilbert model is a special case of the
extended Gilbert model when m = 1. Recall that the distortion
trellis is applicable to any channel model as long as the loss
pattern probability P(kr

n) can be obtained. In an extended
Gilbert channel, P(kr

n) can also be derived recursively, as
follows. Given m and P(kt

n−1), t = 1, . . . , 2n−1, the loss
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TABLE I

COMPUTATION COMPLEXITY FOR SW ALGORITHM

Window
length Total Mul Total Add Average time

per frame

13 1474554 1093626 14 ms

14 2916346 2162682 52 ms

15 5767162 4276218 116 ms

16 11403258 8454138 261 ms

p12 p23p01

pmmp00

p10 p20
0 1 2 m

pm0

p(m–1)m

Fig. 12. Extended Gilbert channel model with (m + 1) states.

pattern probabilities can be calculated as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P
(

k2m+1·r−2m+1+1
n

)
= p00 · P

(
k2m ·r−2m+1

n−1

)
P
(

k2m+1·r−2m+1+2
n

)
= p01 · P

(
k2m ·r−2m+1

n−1

)
. . . . . .

P
(

k2m+1·r−1
n

)
= pm0 · P

(
k2m ·r

n−1

)
P
(

k2m+1·r
n

)
= pmm · P

(
k2m ·r

n−1

)
,

r = 1, . . . , 2n−m+1.

(21)

Using (21), the loss pattern probabilities P(kr
n), r =

1, . . . , 2n can be obtained. Recall that the frame distortion
dr

n is uncorrelated with a specific channel model and can be
frame-recursively calculated using (9) and (12). Then, based
on (5), the expected distortion dn for (m + 1)-state extended
Gilbert channel packet loss can be estimated as

dn =
2n∑

t=1

dt
n · P

(
kt

n

)

=
2n−m−1∑

r=1

2m+1∑
i=1

d2m+1·r−i+1
n · P

(
k2m+1·r−i+1

n

)
. (22)

Note that when m = 1, the more general model in (22)
reduces to the Gilbert loss distortion model in (13). Equation
(22) provides an explicit way to estimate the expected distor-
tion dn caused by (m + 1)-state Markov-model burst losses at
the encoder/sender. The cumulative expected distortion DN

then can be estimated directly using (15) and (16). Still,
the complexity of this model grows exponentially with n, as
discussed at the end of Section III-C. Here we also employ the
SW algorithm to calculate dn with low complexity. Because
the SW algorithm is uncorrelated with a specific channel
model, here it has the same form as described in Algorithm 1.
Note that although the extended Gilbert channel model is
somewhat more complex than the Gilbert one, the proposed
distortion trellis and the SW algorithm for both channel models
have almost the same complexity.

To validate the accuracy of the proposed distortion trellis
for extended Gilbert losses, we conduct a set of simulations

3 4 5 6 7 8 9 10

30

40

50

60

70

80

90

100

110

120

130

Average loss rate (%)

A
ve

ra
ge

 d
is

to
rt

io
n 

(M
SE

)

Foreman

Experiment (extended Gilbert, ABL = 2)
Experiment (extended Gilbert, ABL = 5)
SW algorithm with W = 16

(a)

3 4 5 6 7 8 9 10

100

150

200

250

300

Average loss rate (%)

A
ve

ra
ge

 d
is

to
rt

io
n 

(M
SE

)

Football

Experiment (extended Gilbert, ABL = 2)
Experiment (extended Gilbert, ABL =5 )
SW algorithm with W = 15

(b)

Fig. 13. Average distortion versus PLR for an extended Gilbert channel.

with two QCIF sequences, Foreman (15 frames/s) and Football
(30 frames/s). For Foreman, the first 390 frames are coded,
while for Football the first 240 frames are coded, both in the
IPP. . . manner. The encoding and decoding setup follows the
line described in Section V-A, so the parameters u and v are
the same. We again assume that the I-frame can always be de-
coded correctly. Without losing generality, we use the six-state
extended Gilbert lossy channel to model the end-to-end net-
work, i.e., m is set to 5. We simulate different extended Gilbert
lossy channels with different transition probability matrices,
with the corresponding average loss rate PLR from 3 to 10%.
For each simulation channel, we generate 90 000 loss traces
with different loss patterns. For each loss pattern, we only
use the SW algorithm to predict the decoder distortion in this
simulation. Based on the observation results in Section V, we
believe it is a reasonable deduction that, if the SW algorithm
performs well, the original model would be more accurate.

Fig. 13 plots the average expected distortion (DN /N ) over
all P-frames versus PLR from 3 to 10% for two different
average burst lengths. Note that the average burst lengths here
are calculated according to the burst length distribution for
the simulation loss traces. The window length used in the SW
algorithm is 16 for Foreman and 15 for Football. From Fig. 13,
it is clear that the proposed model performs well for the
extended Gilbert losses, as shown by its accuracy in estimating
the measured distortion along all tested PLRs. As expected,
we also see that the SW algorithm always underestimates
the measured distortion. Moreover, we also observe that at
the same PLR, for Foreman, increasing the ABL leads to a
larger distortion, while for Football, the opposite is true. This
observation matches with what we found earlier for Gilbert
bursty losses in Section V.

So far, we examined the proposed distortion trellis model
based on Markov-model loss simulations. Next, we would like
to compare the modeled data with the results produced from
realistic network packet traces. With this comparison, we can
assess whether the proposed model is useful in estimating the
expected distortion in reality. For this purpose, we performed
the following experiment in December 2008.

First, the first 381 frames of the QCIF sequence Foreman
are encoded in the IPP. . . manner, using the H.264 encoder
JM12.2 [25] with the baseline profile at 15 frames/s and
QP = 28. To create the packet traces, we set two Unix
workstations as the sender and receiver, respectively lo-
cated at Nanyang Technical University, Singapore and Beijing
University of Posts and Telecommunications, Beijing. The
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TABLE II

PACKET LOSS STATISTICS: DISTRIBUTION OF BURST LENGTH

Burst length 0 1 2 3 4 5

Occurrence 263792 993 662 309 176 68

software running on the workstations are not real video
communication applications. However, since our purpose is to
obtain loss traces for packet video transmission over realistic
networks, we could achieve this by appropriate and reasonable
experiment setup. A sample sequence containing 380 user
datagram protocol (UDP) packets is used in this experiment,
where the transmission spacing is set to 30 ms, i.e., the UDP
packet is transmitted periodically per 30 ms. The packet size
is set to 1500 bytes, so that each frame of the coded Foreman
is smaller than the payload size and the assumption that one
packet contains one frame could hold true. Then, We transmit
the sample sequence between the two workstations, and record
the index numbers of missing packets into loss trace file. In
this case, the trace can be used as if it were created by real
internet video communication applications. For accounting for
the channel statistical characteristics well, we transmit the
sequence for 700 times, and for each transmission session we
generate one loss trace. Then, each loss trace can be regarded
as a loss pattern for all P-frames of the Foreman sequence.
Here the assumption of the correct decoding for every I-
frame is implicit. For each loss trace, we decode the Foreman
and record the MSE distortion for each P-frame. Note that
the previous frame copy is used as the concealment strategy.
Then, the actual average distortion Dactual could be measured
by averaging the distortion of that frame over all traces, and
Dactual = 8.59. Note that the measurement method is similar
to what we have used in Section V, and the only different
is that here the loss trace is obtained from realistic networks,
rather than Markov loss simulations.

To obtain the modeled dada, first the state transition proba-
bilities of the channel should be calculated as follows. Based
on the trace file, we can obtain the burst length distribution
statistics as listed in Table II. We can see that the packet
losses clearly show the expected burstiness, and the loss length
distribution shows a heavy-tailed nature. From the statistics,
one can easily calculate that the average loss rate is 0.83%
and the average burst length equals 1.87. Let ol , l = 1, . . . , m
denote the occurrence of a burst loss with length l, nr denote
the number of the received packets, shown in Table II. Then,
according to the conclusion in [17], the transition probabilities
for a Gilbert loss model can be calculated as

p =
(

m∑
l=k

ol

)/
nr, q =

(
m∑

l=1

ol − 1

)/( m∑
l=1

l · ol − 1

)
.

(23)
If we consider the network loss as an (m+1)-state extended

Gilbert loss process, the corresponding transition probabilities
can be calculated as

p01 =
(

m∑
l=k

ol

)/
nr, p(k−1)k =

(
m∑

l=k

ol

)/⎛⎝ m∑
l=k−1

ol

⎞
⎠
(24)

where k = 2, . . . , m.

Then, based on the proposed model, the expected distortion
can be estimated using the SW algorithm. Let Dgil denote
the modeled expected distortion for the Gilbert losses and
Degil denote that for the extended Gilbert losses. The modeled
results are: Dgil = 8.10, Degil = 8.31. Comparing them with
the actual measure distortion Dactual = 8.59, it can be found
that, both the proposed models, the Gilbert and the extend
Gilbert, predict the measured distortion well, and the latter
model is more accurate. The comparison demonstrates that
the proposed distortion trellis model also performs well in
estimating the expected distortion for actual network collected
data and that therefore can be useful in real-life scenarios.

VII. CONCLUSION AND FUTURE WORK

Despite the fact that many researchers have modeled the
current internet loss behavior using various Markov loss
models [5], [16]–[19], there is a lack of work on modeling
and analyzing the distortion caused by Markov-model bursty
packet losses in decoded video. In this paper, we have pro-
posed a mathematical model, which is denoted the distortion
trellis model, for estimating the expected MSE distortion for
video transmission over a Markov-model burst-loss channel.
Without loss of generality and for simplicity, we established
our distortion model based on a two-state Markov loss model
or the Gilbert model [20]. We also extended the proposed
model to a more general form, for (m + 1)-state Markov
losses, or the extended Gilbert losses as in [17]. The proposed
model can also be easily extended to most familiar Markov
loss models [17], [21]. In general, the distortion trellis model
can be used in all channels, only if in that channel the
loss pattern probability is computable. The model takes into
consideration both the decoding dependencies and the packet
loss dependencies so that it accounts for the characterizations
of the error propagation and the Markov loss process well.

Based on the fact that the error propagation often decays
over the subsequent frames due to the effects of intra refresh-
ing and spatial filtering [22], [24], a SW algorithm has been
developed to compute the estimated expected distortion with
low complexity. Using this algorithm, more than 90% of the
computational burden can be saved compared to the original
distortion trellis model. The comparison of the theoretical
results and the measured data from our simulations shows that
the proposed distortion trellis model and the SW algorithm are
both accurate. Using the proposed models we also investigate
the impact of the burst losses and the related average burst
length on the resulting video quality. We establish that for
the same average loss rate, the expected distortion does not
always increase as the average burst length increases. Deeper
understanding of this phenomenon may benefit from further
investigations on this subject in the future.

Avenues for further exploration may also include employ-
ing our framework to study the impact of FEC on the
received video quality for transmission over Markov-model
lossy channels. Furthermore, it seems promising to combine
the proposed models with some rate distortion optimization
techniques in order to provide further improvements in end-
to-end performance.
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