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Abstract

We developed a space and time adaptive method to simulate electroosmosis and
mass transport of a sample concentration within a network of microchannels.

The space adaptive criteria is based on an error estimator derived using aniso-
tropic interpolation estimates and a post-processing procedure. In order to improve
the accuracy of the numerical solution and to reduce even further the computa-
tional cost of the numerical simulation, a time adaptive procedure is combined with
the one in space. To do so, a time error estimator is derived for a first model prob-
lem, the linear heat equation discretized in time with the Crank-Nicolson scheme.
The main difficulty is then to obtain an optimal second order error estimator.
Applying standard energy techniques with a continuous, piecewise linear approxi-
mation in time fail in recovering the optimal order. To restore the appropriate rate
of convergence, a continuous piecewise quadratic polynomial function in time is
needed. For this purpose, two different quadratic functions are introduced and two
different time error estimators are then derived. It turns out that the second error
estimator is more efficient than the first one when considering our adaptive algo-
rithm. Thus, using the second quadratic polynomial, an upper bound for the error
is derived for a second model problem, the time-dependent convection-diffusion
problem discretized in time with the Crank-Nicolson scheme. The corresponding
space and time error estimators are finally used for the numerical simulation of
mass transport of a sample concentration within a complex network of microchan-
nels driven by an electroosmotic flow and/or by a pressure-driven flow. Numerical
results presented show the efficiency and the robustness of this approach.

Keywords: space and time adaptive method, a posteriori error estimates, aniso-
tropic meshes, finite elements, electroosmotic flow, electrokinetic injection tech-
niques, microfluidics.
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Version abrégée

Une méthode adaptative en espace et en temps pour la simulation numérique
des mécanismes d’écoulement électroosmotique d’une concentration d’échantillon
à l’intérieur d’un réseau de micro-canaux est mise en oeuvre.

Le critère d’adaptation spatiale est basé sur un estimateur d’erreur obtenu
en utilisant des estimations d’interpolation anisotrope et une procédure de post-
traitement. Afin d’améliorer la précision de la solution et de réduire davantage le
coût informatique de la simulation numérique, une procédure d’adaptation tem-
porelle est couplée à celle en espace. Pour ce faire, un estimateur d’erreur en temps
est d’abord obtenu pour un premier problème modèle, l’équation de la chaleur
linéaire discrétisée en temps par un schéma de type Crank-Nicolson. La difficulté
majeure réside dans l’obtention d’un estimateur d’erreur optimal du second ordre.
L’application des techniques standards en énergie associées à un polynôme affine
par morceaux en temps ne permet pas d’obtenir un estimateur d’erreur temporel
possédant le bon ordre de convergence. Afin de l’obtenir une fonction polynomiale
continue quadratique par morceaux en temps est nécessaire. Deux différentes fonc-
tions quadratiques sont alors introduites et deux différents estimateurs d’erreur en
temps sont ainsi obtenus. Le second estimateur d’erreur apparâıt plus efficace que
le premier dans notre algorithme adaptatif. Ainsi, en utilisant le second polynôme
quadratique, une borne supérieure de l’erreur est ensuite obtenue pour un second
problème modèle, le problème de convection-diffusion instationnaire discrétisé en
temps par un schéma de type Crank-Nicolson. Les estimateurs d’erreur en espace
et en temps correspondant sont finalement utilisés pour la simulation numérique
du transport par écoulement électroosmotique et/ou par un écoulement induit
par une différence de pression, d’une concentration d’échantillon à l’intérieur d’un
réseau complexe de micro-canaux. Les résultats numériques présentés montrent
l’efficacité et la robustesse de cette approche.

Mots clés: méthode adaptative en espace et temps, estimations d’erreur a posteri-
ori, maillages anisotropes, éléments finis, écoulement électroosmotique, techniques
d’injection électrocinétique, microfluidique.
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Enfin, un énorme merci à ma petite famille, ma grande soeur et mon petit
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Introduction

Microfluidics is an emerging technology involving fluid dynamics in miniaturized
systems. It has drawn a great attention over the last decade due to the develop-
ment of an increasing number of applications in biomedical diagnosis and analysis.
It has diverse and widespread applications intersecting many disciplinary field such
as biology, material science, physics and chemistry. Some examples of application
of microfluidics include drug delivery [1], genomic sequencing [2, 3], DNA sequenc-
ing [4], diagnostics [5].

One of the greatest challenges of microfluidics is the development of miniaturi-
zed chemical and biological analysis systems called Laboratory-on-a-Chip devices.
A Lab-on-a-chip is a microscale chemical or biological laboratory built on a thin
glass or polymer chip of only a few square centimeters, see Figure 1. This minia-
turized laboratory is made of a network of microchannels, usually about 10-100
μm diameter and 0.1-10 cm length, which often integrates several microfluidics
components such as pumps, valves, sensors and electrodes. These devices repre-
sent a complete micro-system of analysis and offer many advantages: significant
reduction in the amounts of samples and reagents, usually a few nanoliters, a short
time analysis, high throughput, automation and portability.

Figure 1. Lab-on-a-chip device.
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Introduction

One of the most important techniques practiced in a Lab-on-a-chip is capil-
lary electrophoresis. This process is used to separate charged molecules under the
influence of an applied electric field. It is a powerful separation technique that
suits ideally for the handling of small amounts of liquid sample. Capillary elec-
trophoresis is governed by two driving forces: electrophoresis and electroosmosis
[6, 7, 8]. These two electrokinetic phenomena constitute the two main electroki-
netic effects in micro and nano-scale transport applications. Indeed, the sample
to be analyzed, introduced at one end of the capillary, moves inside the capillary
under the effect of these two mechanisms. Electrophoresis is the movement of a
charged molecule under an applied electric field; electroosmosis is the flow of the
entire liquid in the microchannel or capillary, and consequently identical for each
molecule, and occurs because of the charge surface of the wall of a narrow capillary.
Indeed, most substrates acquire an electric charge in contact with an ionic solu-
tion. Then, at the fluid-solid interface, the resulting charged surface will attract
the ions of the opposite charge, the so-called counterions, and repels the co-ions,
the ions which have the same sign as the charge of the surface. Hence, an area
will exist in which the concentration of counterions will be larger than that of the
co-ions. This phenomenon leads to the formation of a thin charged layer known
as the electric double layer (EDL) or the Debye layer. This EDL is composed of
two layers, the first one, the Stern layer, immediately next to the charged solid
surface where the ions are nearly immobile due to the strong electrostatic forces
and the second layer, the Diffuse layer, in which there is an excess of counterions
over co-ions and where the ions are mobile, see Figure 2. When an external electric

Stern layer (immobile) Diffuse layer (mobile)

Debye layer Bulk Solution

Normal distance to wall
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Figure 2. Schematic representation of the zeta potential and the ionic concentration
field near a negatively charged wall in contact with an ionic solution.
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field is applied over the microchannel or capillary, the counterions in the Diffuse
layer of the EDL, not attracted by the channel surface, migrate in the direction
of their opposite potential and drag the surrounding liquid molecules with them
because of the viscous effect. This is known as electroosmosis and leads to a bulk
liquid motion. The resulting electroosmotic flow (EOF) rate is generally greater
than the electrophoretic migration velocity of each individual species. Thus, un-
der an applied electric field, even if the molecules move according to their charge
within the capillary, the EOF rate is usually strong enough to drag all the charged
species in the same direction. Finally, the difference in electrophoretic mobility of
the sample constituents cause them to separate.

As the EOF is the leading electrokinetic phenomenon used in microfluidic de-
vices, we will particularly focus on this kind of transport and thus treat the elec-
troosmotic transport of a sample concentration within a network of microchannels.
A fundamental characteristic of EOF is the electric wall potential across the De-
bye layer. In the Stern layer, because of the strong attraction of counterions onto
the charged solid surface, an electric wall potential is created which drops rapidly
across the Debye layer to a constant value at the walls, the so-called zeta po-
tential, to zero in the bulk region, see Figure 2. As the thickness of the EDL is
very thin compared to the capillary diameter, the estimation of this potential is
a challenging task when considering its numerical simulation. The key issue of
simulating EOF is then to compute accurately and efficiently this double layer
potential. Some characteristic scales and typical physical parameters are given in
Table 1. Thus, the ratio between the channel height and the Debye layer can be up
to 104. Therefore, the numerical method used to solve the EDL potential across
the channel diameter has to provide an accurate solution with a reasonable com-
putation cost. We will take up these numerical challenges using an adaptive finite
element method. With this method the mesh grid will be automatically refined in
the EDL region ensuring the strong variation of the wall potential to be captured

Parameter Value

Channel length (m) 1e-2 ∼ 1e-1
Channel diameter (m) 1e-5 ∼ 1e-4
Debye layer length (m) 1e-9 ∼ 1e-6
Zeta potential (mV) -50 ∼ 50
Reynold number, Re 1e-5 ∼ 1

Table 1. Typical physical parameters in electrokinetic driven flows.
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Introduction

accurately. Thus, instead of assuming a slip electroosmotic condition at the walls,
avoiding the computation of the EDL potential, we will be able to fully solve the
EDL potential near the capillary walls required to solve the EOF. Moreover this
approach is particularly well appropriate for the study of a sample concentration
in complex microchannel geometries, see Figure 3 for a schematic representation
of two anisotropic meshes used at two different times for the transport of a sample
concentration in a straight channel.

Velocity field

Velocity field

Debye layer

Debye layer

Concentration diffuse layer
Concentration diffuse layer

c = 1

c = 1 c = 0c = 0

c = 0c = 0

Figure 3. Schematic representation of two anisotropic meshes used at two different
times for the transport of a sample concentration in a straight channel. The mesh has
to be refined along the Debye layer but also along the diffuse layer of the concentration
field c.

In general, capillary electrophoresis analysis takes place in two steps: the injec-
tion and the separation processes. During the injection process or the loading step,
an amount of the sample concentration, the sample plug, is confined at the en-
trance of the separation channel. In the separation step, this amount is injected in
the separation channel where the sample constituents will be separated according
to their electrophoretic mobilities. In Figure 4, we present the numerical simula-
tion of the injection and separation processes in a multiple T-form channel. The
sample concentration is represented by a white concentration field varying from a
value of zero to one. This concentration is driven through the injection channel
by an EOF which made the sample moves from the bottom channel to the three
top channels (first and second pictures). Then, an amount of the sample concen-
tration, loaded at the center of the cross section, will be injected in the separation
channel (third picture). In Figure 5, we can appreciate the mesh corresponding to
the first picture presented in Figure 4. At this moment the sample concentration
separates in three and starts to move into the three top channels. We can observe

4



that the mesh is refined at the propagation front of the sample concentration,
where its value varies from zero to one, and near the channel walls in order to
compute accurately the EDL potential. Thus, in a network of microchannels, the
adaptive finite element method allows to obtain accurate solutions of sample mass
transport driven by an EOF by refining the mesh wherever needed but also by
coarsening the mesh where the solution does not present any variation, reducing
then drastically the computational cost of the numerical simulation.

0.0 0.5 1.0

Figure 4. From left to right: injection process, final time of the injection process and
separation process of an injection and separation processes in a multiple T-form channel.

Figure 5. Zoom on the adapted mesh during the injection process in a multiple T-form
channel.
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The refinement and coarsening criteria in adaptive finite element methods rely
on a posteriori error estimation. The goal is to bound the true error, the difference
between the exact solution and the numerical solution, by an easily computable
quantity, the so-called error estimator. Let u and uh be the exact and the numerical
solution of a given problem. Then in a posteriori error analysis, the goal is to find
an error estimator η which depends only on the data and the discrete solution
such that there exists two constants positive C1 and C2 independent of the exact
solution u and the typical mesh size h such that

C1η ≤ ‖u − uh‖ ≤ C2η,

where ‖ · ‖ is an appropriate norm, usually the energy norm of the problem. Thus,
based on information given by the derived error estimator, adaptive procedures
try to automatically refine or coarsen a mesh and/or increase or decrease the time
step size so as to compute an accurate numerical solution in an optimal manner.
Given an initial mesh or time step size, the adaptive procedure at each time step
consists in the three following steps

Solve → Estimate → Refine/Coarsen or Increase/Decrease.

This procedure is repeated until the a posteriori error estimator is within a pres-
cribed tolerance. The use of a posteriori error estimator is nowadays an efficient
tool to control the quality of numerical solutions of partial differential equations.
Rigorous analysis of a posteriori error estimates started with the pioneering work
of Babuška and Rheinboldt [9, 10]. An impressive amount of work is now available
for a huge number of problems, as evidenced by the reviews [11, 12, 13, 14] and the
references therein. Recently, anisotropic a posteriori error estimates have received
much more attention, see for instance [15, 16, 17, 18, 19, 20, 21, 22]. The goal is to
use finite elements with large aspect ratio in order to reduce even more the number
of degrees of freedom and hence the computational cost of the numerical simula-
tion. Finite elements can thus be stretched in the desired direction, that is to say
aligned along the boundary layers. Most of anisotropic adaptive finite element al-
gorithms used error estimators based on the approximation of the Hessian matrix
of the solution, see for instance [23, 24, 25, 26, 27]. Such approximations can be
difficult to achieve when using a first order finite element method. An alternative
anisotropic error estimator has then been proposed in [28] which requires only a
first order gradient matrix. The anisotropic error estimator has been derived us-
ing the interpolation results of [23, 24] and equivalence to the true error has been
proved in the case of the Laplace problem in [29]. This error estimator has been
extended in [30] to elliptic and parabolic problems but also to nonlinear parabolic
systems [31, 22]. Thus, we pursue the approach of [28, 30, 29] and develop a space
and time adaptive algorithm, with possibly large aspect ratio finite elements, to
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simulate electroosmosis and mass transport of a sample concentration within a
complex network of microchannels.

This thesis consists in two parts. In a first part, we derive a posteriori error
estimators for two model problems: the heat equation and the time-dependent
convection-diffusion problem, both discretized in time using the Crank-Nicolson
method. Concerning parabolic problems and the Crank-Nicolson scheme, it was
observed in Section 2.1 of [32] that standard energy technique applying with a con-
tinuous piecewise linear approximation in time would fail in recovering an optimal
second order time error estimator. The so-called Crank-Nicolson reconstruction
was then introduced in order to restore the appropriate rate of convergence. In
[32] this reconstruction is considered in the case of a semi-discrete time discretiza-
tion of a general parabolic problem. In the present work, we are interested in the
fully discrete situation taking first the example of a simpler problem, the classi-
cal linear heat equation. We extend the results of [32] to the fully discrete case
by introducing piecewise quadratic time reconstructions of the numerical solution
and using them to obtain a posteriori error estimates. We introduce two piecewise
quadratic time reconstructions, the first one directly transposed from [32] and the
second one based on a finite difference approximation of ∂2u/∂t2. It turns out that
the second error estimator, based on the second reconstruction, is more efficient
than the first one. In particular, the second error indicator is of optimal order
with respect to both the mesh size and the time step when using our adaptive
algorithm. Then, based on experiments taken from this first model problem, an a
posteriori upper bound is derived for a second model problem, the time-dependent
convection-diffusion problem discretized in time using the Crank-Nicolson method.
Numerical experiments illustrating the efficiency of this approach are reported and
show the same conclusions draw for the heat equation, that is to say an optimal
order of convergence with respect to both the mesh size and the time step, even
in the convection dominated regime and in presence of boundary layers.

Based on the space and time errors estimators derived from the time-dependent
convection-diffusion problem, the second part focuses on it application to microflu-
idics with the numerical simulation of EOF and mass transport of a sample con-
centration within a network of microchannels. We introduce the EOF model used
to transport the sample concentration and develop a space and time adaptive
algorithm. It is based on error estimators already presented for parabolic prob-
lems [29] and the Stokes problem [33] but also on new error estimators derived
from the time-dependent convection-diffusion problem using the Crank-Nicolson
scheme. The space adaptive algorithm will couple three error estimators derived
from the EDL potential problem, the Stokes problem and the convection-diffusion

7



Introduction

problem. As regards the time adaptive algorithm, it is only based on an error
estimator derived from the concentration field. To conclude, numerical experi-
ments are carried out: injection and separation processes in crossing and multiple
T-form configuration channels and combined EOF and pressure-driven technique
in a double T-shape channel.

Note that the following three Chapters have been submitted to publication and
all results can be found in [34, 35, 36].

8



Chapter 1

A posteriori error estimator for
the Crank-Nicolson scheme. First
model problem: The heat
equation

In this Chapter we derive two a posteriori upper bounds for the heat equa-
tion. A continuous, piecewise linear finite element discretization in space and
the Crank-Nicolson method for the time discretization are used. The error due to
the space discretization is derived using anisotropic interpolation estimates and a
post-processing procedure. The error due to the time discretization is obtained
using two different continuous, piecewise quadratic time reconstructions. The first
reconstruction is developed following [32], while the second one is new. An adap-
tive algorithm is developed. Numerical studies are reported for several test cases
and show that the second time error estimator is more efficient than the first one.
In particular, the second time error indicator is of optimal order with respect to
both the mesh size and the time step when using our adaptive algorithm.

Contents
1.1 Situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 The heat equation and its discretization . . . . . . . . . 11

1.3 Anisotropic finite elements . . . . . . . . . . . . . . . . . 13

1.4 A posteriori error estimates . . . . . . . . . . . . . . . . 16

1.5 Adaptive algorithm in space and time . . . . . . . . . . 31

1.6 A numerical study of the adaptive algorithm . . . . . . 36

1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 55
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The heat equation

1.1 Situation

A posteriori error analysis is at the base of refinement/coarsening procedures in
mesh adaptivity techniques. An impressive amount of work is available for a huge
number of problems, as evidenced by the reviews [11, 12, 13, 14] and the references
therein. The goal is to derive an easily computable bound of the error in order
to ensure global control of the solution. The theory is particularly well develo-
ped in the case of elliptic problems, see for instance [37, 38, 39, 40]. In the case
of parabolic problems, most papers deal with the Euler implicit discretization in
time, see for instance [41, 42, 43], or higher order discontinuous Galerkin meth-
ods [44, 45]. However, little attention was paid to the popular Crank-Nicolson
method for parabolic problems. In [46], an A-stable θ-scheme was considered for
the time discretization of the heat equation and a posteriori bounds were then
derived applying standard energy techniques with a continuous, piecewise linear
approximation in time. However, when considering the case θ = 1/2, which yields
to the Crank-Nicolson scheme, the term measuring the error due to the time dis-
cretization is of suboptimal order with respect to time. In order to restore the
appropriate second order of convergence, Akrivis et al. suggested in [32, 47] to
work with a continuous, piecewise quadratic polynomial function in time rather
than a linear one. The so-called Crank-Nicolson reconstruction was then intro-
duced. In [32] this reconstruction, that can be explicitly constructed from the
numerical solution, is considered in the case of a semi-discrete time discretization
of a general parabolic problem. This approach is generalized in [47] to Runge-
Kutta and Galerkin methods.

In the present Chapter, we are interested in the fully discrete situation taking
the example of the linear heat equation, ∂u/∂t − Δu = f , discretized in space
by continuous piecewise linear finite elements and in time by the Crank-Nicolson
method. We extend the results of [32] to the fully discrete case by introducing
piecewise quadratic time reconstructions of the numerical solution and using them
to obtain a posteriori error estimates. We consider two reconstructions. The first
one is a direct transposition of the reconstruction from [32] to the fully discrete set-
ting whereas the second one is new. It is based on a finite difference approximation
of ∂2u/∂t2 rather than an approximation of ∂f/∂t+Δ(∂u/∂t). A posteriori upper
bounds are derived for both reconstructions and are used to construct an adaptive
algorithm for both the time step and the space step. Numerical experiments show
that the first error estimator does not lead to an optimal rate of convergence with
respect to the time step when using our adaptive algorithm, especially in situa-
tions when the error is mainly due to the space discretization. On the contrary,
the second error estimator always provides a fair representation of the true error.
Another feature of this work is the use of finite elements on highly anisotropic

10



1.2 The heat equation and its discretization

triangulations. We pursue the approach to anisotropic finite elements developed
in papers [41, 30, 29], which are in turn based on the theory developed in [23, 24].
The theory is thus presented in the anisotropic framework and the numerical tests
are done on examples that lead naturally to highly stretched meshes. Note how-
ever, that a posteriori error bounds can be applied also in the isotropic setting,
that is to say when the triangulation satisfies the minimum angle condition.

The outline of the Chapter is as follows. In the next Section, we present the
model problem and its space and time discretization. We will then introduce in
Section 1.3 some definitions and notations relative to the mesh anisotropy. The
a posteriori error estimates for the two reconstructions are presented in Section 1.4.
Section 1.5 is devoted to the description of an adaptive algorithm in space and time.
A numerical study is carried out for several test cases in Section 1.6.

1.2 The heat equation and its discretization

Consider a polygonal domain Ω of R
2 with boundary ∂Ω. Given a final time T > 0,

a function f : Ω × (0, T ) → R and an initial condition u0 : Ω → R, we consider
the following problem: find u : Ω × (0, T ) → R such that⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂u

∂t
− Δu = f in Ω × (0, T ),

u = 0 on ∂Ω × (0, T ),

u(·, 0) = u0 in Ω.

(1.1)

For the sake of simplicity, homogeneous Dirichlet boundary condition are consid-
ered. However, the analysis can be extended to mixed Dirichlet-Neumann bound-
ary conditions. We suppose henceforth f ∈ L2(0, T ; H−1(Ω)), u0 ∈ L2(Ω) and seek
(see for example [48]) a solution u ∈ W with

W = {w ∈ L2(0, T ; H1
0 (Ω)) and ∂w/∂t ∈ L2(0, T ; H−1(Ω))}

such that u(·, 0) = u0 and〈
∂u

∂t
, v

〉
+

∫
Ω

∇u · ∇v dx = 〈f, v〉 ∀v ∈ H1
0 (Ω) and a.e. t ∈ (0, T ), (1.2)

where < ·, · > denotes the duality pairing between H−1(Ω) and H1
0 (Ω). In order

to describe the time discretization corresponding to (1.2), we introduce a partition
of the interval [0,T] into subintervals In = [tn−1, tn], n = 1, . . . , N , such that
0 = t0 < t1 < · · · < tN = T and we denote the time steps by τn = tn − tn−1. For

11



The heat equation

any 0 < h < 1, let Th be a conforming triangulation of Ω into triangles K (not
necessarily satisfying the minimum angle condition) with diameter hK less than
h. We define by Vh the usual finite element space of continuous, piecewise linear
functions on Th:

Vh =
{
vh ∈ C0(Ω); vh|K ∈ P1; ∀K ∈ Th

}
and we set

V 0
h = Vh ∩ H1

0 (Ω).

We suppose that f ∈ C0([0, T ]; L2(Ω)) and u0 ∈ C0(Ω). We set fn(·) = f(·, tn)
and we compute u0

h = rhu
0 where rh is the Lagrange interpolant corresponding to

V 0
h . The Crank-Nicolson scheme consists in seeking un

h ∈ V 0
h , for all n = 1, . . . , N ,

such that for all vh ∈ V 0
h∫

Ω

un
h − un−1

h

τn

vh dx +
1

2

∫
Ω

(
∇un

h + ∇un−1
h

)
· ∇vh dx =

1

2

∫
Ω

(fn + fn−1)vh dx.

(1.3)
Throughout this Chapter the following notations will be used. For all n = 1, . . . , N ,
we set

∂nuh =
un

h − un−1
h

τn

, u
n−1/2
h =

1

2
(un

h + un−1
h )

and

∂nf =
fn − fn−1

τn

, fn−1/2 =
1

2
(fn + fn−1), tn−1/2 =

1

2
(tn + tn−1). (1.4)

With these notations, we can rewrite (1.3) as∫
Ω

∂nuh vh dx +

∫
Ω

∇u
n−1/2
h · ∇vh dx =

∫
Ω

fn−1/2vh dx, (1.5)

for all vh ∈ V 0
h . As in [41], we introduce the continuous, piecewise linear approxi-

mation in time defined for all t ∈ In by

uhτ (x, t) =
t − tn−1

τn

un
h +

tn − t

τn

un−1
h (1.6)

= u
n−1/2
h + (t − tn−1/2)∂nuh.

So for all vh ∈ V 0
h , (1.3) or (1.5) can be rewritten as∫
Ω

∂nuh vh dx +

∫
Ω

∇uhτ · ∇vh dx =

∫
Ω

fn−1/2vh dx (1.7)

+ (t − tn−1/2)

∫
Ω

∇∂nuh · ∇vh dx.

12



1.3 Anisotropic finite elements

1.3 Anisotropic finite elements

In order to describe the mesh anisotropy we introduce some definitions and prop-
erties taken from [23, 24]. Alternative notations can be found using the framework

of [15, 18]. For any triangle K of Th, we consider TK : K̂ → K, the affine applica-

tion which maps the reference triangle K̂ into K. Let MK ∈ R
2×2 and tK ∈ R

2 be
the matrix and the vector defining such a map, we have

x = TK(x̂) = MK x̂ + tK ∀x̂ ∈ K̂.

Since MK is invertible, it admits a singular value decomposition

MK = RT
KΛKPK ,

where RK and PK are orthogonal and ΛK is diagonal with positive entries. In the
following we set

ΛK =

(
λ1,K 0

0 λ2,K

)
and RK =

(
rT
1,K

rT
2,K

)
(1.8)

with the choice λ1,K ≥ λ2,K . A simple example of such a transformation is x1 =
Hx̂1, x2 = hx̂2, with H ≥ h. We can see in Figure 1.1 this transformation with

MK =

(
H 0
0 h

)
where λ1,K = H, λ2,K = h,

r1,K =

(
1
0

)
and r2,K =

(
0
1

)
.

Another example of such a transformation is given by Figure 1.2. We consider here
the case when K̂ is an equilateral triangle with vertices lying on the unit circle. It
is easy to see that the image of the unit circle by TK is an ellipse with directions
r1,K and r2,K , the amplitudes of stretching being λ1,K and λ2,K .

TK

x̂1

x̂2

x1

x2

1

1

H

h

r1,K

r2,K

Figure 1.1. Example of affine transformation TK of a reference triangle K̂ into K.
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TK

x̂1

x̂2

1

r1,K

r2,K

λ1,K

λ2,K

Figure 1.2. Example of affine transformation TK of a reference equilateral triangle K̂
into an isosceles triangle K. The unit circle is mapped into an ellipse with directions
r1,K and r2,K , the amplitudes of stretching being λ1,K and λ2,K .

In the context of anisotropic meshes, the classical minimum angle condition is
not required. However, for each vertex, the number of neighboring vertices should
be bounded from above, uniformly with respect to the mesh size h. Also, for each
triangle K of the mesh, there is a restriction related to the patch ΔK , the set of
triangles of Th having a common vertex with K. More precisely, the diameter of the
reference patch ΔK̂ = T−1

K (ΔK) must be uniformly bounded independently of the
geometry. This assumption prevents, loosely speaking, the stretching directions,
r1,K and r2,K , from changing too abruptly between the adjacent triangles of the
mesh, see Figure 1.3 for examples of acceptable and non acceptable patches. We
suppose that the meshes meet the above mentioned restrictions which is the case
of the BL2D anisotropic mesh generator [49] that we use. Let us now recall some
interpolation results on anisotropic meshes proved in [24, 23, 50].

Proposition 1.3.1 ([24, 23, 50]). Let Ih : H1
0 (Ω) → V 0

h be the Clément interpola-
tion operator [51]. There is a constant C independent of the mesh size and aspect
ratio such that, for any v ∈ H1(Ω) and any K ∈ Th we have:

‖v − Ihv‖L2(K) ≤ CωK(v),

λ2,K‖∇(v − Ihv)‖L2(K) ≤ CωK(v),

‖v − Ihv‖L2(∂K) ≤ C
1

λ
1/2
2,K

ωK(v).

Here ωK(v) is defined by

ω2
K(v) = λ2

1,K

(
rT
1,KGK(v)r1,K

)
+ λ2

2,K

(
rT
2,KGK(v)r2,K

)
,

14



1.3 Anisotropic finite elements

K̂ K

1

1

H

h

TK

x̂1

x̂2

x1

x2

1

H
h

1

1

H

H
H

h

Figure 1.3. Example of an acceptable patch (top): the size of the reference patch Δ
K̂

does not depend on the aspect ratio H/h. Example of a non acceptable patch (bottom):
the size of the reference patch Δ

K̂
now depends on the aspect ratio H/h.

λi,K and ri,K are given by (1.8) and GK(v) is the following 2 × 2 matrix

GK(v) =
∑

T∈ΔK

⎛⎜⎜⎝
∫

T

(
∂v

∂x1

)2

dx

∫
T

∂v

∂x1

∂v

∂x2

dx∫
T

∂v

∂x1

∂v

∂x2

dx

∫
T

(
∂v

∂x2

)2

dx

⎞⎟⎟⎠ ,

where K represents the set of triangles of Th having a common vertex with K.

Remark 1.3.2. The reader should note that similar interpolation error estimates
can be found in [15, 18]. We can refer to Section 2 Remark 3 of [33] for a com-
parison of both anisotropic interpolation estimates in a similar context.
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The heat equation

1.4 A posteriori error estimates

1.4.1 Piecewise quadratic time reconstructions

It was observed in [32] that a direct use of uhτ in an a posteriori error analysis of the
Crank-Nicolson scheme would lead to a suboptimal estimate. It was proposed there
to work rather with a piecewise quadratic time reconstruction of the numerical
solution. We now recall briefly the construction of [32] made for a Crank-Nicolson
discretization of an abstract evolutionary equation,

∂u

∂t
+ Au = f(t),

posed in a Hilbert space V , where A is a positive definite, selfadjoint, linear op-
erator on V with the dense domain in V . We discretize the last equation in time
as

un − un−1

τn

+ A
un + un−1

2
=

f(tn) + f(tn−1)

2
(1.9)

and consider the linear interpolation

uτ (t) = un−1 + (t − tn−1)
un − un−1

τn

, t ∈ In,

and the quadratic one

ûτ (t) = uτ (t) +
1

2
(t − tn−1)(t − tn)

(
f(tn) − f(tn−1)

τn

− A
un − un−1

τn

)
, t ∈ In,

(1.10)

see (3.5) in [32] in which we replace f(tn−
1
2 ) with (f(tn)+f(tn−1))/2 in accordance

with (1.9). The latter reconstruction allows an a posteriori error estimate to be
obtained for (1.9), which is of optimal second order.

We return now to the heat equation (1.2) and its discretization (1.3) or equiv-
alently (1.5). Comparing (1.5) and (1.9) we can interpret the operator A in (1.5)
as the finite dimensional approximation of −Δ in (1.5). This analogy allows us to
introduce the following quadratic reconstruction,

ûhτ (x, t) = uhτ (x, t) +
1

2
(t − tn−1)(t − tn)wn

h , t ∈ In, 1 ≤ n ≤ N, (1.11)

where wn
h ∈ V 0

h is defined by∫
Ω

wn
hvh dx =

∫
Ω

(∂nf vh −∇∂nuh · ∇vh) dx ∀vh ∈ V 0
h . (1.12)
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This reconstruction is the analogue of (1.10) in the case of the heat equation
discretized both in space and in time. We will refer to ûhτ as the two-point recon-
struction since it involves only un

h and un−1
h . We will use it to construct an upper

bound for the error analogous to that of [32]. However, the use of the time error
estimator based on ûhτ in our adaptive algorithm does not lead to the optimal rate
of convergence with respect to the time step. That is why we propose in the next
paragraph an alternative quadratic reconstruction.

As a motivation, we observe that wn
h in (1.11) is formally an approximation

of ∂f/∂t + Δ∂u/∂t in the time slab In. And the latter is equal to ∂2u/∂t2 by
(1.1). It seems natural then to try to replace wn

h in (1.11) by a finite difference
approximation of ∂2u/∂t2. We introduce thus

ũhτ (x, t) = uhτ (x, t) +
1

2
(t − tn−1)(t − tn)∂2

nuh, t ∈ In, 2 ≤ n ≤ N, (1.13)

where

∂2
nuh =

un
h − un−1

h

τn

− un−1
h − un−2

h

τn−1

(τn + τn−1)/2
.

Note that ũhτ is again continuous piecewise quadratic in time. We will refer to
it as the three-point quadratic reconstruction since it involves un

h, un−1
h and un−2

h .
Note that uhτ , ûhτ and ũhτ coincide at all times t1, . . . , tN .

Remark 1.4.1. The reconstruction ũhτ restricted to the time interval In is the
unique quadratic polynomial which coincides with un−2

h , un−1
h , un

h at time tn−2,
tn−1, tn, respectively. Indeed, denoting the latter by Pn(x, t) we observe that it
is equal to uhτ at t = tn−1 and t = tn and uhτ is linear in time on In. Hence
necessarily

Pn(x, t) = uhτ (x, t) + Cn(x)(t − tn−1)(t − tn)

for some Cn ∈ V 0
h . Then, we find Cn deriving Pn twice with respect to t and taking

into account that Pn(·, tn−2) = un−2
h . We thus find that Cn = ∂2

nuh/2 and recover
(1.13).

Remark 1.4.2. The requirement for wn
h to vanish on the boundary may seem

useless. However, since wn
h can be interpreted as an approximation of ∂f/∂t +

Δ∂u/∂t = ∂2u/∂t2 and since u is equal to zero on ∂Ω, then ∂2u/∂t2 also vanishes
on ∂Ω. Consequently, it is reasonable to define wn

h as an element of V 0
h .
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1.4.2 The upper bounds for the error

We will now present the two error indicators based on ûhτ and ũhτ and used
subsequently in our adaptive algorithm. In both cases, a standard energy technique
is used that leads to combined error indicators in space and time. The estimator
in space is similar to the one considered in [30, 29]. In what follows we keep the
notations of Sections 1.2 and 1.4.1 and set e = u−uhτ , ê = u−ûhτ and ẽ = u−ũhτ .
We announce now our main results:

Theorem 1.4.3. Let f̂ be the linear interpolant of f defined by

f̂(·, t) =
t − tn−1

τn

fn +
tn − t

τn

fn−1, t ∈ In, 1 ≤ n ≤ N,

and suppose that the mesh is such that there exists a constant c independent of the
time step, mesh size and aspect ratio such that

λ2
1,K

(
rT
1,KGK(ê)r1,K

)
≤ cλ2

2,K

(
rT
2,KGK(ê)r2,K

)
∀K ∈ Th. (1.14)

Then there is a constant C independent of the time step, mesh size and aspect
ratio such that∫ T

0

‖∇e‖2
L2(Ω) dt + ‖e(·, T )‖2

L2(Ω) ≤ ‖e(·, 0)‖2
L2(Ω)

+ C
N∑

n=1

∑
K∈Th

{∫ tn

tn−1

(
‖f − ∂nuh + Δuhτ‖L2(K) +

1

2λ
1/2
2,K

‖[∇uhτ · n]‖L2(∂K)

)

×
(

λ2
1,K

(
rT
1,KGK(ê)r1,K

)
+ λ2

2,K

(
rT
2,KGK(ê)r2,K

))1/2

dt

+

∫ tn

tn−1

∥∥∥f − f̂
∥∥∥2

L2(K)
dt +

τ 5
n

120
‖∇wn

h‖2
L2(K) +

λ2
2,Kτ 3

n

12
‖wn

h‖2
L2(K)

}
.

Here [·] denotes the jump of the bracketed quantity across an internal edge, [·] = 0
for an edge on the boundary ∂Ω, and n is the unit edge normal (in arbitrary
direction).

Theorem 1.4.4. Let

f̃ = fn−1/2 + (t − tn−1/2)
fn − fn−2

τn + τn−1

, t ∈ In, 2 ≤ n ≤ N (1.15)

and suppose that the mesh is such that there exists a constant c independent of the
time step, mesh size and aspect ratio such that

λ2
1,K

(
rT
1,KGK(ẽ)r1,K

)
≤ cλ2

2,K

(
rT
2,KGK(ẽ)r2,K

)
∀K ∈ Th. (1.16)
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Then there is a constant C independent of the time step, mesh size and aspect
ratio such that∫ T

t1
‖∇e‖2

L2(Ω) dt + ‖e(·, T )‖2
L2(Ω) ≤

∥∥e(·, t1)∥∥2

L2(Ω)

+ C
N∑

n=2

∑
K∈Th

{∫ tn

tn−1

(
‖f − ∂nuh + Δuhτ‖L2(K) +

1

2λ
1/2
2,K

‖[∇uhτ · n]‖L2(∂K)

)

×
(

λ2
1,K

(
rT
1,KGK(ẽ)r1,K

)
+ λ2

2,K

(
rT
2,KGK(ẽ)r2,K

))1/2

dt

+

∫ tn

tn−1

∥∥∥f − f̃
∥∥∥2

L2(K)
dt +

{τ 2
n−1τ

3
n

48
+

τ 5
n

120

}∥∥∇∂2
nuh

∥∥2

L2(K)
+

λ2
2,Kτ 3

n

12

∥∥∂2
nuh

∥∥2

L2(K)

}
.

Remark 1.4.5. The upper bounds in Theorems 1.4.3 and 1.4.4 are not traditional
a posteriori error estimates since they involve ωK(ê) or ωK(ẽ) and hence the gra-
dient of the exact solution u. A way to approximate it by a computable quantity
was proposed in [30, 29] and is presented in Section 1.4.3. The resulting error
estimator was proved very efficient for several problems, in particular the Poisson
equation and the Euler discretization of the heat equation. We will also apply this
technique in constructing our error estimators and the adaptive algorithm for the
Crank-Nicolson scheme.

Remark 1.4.6. As we will see in Section 1.5, our anisotropic adaptive algorithm
ensures assumptions (1.14) and (1.16) to be fulfilled with c = 1. A similar as-
sumption has been made in [29] in order to prove a lower bound in the framework
of the Laplace problem.

Remark 1.4.7. In the case of isotropic meshes λ1,K � λ2,K � hK, the above a
posteriori error estimates become∫ T

0

‖∇e‖2
L2(Ω) dt + ‖e(·, T )‖2

L2(Ω) ≤ ‖e(·, 0)‖2
L2(Ω)

+ C
N∑

n=1

∑
K∈Th

{∫ tn

tn−1

(
h2

K ‖f − ∂nuh + Δuhτ‖2
L2(K) + hK ‖[∇uhτ · n]‖2

L2(∂K)

)
dt

+

∫ tn

tn−1

∥∥∥f − f̂
∥∥∥2

L2(K)
dt +

τ 5
n

120
‖∇wn

h‖2
L2(K) +

h2
Kτ 3

n

12
‖wn

h‖2
L2(K)

}
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and∫ T

t1
‖∇e‖2

L2(Ω) dt + ‖e(·, T )‖2
L2(Ω) ≤

∥∥e(·, t1)∥∥2

L2(Ω)

+ C
N∑

n=2

∑
K∈Th

{∫ tn

tn−1

(
h2

K ‖f − ∂nuh + Δuhτ‖2
L2(K) + hK ‖[∇uhτ · n]‖2

L2(∂K)

)
dt

+

∫ tn

tn−1

∥∥∥f − f̃
∥∥∥2

L2(K)
dt +

{τ 2
n−1τ

3
n

48
+

τ 5
n

120

}∥∥∇∂2
nuh

∥∥2

L2(K)
+

h2
Kτ 3

n

12

∥∥∂2
nuh

∥∥2

L2(K)

}
,

without having to assume (1.14) or (1.16), but with a constant C depending on the
mesh aspect ratio.

Remark 1.4.8. The last three terms in the error estimates of both Theorem 1.4.3
and 1.4.4 will be used to estimate the error due to the time discretization. When u
is smooth enough, the error e in the L2(0, T ; H1(Ω)) norm is O (h + τ 2), thus the
first of these three terms are of optimal order. The terms involving ∇wh

n and ∇∂2
nuh

are of optimal order provided
∑N

n=1 τn ‖∇wn
h‖2

L2(Ω) and
∑N

n=1 τn ‖∇∂2
nuh‖2

L2(Ω) are
bounded uniformly with respect to h and τ . The last terms are even of a higher
order if we keep h proportional to τ 2 which is the natural choice in view of the
error behavior O (h + τ 2).

Proof of Theorem 1.4.3. We choose any 1 ≤ n ≤ N and t ∈ In. We have from
(1.11)

∂ûhτ

∂t
= ∂nuh + (t − tn−1/2)wn

h .

Hence, for all v ∈ H1
0 (Ω)∫

Ω

∂ê

∂t
v dx +

∫
Ω

∇e · ∇v dx =

∫
Ω

(f − ∂nuh) v dx −
∫

Ω

∇uhτ · ∇v dx

− (t − tn−1/2)

∫
Ω

wn
h v dx.

Then using (1.7) and (1.12), we obtain for all v ∈ H1
0 (Ω) and all vh ∈ V 0

h∫
Ω

∂ê

∂t
v dx +

∫
Ω

∇e · ∇v dx

=

∫
Ω

(f − ∂nuh) (v − vh) dx −
∫

Ω

∇uhτ · ∇(v − vh) dx

− (t − tn−1/2)

∫
Ω

wn
h (v − vh) dx +

∫
Ω

(f − f̂) vh dx.
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Taking v = ê, vh = Ihê and integrating by parts on each triangle K leads to

1

2

d

dt

∫
Ω

|ê|2 dx +

∫
Ω

∇e · ∇ê dx

=
∑

K∈Th

{∫
K

(f − ∂nuh + Δuhτ ) (ê − Ihê) dx − 1

2

∫
∂K

[∇uhτ · n] (ê − Ihê) dx

− (t − tn−1/2)

∫
K

wn
h (ê − Ihê) dx +

∫
K

(f − f̂) Ihê dx

}
.

Using the fact that ab = 1
2
a2 + 1

2
b2 − 1

2
(a − b)2, the Cauchy-Schwarz inequality,

the first and third inequalities of Proposition 1.3.1 and the Poincaré inequality we
have

1

2

d

dt

∫
Ω

|ê|2 dx +
1

2

∫
Ω

|∇e|2 dx +
1

2

∫
Ω

|∇ê|2 dx

≤
∑

K∈Th

{
C1

[(
‖f − ∂nuh + Δuhτ‖L2(K) +

1

2λ
1/2
2,K

‖[∇uhτ · n]‖L2(∂K)

)
ωK(ê)

+ |t − tn−1/2| ‖wn
h‖L2(K) ωK(ê)

]
+ C2

∥∥∥f − f̂
∥∥∥

L2(K)
‖∇Ihê‖L2(K)

+
1

2
‖∇(e − ê)‖2

L2(K)

}
,

where C1 is the constant of Proposition 1.3.1 and C2 is the constant in the Poincaré
inequality. Considering that inequality (1.14) implies that

ωK(ê) ≤ C3λ2,K ‖∇ê‖L2(K) ∀K ∈ Th, (1.17)

where C3 is independent of the mesh size and aspect ratio and using the fact that
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ab ≤ 1
2p

a2 + p
2
b2, for all p ∈ R

+, we have

1

2

d

dt

∫
Ω

|ê|2 dx +
1

2

∫
Ω

|∇e|2 dx +
1

2

∫
Ω

|∇ê|2 dx (1.18)

≤
∑

K∈Th

{
C1

[(
‖f − ∂nuh + Δuhτ‖L2(K) +

1

2λ
1/2
2,K

‖[∇uhτ · n]‖L2(∂K)

)
ωK(ê)

+
p

2
(t − tn−1/2)2λ2

2,K ‖wn
h‖2

L2(K)

]
+

C1C
2
3

2p
‖∇ê‖2

L2(K) +
p

2

∥∥∥f − f̂
∥∥∥2

L2(K)

+
C2

2

2p
‖∇Ihê‖2

L2(K) +
1

2
‖∇(e − ê)‖2

L2(K)

}
.

We want now to have an upper bound for ‖∇Ihê‖2
L2(K). Thus, using (1.17) in the

second inequality of Proposition 1.3.1, we have

‖∇(ê − Ihê)‖L2(K) ≤ C4 ‖∇ê‖L2(K) ∀K ∈ Th,

with C4 = C1C3. Thus

‖∇Ihê‖L2(K) ≤ ‖∇(ê − Ihê)‖L2(K) + ‖∇ê‖L2(K) ≤ (1 + C4) ‖∇ê‖L2(K) . (1.19)

Finally, use (1.19) in (1.18), choose p = C1C
2
3 +(1+C4)

2C2
2 , recall that from (1.11)

we have

e − ê = ûhτ − uhτ =
1

2
(t − tn−1)(t − tn)wn

h

and integrate (1.18) between t = tn−1 and t = tn, we obtain∫ tn

tn−1

‖∇e‖2
L2(Ω) dt + ‖ê(·, tn)‖2

L2(Ω) ≤
∥∥ê(·, tn−1)

∥∥2

L2(Ω)

+ C
∑

K∈Th

{∫ tn

tn−1

(
‖f − ∂nuh + Δuhτ‖L2(K) +

1

2λ
1/2
2,K

‖[∇uhτ · n]‖L2(∂K)

)
ωK(ê) dt

+

∫ tn

tn−1

∥∥∥f − f̂
∥∥∥2

L2(K)
dt +

τ 5
n

120
‖∇wn

h‖2
L2(K) +

λ2
2,Kτ 3

n

12
‖wn

h‖2
L2(K)

}
,

where C = max(1, 2C1, pC1, p). Summing up these inequalities on n = 1, . . . , N
and noting that ê(tn) = e(tn) ∀n, leads to the final result. �
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1.4 A posteriori error estimates

We will now prove Theorem 1.4.4. In order to derive an a posteriori error
estimate involving ũhτ , we first need the following result.

Proposition 1.4.9. Let ũhτ be defined by (1.13) and f̃ by (1.15), then for all
vh ∈ V 0

h and for any t ∈ In, 2 ≤ n ≤ N , we have∫
Ω

∂ũhτ

∂t
vh dx +

∫
Ω

∇uhτ · ∇vh dx =

∫
Ω

f̃vh dx

+ (t − tn−1/2)
τn−1

2

∫
Ω

∇∂2
nuh · ∇vh dx.

Proof. We choose any 2 ≤ n ≤ N and t ∈ In in this proof. We have from (1.13)
that

∂ũhτ

∂t
= ∂nuh + (t − tn−1/2)∂2

nuh. (1.20)

Then, using (1.7), we have for all vh ∈ V 0
h∫

Ω

∂ũhτ

∂t
vh dx +

∫
Ω

∇uhτ · ∇vh dx =

∫
Ω

fn−1/2 vh dx (1.21)

+ (t − tn−1/2)

∫
Ω

{
∂2

nuh vh + ∇∂nuh · ∇vh

}
dx.

We invoke now (1.3) at the time tn−1,∫
Ω

un−1
h − un−2

h

τn−1

vh dx +

∫
Ω

∇(un−1
h + un−2

h )

2
· ∇vh dx =

∫
Ω

fn−1 + fn−2

2
vh dx

and subtract it from (1.3) to obtain for all vh ∈ V 0
h∫

Ω

{
∂2

nuh vh + ∇
(

un
h − un−2

h

τn + τn−1

)
· ∇vh

}
dx =

1

τn + τn−1

∫
Ω

(fn − fn−2)vh dx.

Thus∫
Ω

{
∂2

nuh vh + ∇∂nuh · ∇vh

}
dx =

1

τn + τn−1

∫
Ω

(fn − fn−2)vh dx (1.22)

+
τn−1

2

∫
Ω

∇∂2
nuh · ∇vh dx.

It suffices now to insert (1.22) in (1.21) to obtain the result.
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The heat equation

Proof of Theorem 1.4.4. We choose any 2 ≤ n ≤ N and t ∈ In. Using (1.7),
(1.20) and Proposition 1.4.9, we obtain for all v ∈ H1

0 (Ω) and all vh ∈ V 0
h

∫
Ω

∂ẽ

∂t
v dx +

∫
Ω

∇e · ∇v dx

=

∫
Ω

(f − ∂nuh) v dx −
∫

Ω

∇uhτ · ∇v dx − (t − tn−1/2)

∫
Ω

∂2
nuh v dx

=

∫
Ω

(f − ∂nuh) (v − vh) dx −
∫

Ω

∇uhτ · ∇(v − vh) dx

+

∫
Ω

(
f − ∂ũhτ

∂t

)
vh dx −

∫
Ω

∇uhτ · ∇vh dx − (t − tn−1/2)

∫
Ω

∂2
nuh(v − vh)dx

=

∫
Ω

(f − ∂nuh) (v − vh) dx −
∫

Ω

∇uhτ · ∇(v − vh) dx

− (t − tn−1/2)
τn−1

2

∫
Ω

∇∂2
nuh · ∇vh dx +

∫
Ω

(f − f̃) vh dx

− (t − tn−1/2)

∫
Ω

∂2
nuh (v − vh) dx.

Then taking v = ẽ and vh = Ihẽ and integrating by parts on each triangle K, we
obtain

1

2

d

dt

∫
Ω

|ẽ|2 dx +

∫
Ω

∇e · ∇ẽ dx =

∑
K∈Th

{∫
K

(f − ∂nuh + Δuhτ ) (ẽ − Ihẽ) dx − 1

2

∫
∂K

[∇uhτ · n] (ẽ − Ihẽ) dx

− (t − tn−1/2)
τn−1

2

∫
K

∇∂2
nuh · ∇Ihẽ dx +

∫
K

(f − f̃) Ihẽ dx

− (t − tn−1/2)

∫
K

∂2
nuh (ẽ − Ihẽ) dx

}
.

Using the fact that ab = 1
2
a2 + 1

2
b2 − 1

2
(a − b)2, the Cauchy-Schwarz inequality,

Proposition 1.3.1, the Poincaré inequality, the inequality ab ≤ 1
2p

a2 + p
2
b2, for all

p ∈ R
+ and the relation

‖∇(e − ẽ)‖2
L2(Ω) = ‖∇(ũhτ − uhτ )‖2

L2(Ω) =
1

4
(t − tn−1)2(t − tn)2‖∇∂2

nuh‖2
L2(Ω),
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1.4 A posteriori error estimates

we have

1

2

d

dt

∫
Ω

|ẽ|2 dx +
1

2

∫
Ω

|∇e|2 dx +
1

2

∫
Ω

|∇ẽ|2 dx

≤
∑

K∈Th

{
C1

[(
‖f − ∂nuh + Δuhτ‖L2(K) +

1

2λ
1/2
2,K

‖[∇uhτ · n]‖L2(∂K)

)
ωK(ẽ)

+ |t − tn−1/2|
∥∥∂2

nuh

∥∥
L2(K)

ωK(ẽ)

]
+
{p

8
(τn−1)

2(t − tn−1/2)2 +
1

8
(t − tn−1)2(t − tn)2

}∥∥∇∂2
nuh

∥∥2

L2(K)

+
p

2

∥∥∥f − f̃
∥∥∥2

L2(K)
+

1 + C2
2

2p
‖∇Ihẽ‖2

L2(K)

}
,

where C1 is the constant of Proposition 1.3.1 and C2 is the constant in the Poincaré
inequality. Error equidistribution inequality (1.16) combined with Proposition
1.3.1 implies that

ωK(ẽ) ≤ C3λ2,K ‖∇ẽ‖L2(K) and ‖∇Ihẽ‖L2(K) ≤ C4 ‖∇ẽ‖L2(K) . (1.23)

We have then

1

2

d

dt

∫
Ω

|ẽ|2 dx +
1

2

∫
Ω

|∇e|2 dx +
1

2

∫
Ω

|∇ẽ|2 dx (1.24)

≤
∑

K∈Th

{
C1

[(
‖f − ∂nuh + Δuhτ‖L2(K) +

1

2λ
1/2
2,K

‖[∇uhτ · n]‖L2(∂K)

)
ωK(ẽ)

+
p

2
λ2

2,K(t − tn−1/2)2
∥∥∂2

nuh

∥∥2

L2(K)

]
+

C1C
2
3

2p
‖∇ẽ‖2

L2(K)

+
{p

8
τ 2
n−1(t − tn−1/2)2 +

1

8
(t − tn−1)2(t − tn)2

}∥∥∇∂2
nuh

∥∥2

L2(K)

+
p

2

∥∥∥f − f̃
∥∥∥2

L2(K)
+

1 + C2
2

2p
‖∇Ihẽ‖2

L2(K)

}
.

Finally, use the second inequality of (1.23) in (1.24), choose p = C1C
2
3 +C2

4(1+C2
2),

and integrate (1.24) between t = tn−1 and t = tn, to obtain
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The heat equation

∫ tn

tn−1

‖∇e‖2
L2(Ω) dt + ‖ẽ(·, tn)‖2

L2(Ω) ≤
∥∥ẽ(·, tn−1)

∥∥2

L2(Ω)

+ C
∑

K∈Th

{∫ tn

tn−1

(
‖f − ∂nuh + Δuhτ‖L2(K) +

1

2λ
1/2
2,K

‖[∇uhτ · n]‖L2(∂K)

)

×
(

λ2
1,K

(
rT
1,KGK(ẽ)r1,K

)
+ λ2

2,K

(
rT
2,KGK(ẽ)r2,K

))1/2

dt

+

∫ tn

tn−1

∥∥∥f − f̃
∥∥∥2

L2(K)
dt +

{τ 2
n−1τ

3
n

48
+

τ 5
n

120

}∥∥∇∂2
nuh

∥∥2

L2(K)
+

λ2
2,Kτ 3

n

12

∥∥∂2
nuh

∥∥2

L2(K)

}
,

where C = max(1, 2C1, pC1, p). Summing up this inequality on n and noting that
ẽ(tn) = e(tn) ∀n, leads to the final result. �

1.4.3 A posteriori error indicators

As already noted in the previous Section, the upper bounds for the error derived in
Theorems 1.4.3 and 1.4.4 are not traditional a posteriori error estimates since they
involve ωK(ê) and ωK(ẽ) and hence u. Therefore, following [30, 29], we introduce
the Zienkiewicz-Zhu error estimator [52, 53], namely, the difference between ∇uhτ

and an approximate L2(Ω) projection onto Vh:

ηZZ(uhτ ) =

(
ηZZ

1 (uhτ )
ηZZ

2 (uhτ )

)
=

⎛⎜⎜⎝ (I − Πh)

(
∂uhτ

∂x1

)
(I − Πh)

(
∂uhτ

∂x2

)
⎞⎟⎟⎠ , (1.25)

where Πh(∇uhτ ) ∈ Vh is defined by its values at each vertex P as

Πh(∇uhτ )(P ) =

⎛⎜⎜⎝ Πh

(
∂uhτ

∂x1

)
(P )

Πh

(
∂uhτ

∂x2

)
(P )

⎞⎟⎟⎠ =
1∑

K∈Th
P∈K

|K|

⎛⎜⎜⎜⎜⎜⎝
∑

K∈Th
P∈K

|K|
(

∂uhτ

∂x1

)
|K∑

K∈Th
P∈K

|K|
(

∂uhτ

∂x2

)
|K

⎞⎟⎟⎟⎟⎟⎠ .

(1.26)
Our error indicator is then obtained by replacing GK(ê) in ωK(ê) and GK(ẽ) in
ωK(ẽ) by ĞK(uhτ ) defined for any vh ∈ Vh by

ĞK(vh) =

⎛⎜⎝
∫

K

(
ηZZ

1 (vh)
)2

dx

∫
K

ηZZ
1 (vh)η

ZZ
2 (vh) dx∫

K

ηZZ
1 (vh)η

ZZ
2 (vh) dx

∫
K

(
ηZZ

2 (vh)
)2

dx

⎞⎟⎠ . (1.27)
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1.4 A posteriori error estimates

Approximating in such a way GK(ê) in Theorem 1.4.3 and GK(ẽ) in Theorem
1.4.4, we define the anisotropic space error estimator ηA as

ηA =

(
N∑

n=1

∑
K∈Th

(
ηA

K,n(uhτ )
)2

)1/2

where the contributions ηA
K,n are defined on each triangle K of Th and each time

interval In as

(
ηA

K,n(uhτ )
)2

=

∫ tn

tn−1

(
‖f − ∂nuh + Δuhτ‖L2(K) +

1

2λ
1/2
2,K

‖[∇uhτ · n]‖L2(∂K)

)

×
(

λ2
1,K

(
rT
1,KĞK(uhτ )r1,K

)
+ λ2

2,K

(
rT
2,KĞK(uhτ )r2,K

))1/2

dt. (1.28)

We introduce now two time error estimators: η̂T corresponding to the two-point
reconstruction ûhτ (cf Theorem 1.4.3) and η̃T corresponding to the three-point
reconstruction ũhτ (cf Theorem 1.4.4) defined respectively by

η̂T =

(
N∑

n=1

∑
K∈Th

(
η̂T

K,n(uhτ )
)2

)1/2

and η̃T =

(
N∑

n=2

∑
K∈Th

(
η̃T

K,n(uhτ )
)2

)1/2

.

The contributions η̂T
K,n and η̃T

K,n are computed on each triangle K of Th and each
time interval In via, for n ≥ 1,(

η̂T
K,n(uhτ )

)2

=

∫ tn

tn−1

∥∥∥f − f̂
∥∥∥2

L2(K)
dt +

τ 5
n

120
‖∇wn

h‖2
L2(K) +

λ2
2,Kτ 3

n

12
‖wn

h‖2
L2(K) ,

(1.29)
and for n ≥ 2,(

η̃T
K,n(uhτ )

)2

=

∫ tn

tn−1

∥∥∥f − f̃
∥∥∥2

L2(K)
dt +

{τ 2
n−1τ

3
n

48
+

τ 5
n

120

}∥∥∇∂2
nuh

∥∥2

L2(K)

+
λ2

2,Kτ 3
n

12

∥∥∂2
nuh

∥∥2

L2(K)
. (1.30)

In our implementation, all the integral between tn−1 and tn are approximated by
the midpoint rule. Moreover, we introduce the time error estimator ηT defined by

ηT =

(
N∑

n=1

∑
K∈Th

(
ηT

K,n(uhτ )
)2

)1/2

, (1.31)
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The heat equation

where the contributions ηT
K,n are defined on each triangle K of Th and each time

interval In as (
ηT

K,n(uhτ )
)2

= τn

∥∥∇ (
un

h − un−1
h

)∥∥2

L2(K)
.

This time error estimator corresponds to the time error indicator derived in [46]
for the heat equation discretized in time using the Crank-Nicolson method. This
time error estimator is similar to that obtained in Section 2.3 of [30] for the Euler
implicit time discretization of the heat equation and is of suboptimal order with
respect to time when considering the Crank-Nicolson scheme.

In order to measure the quality of our estimators, the estimated error is com-
pared to the true error introducing the so-called effectivity index, ei. Thus, we
define the following effectivity indices in space

eiA =
ηA(∫ T

0

∫
Ω

|∇e|2 dx dt

)1/2
(1.32)

and in time

êi
T

=
η̂T(∫ T

0

∫
Ω

|∇e|2 dx dt

)1/2
, eiT =

ηT(∫ T

0

∫
Ω

|∇e|2 dx dt

)1/2
,

and

ẽi
T

=
η̃T(∫ T

t1

∫
Ω

|∇e|2 dx dt

)1/2
. (1.33)

We will also check the behavior of the Zienkiewicz-Zhu error estimator. We
thus introduce the corresponding global estimator and the effectivity index

ηZZ =

(
N∑

n=1

∑
K∈Th

∫ tn

tn−1

∫
K

|ηZZ(uhτ )|2 dx dt

)1/2

(1.34)

and

eiZZ =
ηZZ(∫ T

0

∫
Ω

|∇e|2 dx dt

)1/2
. (1.35)

The error estimator is said to be equivalent to the true error when there exists two
constants C1 and C2 independent of the mesh such that

C1 ≤ ei ≤ C2,
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1.4 A posteriori error estimates

and the error estimator is said to be asymptotically exact if

ei −−→
h→0

1.

Remark 1.4.10. An alternative gradient recovery based on least square fitting has
been proposed in [54, 55]. Here we do not attempt to use this method since the
Zienkiewicz-Zhu error estimator performs surprisingly well.

1.4.4 A numerical study of the error estimators with uni-
form time steps and mesh size

We study here the effectivity indices corresponding to the two error estimators
η̂T and η̃T on several test cases for which the error comes either from the space
discretization, or from the time discretization, or from both of them. Set Ω =
(0, 1)× (0, 1) the unit square, T = 1 and choose u0 and f so that the solution u of
(1.1) is given by

case (a) u(x, y, t) = sin(15πt) sin(πx) sin(πy),

case (b) u(x, y, t) = sin(πt/2) sin(10πx) sin(10πy),

case (c) u(x, y, t) = sin(πt) sin(πx) sin(πy).

Note that in case (a) the error should be mainly due to the time discretization,
while in case (b) it should be mainly due to space discretization. Case (c) provides
an example in which the error comes from both space and time discretization.
The numerical results are reported in Tables 1.1–1.3. Uniform isotropic meshes
and constant time steps are used in all the experiments of this Subsection.

Referring to Table 1.1, we observe that the computed error in the test case (a)
is mainly due to the time discretization. Indeed, for a given time step, the error
does not depend on the space step h, and for constant h, the error is divided by
four when the time step τ is divided by two. Moreover the two time error esti-
mators η̃T and η̂T behave as the true error. Referring to Table 1.2, case (b), the
error is now mainly due to space discretization. We observe that for constant h,
the error does not depend on the time step τ , that the space effectivity index stays
close to 2.5 and that the Zienkiewicz-Zhu error estimator is asymptotically exact.
Thus, when the error is mainly due to the space discretization we can see that the
space error estimator ηA behaves as the true error. Referring to Table 1.3, case (c),
the error comes now from both space and time discretizations. We observe that
the error in the L2(0, T ; H1(Ω)) norm is O (h + τ 2), that the space error estimator
and the two time error estimators, η̂T and η̃T , are equivalent to the true error
and that the Zienkiewicz-Zhu error estimator is asymptotically exact. Thus, using
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The heat equation

h τ
(∫ T

0

∫
Ω |∇e|2

)1/2
eiZZ eiA ẽi

T
êi

T

0.0125 0.025 0.17 0.10 0.25 17.23 14.05

0.00625 0.025 0.17 0.05 0.125 17.35 14.15

0.003125 0.025 0.17 0.024 0.06 17.39 14.17

0.0125 0.0125 0.047 0.44 1.09 16.25 13.22

0.00625 0.0125 0.043 0.24 0.60 17.85 14.53

0.003125 0.0125 0.042 0.12 0.30 18.42 14.92

Table 1.1. Convergence results using uniform isotropic meshes and constant time steps,
case (a).

h τ
(∫ T

0

∫
Ω |∇e|2

)1/2
eiZZ eiA ẽi

T
êi

T

0.00625 0.05 1.11 1.01 2.47 0.48 0.61

0.00625 0.025 1.11 1.01 2.47 0.12 0.16

0.00625 0.0125 1.11 1.01 2.47 0.03 0.04

0.003125 0.05 0.56 1.00 2.46 0.96 1.21

0.003125 0.025 0.56 1.00 2.46 0.24 0.31

0.003125 0.0125 0.56 1.00 2.46 0.06 0.078

Table 1.2. Convergence results using uniform isotropic meshes and constant time steps,
case (b).

h τ
(∫ T

0

∫
Ω |∇e|2

)1/2
eiZZ eiA ẽi

T
êi

T
eiT

0.025 0.05 0.044 1.00 2.46 0.52 0.42 5.29

0.00625 0.025 0.011 1.00 2.45 0.51 0.43 10.75

0.0015625 0.0125 0.0028 1.00 2.45 0.51 0.49 21.73

0.025 0.0125 0.044 1.00 2.46 0.032 0.027 1.38

0.00625 0.00625 0.011 1.00 2.45 0.032 0.034 2.74

0.0015625 0.003125 0.0028 1.00 2.45 0.032 0.067 5.48

Table 1.3. Convergence results using uniform isotropic meshes and constant time steps,
case (c).

uniform time steps and mesh size we observe that the two time error estimators,
η̂T and η̃T , provide a good representation of the true error. In Table 1.3, we have
also reported the effectivity index eiT corresponding to the time estimator (1.31)
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1.5 Adaptive algorithm in space and time

derived in [46]. We observe that its effectivity index is multiplied by two each
time the space step and the time step are respectively divided by four and two.
In Table 1.4, case (c), we report the effectivity index eiT when dividing the space
step and the time step by two. We observe that eiT is constant. The time error
estimator ηT then behaves as O (h + τ) and is consequently of suboptimal order
with respect to time when considering the Crank-Nicolson time discretization.

h τ
(∫ T

0

∫
Ω |∇e|2

)1/2
eiZZ eiA eiT

0.025 0.05 0.044 1.00 2.46 5.29

0.0125 0.025 0.022 1.00 2.45 5.37

0.00625 0.0125 0.011 1.00 2.45 5.45

0.003125 0.00625 0.0056 1.00 2.45 5.47

Table 1.4. Convergence results for ηT using uniform isotropic meshes and constant
time steps, case (c).

1.5 Adaptive algorithm in space and time

We now propose an adaptive algorithm in space and time. We will describe this
algorithm while using (1.28) and (1.30). Since the time error estimator needs a
solution un−2

h , we do not change the first time step. For n ≥ 2, the idea is to
build successive triangulations T n

h with possibly large aspect ratio and to choose
appropriate time steps τn so that the relative estimated error in space and time in
the L2(0, T ; H1(Ω)) norm is close to a preset tolerance TOL, for example

0.875 TOL ≤
(
(ηA)2 + (η̃T )2

)1/2(∫ T

0

∫
Ω

|∇uhτ |2 dx dt

)1/2
≤ 1.125 TOL. (1.36)

In doing so, we are beyond the scope of the theory developed in the previous Sec-
tion since the mesh Th was not allowed to vary in time there. A more rigorous
adaptive procedure would have to include the error due to the interpolations from
T n−1

h to T n
h . We do not attempt to develop such a theory here and conjecture that

the interpolation error can be neglected provided the total number of remeshings
does not depend on the prescribed tolerance TOL. This point will be observed
numerically in Section 1.6.
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In order to satisfy (1.36) we require that, for all n ≥ 1, the error indicator in
space is such that

1

2
0.8752 TOL2

∫ tn

tn−1

∫
Ω

|∇uhτ |2 dx dt ≤ (1.37)∑
K∈Th

(
ηA

K,n(uhτ )
)2

≤ 1

2
1.1252 TOL2

∫ tn

tn−1

∫
Ω

|∇uhτ |2 dx dt,

and for all n ≥ 2, the error indicator in time is such that

1

2
0.8752 TOL2

∫ tn

tn−1

∫
Ω

|∇uhτ |2 dx dt ≤ (1.38)∑
K∈Th

(
η̃T

K,n(uhτ )
)2

≤ 1

2
1.1252 TOL2

∫ tn

tn−1

∫
Ω

|∇uhτ |2 dx dt.

Note that we do not take into account the error in time corresponding to the first
time step. If (1.37) is not satisfied, the BL2D anisotropic mesh generator [49] is
invoked to construct another mesh based on the space error indicator ηA. The P1-
interpolation between the previous mesh T n−1

h and the new mesh T n
h is carried out

by the BL2D mesh generator. Thus, BL2D provides us an interpolated solution
rn
h(un−1

h ) of un−1
h on the new mesh, where rn

h is the Lagrange interpolant operator
on T n

h . Then, after each remeshing, we seek un
h ∈ V 0

h,n such that ∀vh ∈ V 0
h,n∫

Ω

un
h − rn

h(un−1
h )

τn

vh dx +
1

2

∫
Ω

(
∇un

h + ∇rn
h(un−1

h )
)
· ∇vh dx (1.39)

=
1

2

∫
Ω

(fn + fn−1)vh dx.

Since BL2D requires the data to be given at the mesh vertices rather than
triangles, the condition (1.37) has to be translated to a condition for the mesh
vertices. For this purpose, we introduce at each vertex P the anisotropic error
estimator defined by

ηA
P,n

(
uhτ

)
=

( ∑
K∈Th
P∈K

(
ηA

K,n(uhτ )
)4
)1/4

.
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Since ∑
P∈Th

(
ηA

P,n(uhτ )
)4

= 3
∑

K∈Th

(
ηA

K,n(uhτ )
)4

,

then (1.37) holds whenever the following condition for every vertex P is satisfied
√

3

2NV

0.8752 TOL2

∫ tn

tn−1

∫
Ω

|∇uhτ |2 dx dt ≤ (1.40)(
ηA

P,n(uhτ )
)2

≤
√

3

2NV

1.1252 TOL2

∫ tn

tn−1

∫
Ω

|∇uhτ |2 dx dt,

where NV is the number of vertices of the mesh at time tn. The mesh generator
BL2D requires the metric to be given at each vertex P , namely, the direction of
anisotropy θP and the two stretching amplitudes h1,P and h2,P , see Figure 1.4.

P

h1,P

h2,P
θP

Figure 1.4. The input values of the BL2D mesh generator at vertex P .

The space adaptive algorithm is then as follows. First, we introduce at each
vertex P the two anisotropic error estimators in the direction of maximum and
minimum stretching defined by

ηA
i,P,n

(
uhτ

)
=

( ∑
K∈Th
P∈K

(
ηA

i,K,n(uhτ )
)4
)1/4

,

where ηA
i,K,n is the local error estimator on triangle K in the direction ri,K defined

as(
ηA

i,K,n(uhτ )
)2

=

∫ tn

tn−1

(
‖f − ∂nuh + Δuhτ‖L2(K) +

1

2λ
1/2
2,K

‖[∇uhτ · n]‖L2(∂K)

)

×
(

λ2
i,K

(
rT
i,KĞK(uhτ )ri,K

))1/2

dt.
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Thus, condition (1.40) holds whenever for i = 1, 2,

3

8N2
V

0.8754 TOL4

(∫ tn

tn−1

∫
Ω

|∇uhτ |2 dx dt

)2

≤(
ηA

i,P,n(uhτ )
)4

≤ 3

8N2
V

1.1254 TOL4

(∫ tn

tn−1

∫
Ω

|∇uhτ |2 dx dt

)2

.

Then, for all vertices P of the mesh, a value of the mesh size λ1,P and λ2,P are
computed averaging the values λ1,K and λ2,K of the triangles K containing a given
vertex P . The desired stretching metric h1,P and h2,P defined in Figure 1.4 are
then changed as follows. If

8
(
ηA

i,P,n(uhτ )
)4

<
3

N2
V

0.8754 TOL4

(∫ tn

tn−1

∫
Ω

|∇uhτ |2 dx dt

)2

then hi,P = 3/2 λi,P , i = 1, 2, if

8
(
ηA

i,P,n(uhτ )
)4

>
3

N2
V

1.1254 TOL4

(∫ tn

tn−1

∫
Ω

|∇uhτ |2 dx dt

)2

then hi,P = 2/3 λi,P , i = 1, 2, else hi,P = λi,P , i = 1, 2. In practice, the error is
equidistributed in the two directions of maximum and minimum stretching. This
ensures conditions (1.14) and (1.16) to be fulfilled with c = 1. Note that we use
the same algorithm with the space error estimator (1.28) and time error estimator
(1.29).

Finally, we wish to align the triangles K with the eigenvectors of the matrix
ĞK,n defined in (1.27). To do so, for each vertex P of the mesh the eigenvalues of
the gradient matrix

ĞP,n(uhτ ) =
∑

K∈Th
P∈K

((
ηA

1,K,n(uhτ )
)4

+
(
ηA

2,K,n(uhτ )
)4
)

ĞK(uhτ )

are computed. Then θP defined in Figure 1.4 is set to the angle between the axis
Ox and the largest eigenvalue of the matrix ĞP,n. After the space adaptation,
we proceed to the time adaptation. This procedure is quite simple. We check
condition (1.38) and increase or decrease the current time step if necessary. Our
space and time adaptive algorithm is summarized in Figure 1.5.
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1.5 Adaptive algorithm in space and time

Set T 0
h , u0

h, n = 1, t = 0 Initializations
Do while t < T Time loop

t := t + τn Increment the current time step
Compute un

h on mesh T n−1
h

Do for all triangles K of T n−1
h

Compute r1,K , r2,K , λ1,K , λ2,K Directions and amplitudes of stretching
Compute ĞK using (1.27) Approximated error gradient matrix
Compute η̃T

K,n using (1.30) Time error estimator
Compute ηA

K,n using (1.28) Space error estimator
End Do

If (1.37) and (1.38) are satisfied The mesh and the time step are correct
T n

h := T n−1
h Same mesh

n := n + 1 Next time step
Else

If (1.37) is not satisfied Mesh adaptation
Do for all vertices P

Compute ĞP,n, ηA
1,P,n, ηA

2,P,n Averaged error indicator on vertices
Set directions of mesh anisotropy r1,P and

r2,P to eigenvectors of ĞP

If ηA
1,P,n is too small (resp. too large) coarsening (resp. refinement)

the mesh size in the first direction in the direction r1,P .
of anisotropy should be
increased (resp. decreased)

If ηA
2,P,n is too small (resp. too large) coarsening (resp. refinement)

the mesh size in the second direction in the direction r2,P

of anisotropy should be
increased (resp. decreased)

End Do
Build new anisotropic mesh T n

h using BL2D
If (1.38) is not satisfied Time adaptation

If
∑

K∈Th

(
ηT

K,n(uhτ )
)2

is too small

(resp. too large) τn should be
increased (resp. decreased)

T n−1
h := T n

h

t := t − τn

End If
End Do

Figure 1.5. Adaptive algorithm.
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1.6 A numerical study of the adaptive algorithm

We apply here the adaptive algorithm described in Figure 1.5 to several test cases
requiring increasing level of mesh anisotropy. We start all our simulations on an
isotropic 10×10 mesh and with the time step τ1 = 0.05 except for the third example
where we start with an anisotropic 100 × 2 mesh. We monitor the absolute error

εabs =

(∫ T

0

∫
Ω

|∇e|2 dx dt

)1/2

, (1.41)

the relative error

εrel =

(∫ T

0

∫
Ω

|∇e|2 dx dt

)1/2

(∫ T

0

∫
Ω

|∇uhτ |2 dx dt

)1/2
, (1.42)

maximum and mean aspect ratio, respectively defined

ar = max
K∈Th

λ1,K

λ2,K

(1.43)

and

ar =

∑
K∈Th

λ1,K

λ2,K∑
K∈Th

1
, (1.44)

and the number of nodes nbn, all computed for the mesh at final time T . We
also report the number of time steps nbτ needed to reach the final time T and the
number of remeshings nbm that occurred during the simulation.

Example 1.6.1 Set Ω = (0, 1)× (0, 1) the unit square, T = 1 and choose u0 and
f so that the solution u of (1.1) is given by

u(x, y, t) = e−100r2(x, y, t),

where

r2(x, y, t) = (x − 0.3 − 0.4 β(t))2 + (y − 0.3 − 0.4 β(t))2

and

β(t) = 0.5 + 0.5 tanh

(
t − 0.5

0.2

)
.
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1.6 A numerical study of the adaptive algorithm

Thus, u is a Gaussian function, whose center moves from point (0.3, 0.3) at t = 0
to point (0.7, 0.7) at t = 1. The transport velocity 0.4β′(t) is maximum at t = 0.5,
see Figure 1.6.
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Figure 1.6. Example 1.6.1. Transport velocity 0.4β′(t).

Before starting our adaptive algorithm we first want to study the effectivity in-
dices corresponding to the two time error indicators η̂T and η̃T when using uniform
time steps and mesh size. We have reported in Table 1.5 the results obtained when
h = 10τ 2 and h = 160τ 2. We can observe that the error in the L2(0, T ; H1(Ω))
norm is O (h+τ 2), that the space error estimator and the two time error estimators
are equivalent to the true error as their effectivity indices tend to a constant value
and that the Zienkiewicz-Zhu error estimator is asymptotically exact. Moreover,

when h = 10τ 2 the time effectivity indices ẽi
T

and êi
T

are similar to those of Table
1.1. On the other hand, when h = 160τ 2 the error due to the time discretization

is divided by 16, so as the time effectivity indices ẽi
T

and êi
T
. Moreover, we also

report the effectivity index corresponding to time error estimator ηT defined by
(1.31). As in Table 1.3, the same conclusion is drawn. This time error estimator
is of suboptimal order with respect to time when considering the Crank-Nicolson
method. In Figure 1.7 the value of wn

h and ∂2
nuh are compared to ∂2u/∂t2 at time

t = 0.5 along the axis y = x and with h = τ = 0.00625. We can observe that ∂2
nuh

provides a smoother approximation of ∂2u/∂t2 than wn
h . Indeed, we can notice

slight oscillations when approaching ∂2u/∂t2 with wn
h .

We now use the adaptive algorithm with first the three-point time error esti-
mator (1.30) and the anisotropic space error estimator (1.28). We have reported
in Table 1.6 some numerical results with several values of the tolerance TOL. We
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h τ εabs eiZZ eiA ẽi
T

êi
T

eiT

0.025 0.05 0.22 0.99 2.50 17.51 14.32 3.93

0.00625 0.025 0.055 0.99 2.50 18.15 14.79 8.14

0.0015625 0.0125 0.014 1.00 2.52 18.28 14.93 16.42

0.025 0.0125 0.22 1.04 2.59 1.15 0.94 1.02

0.00625 0.00625 0.056 1.00 2.52 1.14 0.93 2.04

0.0015625 0.003125 0.014 1.00 2.52 1.14 0.93 4.10

Table 1.5. Example 1.6.1. Convergence results using uniform isotropic meshes and
constant time steps.
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Figure 1.7. Example 1.6.1. ∂2
nuh (solid line, left) and wn

h (solid line, right) compared
to ∂2u/∂t2 (dotted line) at time t = 0.5 and with h = τ = 0.00625.

observe that the error is divided by two each time the tolerance TOL is and that
both the time error indicator η̃T and the space error indicator ηA seem to be a
good representation of the true error. Indeed, we note that the time error esti-
mator η̃T is of optimal order as the number of time steps, nbτ , is approximatively
multiplied by

√
2 when TOL is divided by two. The space error estimator ηA is

also of optimal order as the number of nodes, nbn, at final time is approximatively
multiplied by four when TOL is divided by two. We can also note that both the
space and time effectivity indices tend to a constant value which shows that ηA

and η̃T are equivalent to the true error.
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1.6 A numerical study of the adaptive algorithm

TOL εrel εabs eiZZ eiA ẽi
T

nbn nbτ nbm ar ar

0.25 0.085 0.15 0.88 2.11 2.07 854 48 18 2.41 8.34

0.125 0.043 0.76 0.88 2.12 2.02 3232 67 22 2.53 10.59

0.0625 0.022 0.038 0.88 2.11 2.02 12610 96 27 2.78 18.49

0.03125 0.011 0.019 0.87 2.09 1.95 46253 136 31 2.78 18.58

Table 1.6. Example 1.6.1. True error and effectivity indices of the adapted solution at
final time T = 1. The three-point time error estimator (1.30) is used.

However, we remark that the Zienkiewicz-Zhu error estimator is not asymp-
totically exact. We have a value of eiZZ around 0.88 whereas we expect this value
to be close to one. This discrepancy can be attributed to the interpolation error
between two successive meshes that is not taken into account in our theoretical
estimates. Therefore, in order to recover the asymptotical convergence of the
Zienkiewicz-Zhu error estimator, we decide to replace ∇rn

h(un−1
h ), in (1.39), by its

Zienkiewicz-Zhu recovery, Πn
h

(
∇rn

h(un−1
h )

)
. Thus, after each remeshing, we seek

un
h ∈ V 0

h,n such that ∀vh ∈ V 0
h,n∫

Ω

un
h − rn

h(un−1
h )

τn

vh dx +
1

2

∫
Ω

(
∇un

h + Πn
h

(
∇rn

h(un−1
h )

))
· ∇vh dx (1.45)

=
1

2

∫
Ω

(fn + fn−1)vh dx.

We have reported in Table 1.7 the corresponding results. We note a better behav-
ior of the Zienkiewicz-Zhu error estimator since its effectivity index approaches one
when the tolerance goes to zero. Moreover, all the previous observations remain
unchanged, in particular, both the space and time error indicators are equivalent
to the true error with the expected optimal order of convergence.

Now if T n−1
h is identical to T n

h , we replace ∇un−1
h , in (1.3), by its Zienkiewicz-

Zhu recovery, Πn
h

(
∇un−1

h

)
, and if T n−1

h is different from T n
h , we replace ∇rn

h(un−1
h ),

in (1.39), by its Zienkiewicz-Zhu recovery, Πn
h

(
∇rn

h(un−1
h )

)
. Thus, we seek un

h ∈
V 0

h,n such that ∀vh ∈ V 0
h,n∫

Ω

un
h − un−1

h

τn

vh dx +
1

2

∫
Ω

(
∇un

h + Πn
h

(
∇un−1

h

))
· ∇vh dx (1.46)

=
1

2

∫
Ω

(fn + fn−1)vh dx,
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TOL εrel εabs eiZZ eiA ẽi
T

nbn nbτ nbm ar ar

0.25 0.08 0.14 0.93 2.24 2.17 877 48 17 2.37 11.27

0.125 0.04 0.7 0.95 2.29 2.15 2902 67 22 2.59 12.06

0.0625 0.02 0.034 0.97 2.34 2.22 10794 95 27 2.76 13.34

0.03125 0.01 0.017 0.98 2.34 2.20 47386 136 30 2.89 16.42

Table 1.7. Example 1.6.1. True error and effectivity indices of the adapted solution
at final time T = 1 when solving (1.3) if T n−1

h = T n
h and (1.45) if T n−1

h �= T n
h . The

three-point time error estimator (1.30) is used.

TOL εrel εabs eiZZ eiA ẽi
T

nbn nbτ nbm ar ar

0.25 0.078 0.134 0.99 2.37 2.30 853 48 18 2.42 9.84

0.125 0.039 0.066 0.99 2.38 2.28 3189 67 23 2.54 10.47

0.0625 0.02 0.034 1.00 2.38 2.23 11714 96 27 2.79 14.82

0.03125 0.01 0.017 1.00 2.38 2.24 48062 135 30 2.92 18.72

Table 1.8. Example 1.6.1. True error and effectivity indices of the adapted solution
at final time T = 1 when solving (1.46) if T n−1

h = T n
h and (1.45) if T n−1

h �= T n
h . The

three-point time error estimator (1.30) is used.

if T n−1
h and T n

h are identical and (1.45) if T n−1
h and T n

h are different. We have re-
ported in Table 1.8 the corresponding results. We now observe that the Zienkiewicz-
Zhu error estimator is asymptotically exact as its effectivity index is close to one.
All the previous observations remain unchanged, especially the good behavior of
both the space and time error indicators. We have reported in Figure 1.10 the
corresponding numerical simulation when the tolerance TOL=0.125.

In Figure 1.8 we also plot the evolution of the number of nodes and time step
size against time when the tolerance TOL=0.125. We observe that the number of
nodes remains almost constant whereas the time step size decreases until t = 0.5
and increases until final time T = 1. The evolution of the time step size thus fits
the transport velocity, see Figure 1.6. Thus, the three-point time error estimator
η̃T seems to be a good approximation of the true error. Finally, we plot in Figure
1.9 the value of ∂2

nuh when solving (1.3) if T n−1
h = T n

h and (1.39) if T n−1
h �= T n

h and
when solving (1.46) if T n−1

h = T n
h and (1.45) if T n−1

h �= T n
h compared to ∂2u/∂t2
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Figure 1.8. Example 1.6.1. Number of nodes (left) and time step size (right) with
respect to time t when solving (1.46) if T n−1

h = T n
h and (1.45) if T n−1

h �= T n
h . The time

error estimator is given by (1.30) and TOL=0.125.
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Figure 1.9. Example 1.6.1. ∂2
nuh (solid line) compared to ∂2u/∂t2 (dotted line) at

time t = 0.5 and when TOL=0.125. Left: we solve (1.3) if T n−1
h = T n

h and (1.39) if
T n−1

h �= T n
h . Right: we solve (1.46) if T n−1

h = T n
h and (1.45) if T n−1

h �= T n
h .

at time t = 0.5 along the axis y = x and when TOL=0.125. We note a better ap-
proximation of ∂2u/∂t2 when solving (1.46) if T n−1

h = T n
h and (1.45) if T n−1

h �= T n
h .

We now use the time error estimator (1.29) instead of (1.30) in the adaptive
algorithm and we have reported in Table 1.9 some numerical results with several
values of tolerance TOL. The results obtained show that the good behavior ob-
served in the case of constant space and time steps is not preserved when using
our adaptive algorithm. Indeed, we can see that the time error indicator η̂T is
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Figure 1.10. Example 1.6.1. Adapted meshes and solutions obtained with the time
error estimator (1.30) and TOL=0.125 when solving (1.46) if T n−1

h = T n
h and (1.45) if

T n−1
h �= T n

h . From top to bottom: time t=0, 0.05, 0.5 and 1 (151, 2674, 3333 and 3189
nodes, respectively).
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TOL εrel εabs eiZZ eiA êi
T

nbn nbτ nbm ar ar

0.25 0.074 0.128 1.00 2.39 2.25 885 620 15 2.38 9.52

0.125 0.038 0.066 1.00 2.40 2.14 2871 1860 19 2.70 16.45

0.0625 0.019 0.033 1.00 2.40 2.20 11924 4882 22 2.71 12.68

0.03125 0.01 0.017 1.00 2.39 2.20 48038 23851 26 2.95 19.51

Table 1.9. Example 1.6.1. True error and effectivity indices of the adapted solution at
final time T = 1. The two-point time error estimator (1.29) is used.

not of optimal order of convergence since the number of time steps, nbτ , is not
multiplied by

√
2 when we divide TOL by two. For a tolerance TOL=0.125, the

number of time steps was of 67 when using the time error indicator η̃T whereas
it becomes 1860 for the time error indicator η̂T . This significant difference shows
that η̂T tends to dramatically over-predict the true error.

In Figure 1.11 we plot the evolution of the number of nodes and time step size
against time when the tolerance TOL=0.125. We can see that the evolution of the
number of nodes is similar to that presented in Figure 1.8. On the other hand,
the time step evolution is completely different and shows an irregular progression
with very small time steps around a value of 0.005. In order to reduce this over-
prediction, we decide to solve (1.46) if T n−1

h = T n
h and (1.45) if T n−1

h �= T n
h . We

plot in Figure 1.12 the corresponding evolution of the number of nodes and the
time step size against time when the tolerance TOL=0.125. We can see that the
evolution of the number of nodes still be similar to that presented in Figures 1.8 or
1.11. The time step evolution is more interesting. Indeed, the irregular profile is
still here but the general aspect of the evolution of the time step seems to be closer
to the one presented in Figure 1.8 than to that of Figure 1.11. Indeed, neglecting
these oscillations we roughly have the same evolution as in Figure 1.8.

We suspect that this irregular profile is due to the interpolation error after
each remeshing. Thus, we introduce the relative two-point time error estimator
η̂ n

rel defined by

η̂ n
rel =

∑
K∈Th

(
η̂T

K,n(uhτ )
)2

∫ tn

tn−1

∫
Ω

|∇uhτ |2 dx dt

(1.47)
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Figure 1.11. Example 1.6.1. Number of nodes (left) and time step size (right) with
respect to time t. The time error estimator is given by (1.29) and TOL=0.125.
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Figure 1.12. Example 1.6.1. Number of nodes (left) and time step size (right) with
respect to time t when solving (1.46) if T n−1

h = T n
h and (1.45) if T n−1

h �= T n
h . The time

error estimator is given by (1.29) and TOL=0.125.

and the relative error εn
rel defined by

εn
rel =

∫ tn

tn−1

∫
Ω

|∇e|2 dx dt∫ tn

tn−1

∫
Ω

|∇uhτ |2 dx dt

. (1.48)

In Figure 1.13 the evolution of this two quantities is reported for a tolerance
TOL=0.125 when solving (1.46) if T n−1

h = T n
h and (1.45) if T n−1

h �= T n
h . We can

44



1.6 A numerical study of the adaptive algorithm

10−4

10−2

100

102

104

0 0.2 0.4 0.6 0.8 1
Time

new mesh

� � � � � � � � �� � � � � � � � �

�
η̂ n

rel

εn
rel

Figure 1.13. Example 1.6.1. Evolution of η̂ n
rel and εn

rel when solving (1.46) if
T n−1

h = T n
h and (1.45) if T n−1

h �= T n
h . The time error estimator is given by (1.29)

and TOL=0.125.

TOL εrel εabs eiZZ eiA êi
T

nbn nbτ nbm ar ar

0.25 0.078 0.133 1.00 2.40 2.28 852 71 15 2.44 10.66

0.125 0.038 0.066 1.00 2.41 2.20 3125 127 18 2.67 12.53

0.0625 0.019 0.033 1.00 2.41 2.17 12347 260 23 2.89 16.86

0.03125 0.0096 0.0166 1.00 2.40 2.18 47513 1695 25 3.01 20.57

Table 1.10. Example 1.6.1. True error and effectivity indices of the adapted solution
at final time T = 1 when solving (1.46) if T n−1

h = T n
h and (1.45) if T n−1

h �= T n
h . The

two-point time error estimator (1.29) is used.

see that each remeshing results in a jump of the two-point time error estimator
that causes the irregular evolution. In Table 1.10 we have reported the numerical
results for several values of tolerance TOL when solving (1.46) if T n−1

h = T n
h and

(1.45) if T n−1
h �= T n

h . We see that the number of time steps, nbτ , is not multiplied
by

√
2 when we divide TOL by two, so the optimal order of convergence is not

recovered. Finally, in Figure 1.14 we plot the value of wn
h compared to ∂2u/∂t2 at

time t = 0.5 along the axis y = x and when TOL=0.125. Two implementations of
our adaptive algorithm are reported there: firstly when solving (1.3) if T n−1

h = T n
h

and (1.39) if T n−1
h �= T n

h , and secondly when solving (1.46) if T n−1
h = T n

h and
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(1.45) if T n−1
h �= T n

h . We can see that wn
h does not at all approach ∂2u/∂t2 if the

Zienkiewicz-Zhu recovery method is not used. The huge oscillations of wn
h observed

in this case can explain why the time error indicator η̂T extensively over-predicts
the true error. A much better behavior of wn

h is observed if we solve (1.46) when
T n−1

h = T n
h and (1.45) when T n−1

h �= T n
h . However, this approximation also suffers

from important spurious oscillations and it is still not good enough to recover the
optimal order of convergence of the time error estimator η̂T .
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Figure 1.14. Example 1.6.1. wn
h (solid line) compared to ∂2u/∂t2 (dotted line) at

time t = 0.5 and when TOL=0.125. Left: We solve (1.3) if T n−1
h = T n

h and (1.39) if
T n−1

h �= T n
h . Right: We solve (1.46) if T n−1

h = T n
h and (1.45) if T n−1

h �= T n
h .

We now consider another test case with more anisotropic finite elements. We
do all the computations by replacing ∇un−1

h and ∇rn
h(un−1

h ), respectively in (1.3)
and in (1.39), by its Zienkiewicz-Zhu recovery, respectively Πn

h

(
∇un−1

h

)
and

Πn
h

(
∇rn

h(un−1
h )

)
.

Example 1.6.2 Set Ω = (0, 1)× (0, 1) the unit square, T = 1 and choose u0 and
f so that the solution u of (1.1) is given by

u(x, y, t) = 0.5 − 0.5 tanh

(
r(x, y) − 0.15 − 0.2 β1(t)

0.005

)
,

where
r(x, y) =

√
(x − 0.5)2 + (y − 0.5)2

and

β1(t) =

⎧⎪⎪⎨⎪⎪⎩
0.7t + 0.035 ln

(
exp

(
t − 0.2

0.05

)
+ exp

(
−t − 0.2

0.05

))
if t ≤ 0.5,

0.42 + 0.7t − 0.035 ln

(
exp

(
t − 0.8

0.05

)
+ exp

(
−t − 0.8

0.05

))
if t > 0.5.
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1.6 A numerical study of the adaptive algorithm

Thus, u is smooth, varies from one to zero through a narrow region of width 0.005.
This region moves with normal velocity 0.2β′

1(t), see Figure 1.15. We first use the
adaptive algorithm with the three-point time error estimator η̃T . The numerical
simulation is reported in Figure 1.17 when the tolerance TOL=0.25. We plot in
Figure 1.16 the evolution of the number of nodes and the time step size against
time. We observe that the number of nodes remains almost constant whereas the
time step size decreases or increases according to the velocity. In Table 1.11 we
have reported numerical results for several values of tolerance TOL. We observe
that ηZZ is asymptotically exact and both ηA and η̃T are equivalent to the true
error. We also note that the time error estimator η̃T is of optimal order since the
number of time steps is multiplied by

√
2 each time TOL is divided by two.
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Figure 1.15. Example 1.6.2. Normal velocity 0.2β′
1(t).

TOL εrel εabs eiZZ eiA ẽi
T

nbn nbτ nbm ar ar

0.25 0.074 0.78 1.00 2.87 2.87 5359 762 96 8.5 45.8

0.125 0.03 0.31 1.00 2.86 2.79 20079 1124 89 9.0 49.6

0.0625 0.016 0.16 1.00 2.88 2.78 84199 1569 91 9.7 73.6

0.03125 0.0077 0.081 1.00 2.87 2.83 362235 2175 92 9.8 149

Table 1.11. Example 1.6.2. True error and effectivity indices of the adapted solution
at final time T = 1. The three-point time error estimator (1.30) is used.
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Figure 1.16. Example 1.6.2. Number of nodes (left) and time step size (right) with
respect to time t. The time error estimator is given by (1.30) and TOL=0.25.
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Figure 1.18. Example 1.6.2. Number of nodes (left) and time step size (right) with
respect to time t. The two-point time error estimator is given by (1.29) and TOL=0.25.

We now use (1.29) instead of (1.30) in the adaptive algorithm. We do the same
experiment as in Figures 1.17, 1.16 and plot in Figure 1.18 the number of nodes
and the time step evolution. The evolution of the number of nodes is qualitatively
the same as in the previous case whereas the time step evolution exhibits the
same irregular evolution as in Figure 1.12. We have reported in Table 1.12 the
numerical results for several values of tolerance TOL. We see that the number of
time steps, nbτ , is almost doubled when the tolerance TOL is divided by two so the
optimality of the two-point time error estimator η̂T is not recovered. Moreover,
we have reported in Figure 1.19 the evolution of the relative two-point time error
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1.6 A numerical study of the adaptive algorithm

Figure 1.17. Example 1.6.2. Adapted meshes and solutions obtained with the time
error estimator (1.30) and the tolerance TOL=0.25. From top to bottom: time t=0,
0.05, 0.5 and 1 (151, 4917, 3757 and 5359 nodes, respectively).
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TOL εrel εabs eiZZ eiA êi
T

nbn nbτ nbm ar ar

0.25 0.06 0.64 1.01 2.86 2.75 5319 1088 100 8.68 39.10

0.125 0.03 0.32 1.00 2.87 2.72 17435 1734 91 9.14 46.36

0.0625 0.015 0.16 1.00 2.88 2.64 69224 4654 93 9.40 43.00

Table 1.12. Example 1.6.2. True error and effectivity indices of the adapted solution
at final time T = 1. The two-point time error estimator (1.29) is used.
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Figure 1.19. Example 1.6.2. Evolution of η̂ n
rel and εn

rel. The time error estimator is
given by (1.29) and TOL=0.25.

estimator (1.47) and the relative error (1.48). We can see the same phenomenon
as in the previous example, that is to say an over estimation of the true error after
each remeshing.

Our last test case illustrates the situation where the solution varies in only one
direction and thus leads to very stretched meshes. We still do all the computations
by replacing ∇un−1

h and ∇rn
h(un−1

h ), respectively in (1.3) and in (1.39), by its
Zienkiewicz-Zhu recovery, respectively Πn

h

(
∇un−1

h

)
and Πn

h

(
∇rn

h(un−1
h )

)
.
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1.6 A numerical study of the adaptive algorithm

Example 1.6.3 Set Ω = (0, 1) × (0, 1) the unit square, T = 1.5 and choose u0

and f so that the solution u of (1.1) is given by

u(x, y, t) = 0.5 + 0.5 tanh

(
x − 0.2 − 0.3 β2(t)

0.05

)
,

where

β2(t) =

⎧⎪⎪⎨⎪⎪⎩
0.5 + 0.5 tanh

(
t − 0.4

0.05

)
if t ≤ 0.75,

1.5 + 0.5 tanh

(
t − 1.1

0.05

)
if t > 0.75.

Note that we consider here a problem with mixed Dirichlet-Neumann boundary
condition. Indeed, we fixe u = 0 on {(x, y) ∈ ∂Ω : x = 0} and u = 1 on
{(x, y) ∈ ∂Ω : x = 1} and impose homogeneous Neumann boundary condition on
{(x, y) ∈ ∂Ω : y = 0 or y = 1}. Thus, the solution u exhibits an internal layer
moving with a velocity 0.3β′

2(t) having sharp peaks centered at times t = 0.4 and
t = 1.1, see Figure 1.20.
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Figure 1.20. Example 1.6.3. Transport velocity 0.3β′
2(t).

We apply the adaptive algorithm with the three-point time error estimator
η̃T . Adapted meshes are shown in Figure 1.21 when the tolerance TOL=0.03125.
We plot in Figure 1.22 the evolution of the number of nodes and the time step
size against time. We observe two slight variations of the number of nodes at
t = 0.4 and t = 1.1 corresponding to the peaks of acceleration and deceleration
of the velocity. The time step evolution is again as we expected and follows the
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Figure 1.21. Example 1.6.3. Adapted meshes obtained with the time error estimator
(1.30) and the tolerance TOL=0.03125. From left to right, top to bottom: time t=0,
0.05, 1 and 1.5 (320, 1042, 1015 and 892 nodes, respectively).

TOL εrel εabs eiZZ eiA ẽi
T

nbn nbτ nbm ar ar

0.125 0.03 0.095 0.99 2.87 2.68 155 142 84 63 231

0.0625 0.015 0.046 0.99 2.89 2.91 348 201 52 108 519

0.03125 0.007 0.022 0.99 2.96 2.99 892 285 52 165 705

0.015625 0.004 0.012 1.00 2.88 2.71 4408 401 40 118 847

Table 1.13. Example 1.6.3. True error and effectivity indices of the adapted solution
at final time T = 1.5. The time error estimator (1.30) is used.

velocity profile of the solution. Thus, for high velocity the adaptive algorithm
chooses to use small time step and vice-versa. In Table 1.13 we have reported
numerical experiments with several values of tolerance TOL. We observe that ηZZ

is asymptotically exact and that the space anisotropic error estimator ηA and the
three-point time error estimator η̃T are equivalent to the true error. The number
of time steps is approximatively multiply by

√
2 when TOL is divided by two so

that the optimal order is again recovered.
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Figure 1.22. Example 1.6.3. Number of nodes (left) and time step size (right) with
respect to time t. The time error estimator is given by (1.30) and TOL=0.03125.
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Figure 1.23. Example 1.6.3. Number of nodes (left) and time step size (right) with
respect to time t. The time error estimator is given by (1.29) and TOL=0.03125.

We now use (1.29) instead of (1.30) in the adaptive algorithm. Since the
Dirichlet boundary conditions are prescribed only on the part of the boundary
in this example, the two-point time error estimator, namely the definition of wn

h

(1.12), should be changed. We require here wn
h to vanish only on {(x, y) ∈ ∂Ω : x =

0 or x = 1} and leave it free on {(x, y) ∈ ∂Ω : y = 0 or y = 1}. The evolution of
the number of nodes and the time step size against time is reported in Figure 1.23
for the same simulation as in Figures 1.21, 1.22. We observe in Figure 1.23 that
the number of nodes increases after the first peak, stays approximatively constant
between the two peaks and finally decreases after the second peak. The time step
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TOL εrel εabs eiZZ eiA êi
T

nbn nbτ nbm ar ar

0.125 0.03 0.09 1.01 2.93 2.85 163 187 81 69 305

0.0625 0.015 0.046 1.00 2.98 2.83 345 301 57 109 479

0.03125 0.0075 0.023 1.00 2.95 2.96 892 909 52 169 948

0.015625 0.0037 0.011 1.00 2.89 2.95 6054 10147 38 86 904

Table 1.14. Example 1.6.3. True error and effectivity indices of the adapted solution
at final time T = 1.5. The time error estimator (1.29) is used.

10−6

10−4

10−2

100

102

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Time

new mesh

����� � ������������������������� ��� �����������������������������

�
η̂ n

rel

εn
rel

Figure 1.24. Example 1.6.3. Evolution of η̂ n
rel and εn

rel. The time error estimator is
given by (1.29) and TOL=0.03125.

evolution is more chaotic. Indeed, we observe many perturbations, which most
important of them appear during the two peaks of acceleration and deceleration.
We can also note that between the two peaks, when the velocity is very small,
the time step stays approximatively constant around a value of 0.02 whereas we
expect an increase. For solutions exhibiting high aspect ratio the behavior of the
two-point time error estimator seems then not to be a really good representation
of the error. In Table 1.14 we have reported some numerical results with several
values of tolerance TOL. We see that the two-point time error estimator is not of
optimal order as the number of time iteration grows when the tolerance is divided
by two. Finally we reported in Figure 1.24 the evolution of the relative two-point
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time error estimator (1.47) and the relative error (1.48). The same over estimation
of the true error appears each time we build a new mesh.

1.7 Conclusion

All numerical experiments show that η̃T provides a good representation of the true
error even with solutions exhibiting high aspect ratio finite elements. Indeed, the
expected second order of convergence with respect to time has been recovered for
all the three test cases. However, for the time error estimator η̂T , we did not man-
age to recover the optimal second order of convergence when using our adaptive
algorithm. The difficulty in approximating ∇wn

h involved in η̂T after each remesh-
ing seems to be the major problem of this approach . We now looking forward to
extend these results to a second model problem, the time-dependent convection-
diffusion problem discretized in time using the Crank-Nicolson method. Finally,
we report in Figure 1.25 the anisotropy corresponding to the three test cases re-
ported in Figures 1.10, 1.17 and 1.21 with a zoom on the characteristic features of
the meshes.

Figure 1.25. Zoom on the three adapted meshes for the simulations reported in Figures
1.10, 1.17 and 1.21 at their respective final time.
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Chapter 2

A posteriori error estimator for
the Crank-Nicolson scheme.
Second model problem: The time
dependent convection-diffusion
equation

An a posteriori upper bound is derived for the time-dependent convection-diffusion
problem using continuous, piecewise linear stabilized finite elements with large
aspect ratio for the space discretization and the Crank-Nicolson scheme for the
time discretization. It is based on the three-point quadratic time reconstruction ũhτ

defined by (1.13). A space and time adaptive algorithm is developed to ensure the
control of the relative error in the L2(0, T ; H1(Ω)) norm. Numerical experiments
illustrating the efficiency of this approach are reported. It is shown that the time
error indicator is of optimal order with respect to both the mesh size and the time
step, even in the convection dominated regime and in presence of boundary layers.
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The time-dependent convection-diffusion equation

2.1 Situation

Deriving robust a posteriori error estimators for the stationary convection-diffusion
problems with continuous, piecewise linear stabilized finite elements has generated
a lot of papers, from both theoretical and experimental point of views, see for
instance [14, 56, 57, 58, 59] for isotropic meshes and [60, 61, 30, 62] for anisotropic
meshes. However, fewer papers are available for the nonstationary case, we refer for
instance to [63] or [64, 65] for error estimates based on the discontinuous Galerkin
method.

Concerning parabolic problems and the Crank-Nicolson scheme, it was observed
in Section 2.1 of [32] that applying energy technique with a standard continuous
piecewise linear approximation in time would yield to a suboptimal a posteriori
error estimator for the time discretization. The so-called Crank-Nicolson recon-
struction was then introduced in order to restore the appropriate rate of conver-
gence in time. In this work, the authors derived optimal order a posteriori error
estimators in the framework of a semi-discrete time discretization. In the previous
Chapter, two quadratic time reconstructions were considered. Following [32], we
introduce the two-point quadratic time reconstruction. This reconstruction allows
us to derive optimal order a posteriori error estimators in the fully discrete situ-
ation. However, a jump of the corresponding time error estimator was observed
after each remeshing when using our space and time adaptive algorithm disallowing
the expected optimal order of convergence to be recovered.

An alternative piecewise quadratic time reconstruction was then proposed, the
three-point reconstruction, based on a finite difference approximation of ∂2u/∂t2.
A posteriori time error estimator was then derived and optimal order with respect
to both the mesh size and the time step was obtained when using our adaptive
algorithm. In this Chapter, we will extend this result, obtained for the heat
equation, to the time-dependent convection-diffusion problem. An optimal order
a posteriori upper bound based on the three-point quadratic time reconstruction
will be derived. We will then test the quality of the derived error indicators in the
convection dominated regime and in presence of boundary layers.

The Chapter is organized as follows. In Section 2.2 we introduce the model
problem and its space and time discretization. Then, we derive in Section 2.3 an
a posteriori upper bound for the error, the involved constant being independent
of the time step, mesh size and aspect ratio. In Section 2.4, we recall briefly the
space and time adaptive algorithm. Finally in Section 2.5, we present numerical
experiments on several test cases and conclude with the numerical simulation of
the transport of a sample concentration in a long rectangular channel.
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2.2 The model problem and its discretization

2.2 The model problem and its discretization

Let Ω be a polygonal domain with boundary ∂Ω, T > 0 the final time, ε > 0
the diffusion coefficient, a : Ω × (0, T ) → R

2 an incompressible velocity field,
f : Ω × (0, T ) → R a source term, u0 : Ω → R the initial condition. We consider
the following problem. Find u : Ω × (0, T ) → R such that⎧⎪⎪⎨⎪⎪⎩

∂u

∂t
− εΔu + a · ∇u = f in Ω × (0, T ),

u = 0 on ∂Ω × (0, T ),

u(·, 0) = u0 in Ω.

(2.1)

The weak formulation corresponding to (2.1) is as follows, see for instance [48].
Recall that W is the functional space defined by

W = {w ∈ L2(0, T ; H1
0 (Ω)) and ∂w/∂t ∈ L2(0, T ; H−1(Ω))}.

Given a ∈ C1(Ω̄×[0, T ]) such that div a = 0, f ∈ L2(0, T ; H−1(Ω)) and u0 ∈ L2(Ω),
we seek for a solution u ∈ W such that u(·, 0) = u0 and ∀v ∈ H1

0 (Ω) and a.e.
t ∈ (0, T ), 〈

∂u

∂t
, v

〉
+ ε

∫
Ω

∇u · ∇v dx +

∫
Ω

(a · ∇u)v dx = 〈f, v〉 , (2.2)

where < ·, · > denotes the duality pairing between H−1(Ω) and H1
0 (Ω).

It is well know that standard Galerkin space discretization of (2.2) leads to
spurious oscillations in the convection dominated regime. A remedy is to use
stabilized finite element method, see for instance [66, 67, 68] and references therein.
Thus, in order to approximate the solution of the above problem, we consider
the classical Galerkin Least Squares method (GLS) with a modified stabilization
parameter due to the use of anisotropic finite elements, see [50] for a theoretical
justification in the framework of stationary convection-diffusion. We keep the
same notations as in the previous Chapter for the space and time discretization.
Then assume that f ∈ C0([0, T ]; L2(Ω)) and u0 ∈ C0(Ω̄), set fn(·) = f(·, tn) and
u0

h = rhu
0, the Crank-Nicolson scheme consists in seeking un

h ∈ V 0
h such that for

all vh ∈ V 0
h we have∫

Ω

un
h − un−1

h

τn

vh dx +
ε

2

∫
Ω

∇(un
h + un−1

h ) · ∇vh dx +
1

2

∫
Ω

a · ∇(un
h + un−1

h )vh dx

+
∑

K∈Th

τK

∫
K

(
un

h − un−1
h

τn

+
1

2
a · ∇(un

h + un−1
h )

)
(a · ∇vh) dx

=
1

2

∫
Ω

(fn + fn−1)vh dx +
∑

K∈Th

τK

∫
K

1

2
(fn + fn−1)(a · ∇vh) dx, (2.3)
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The time-dependent convection-diffusion equation

for all n = 1, . . . , N . The stabilization parameter τK is defined by

τK =
λ2,K

2|a|∞
ξ(PeK),

where |a|∞ = ‖a‖L∞(Ω̄×[0,T ]) and the function ξ is defined by

ξ(PeK) =

{
PeK if 0 ≤ PeK ≤ 1,
1 if 1 ≤ PeK ,

(2.4)

with PeK , the local Péclet number, defined by

PeK =
λ2,K |a|∞

6ε
.

Here λ2,K is the local mesh size in the direction of minimum stretching defined
by (1.8). Using the notations (1.4) of the previous Chapter and introducing the
continuous, piecewise linear approximation in time uhτ defined for all t ∈ In by
(1.6), we can rewrite (2.3) as∫

Ω

∂nuh vh dx + ε

∫
Ω

∇uhτ · ∇vh dx +

∫
Ω

a · ∇uhτ vh dx

+
∑

K∈Th

τK

∫
K

(
∂nuh + a · ∇u

n−1/2
h

)
(a · ∇vh) dx

= ε (t − tn−1/2)

∫
Ω

(∇∂nuh · ∇vh dx + a · ∇∂nuh vh dx)

+

∫
Ω

fn−1/2vh dx +
∑

K∈Th

τK

∫
K

fn−1/2(a · ∇vh) dx, (2.5)

for all vh ∈ V 0
h .

2.3 An upper bound for the error

In order to derive an a posteriori error estimate involving the three-point recon-
struction ũhτ (1.13), we first need the following result.

Proposition 2.3.1. Set for all t ∈ In, 2 ≤ n ≤ N ,

f̄ = fn−1/2 + (t − tn−1/2)
fn − fn−2

τn + τn−1

and ūhτ = u
n−1/2
h + (t − tn−1/2)

un
h − un−2

h

τn + τn−1

.
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2.3 An upper bound for the error

Let ũhτ be defined by (1.13) then for all vh ∈ V 0
h and for all t ∈ In, 2 ≤ n ≤ N ,

we have ∫
Ω

∂ũhτ

∂t
vh dx + ε

∫
Ω

∇uhτ · ∇vh dx +

∫
Ω

a · ∇uhτ vh dx

=
τn−1

2
(t − tn−1/2)

∫
Ω

(
ε∇∂2

nuh · ∇vh + a · ∇∂2
nuh vh

)
dx

+

∫
Ω

f̄vh dx +
∑

K∈Th

τK

∫
K

(
f̄ − ∂ũhτ

∂t
− a · ∇ūhτ

)
(a · ∇vh) dx.

Proof. Let 2 ≤ n ≤ N and t ∈ In. From (1.13), recall that

∂ũhτ

∂t
= ∂nuh + (t − tn−1/2)∂2

nuh.

Thus, using (2.5), we have for all vh ∈ V 0
h∫

Ω

∂ũhτ

∂t
vh dx + ε

∫
Ω

∇uhτ · ∇vh dx +

∫
Ω

a · ∇uhτ vh dx

+
∑

K∈Th

τK

∫
K

(
∂nuh + a · ∇u

n−1/2
h − fn−1/2

)
a · ∇vh dx

= (t − tn−1/2)

∫
Ω

{
∂2

nuh vh + ε∇∂nuh · ∇vh + a · ∇∂nuh vh

}
dx

+

∫
Ω

fn−1/2vh dx. (2.6)

We now search for an alternative expression of the first term in the right hand
side of (2.6). We take the difference between equation (2.3) at time tn and tn−1 to
obtain∫

Ω

∂2
nuh vh dx + ε

∫
Ω

∇
(

un
h − un−2

h

τn + τn−1

)
· ∇vh dx +

∫
Ω

a · ∇
(

un
h − un−2

h

τn + τn−1

)
vh dx

+
∑

K∈Th

τK

∫
K

(
∂2

nuh + a · ∇
(

un
h − un−2

h

τn + τn−1

)
− fn − fn−2

τn + τn−1

)
(a · ∇vh) dx

=

∫
Ω

fn − fn−2

τn + τn−1

vh dx.

Thus, as

∂nuh −
un

h − un−2
h

τn + τn−1

=
τn−1

2
∂2

nuh,
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The time-dependent convection-diffusion equation

we have ∫
Ω

{
∂2

nuh vh + ε∇∂nuh · ∇vh + a · ∇∂nuh vh

}
dx

=
τn−1

2

∫
Ω

(
ε∇∂2

nuh · ∇vh + a · ∇∂2
nuh vh

)
dx +

∫
Ω

(
fn − fn−2

τn + τn−1

)
vh dx

+
∑

K∈Th

τK

∫
K

((
fn − fn−2

τn + τn−1

)
− ∂2

nuh − a · ∇
(

un
h − un−2

h

τn + τn−1

))
(a · ∇vh) dx.

(2.7)

It suffices now to insert (2.7) in (2.6) to obtain the desired result.

The Theorem presented hereafter is the main theoretical result of this Chapter.
In what follows we recall that e = u − uhτ and ẽ = u − ũhτ .

Theorem 2.3.2. Let f̄ and ūhτ be defined as in Proposition 2.3.1. Assume that
the mesh is such that there exists c independent of the time step, mesh size, aspect
ratio, ε, a, f and u0 such that

λ2
1,K

(
rT
1,KGK(ẽ)r1,K

)
≤ cλ2

2,K

(
rT
2,KGK(ẽ)r2,K

)
∀K ∈ Th. (2.8)

Then, there exists C independent of the time step, mesh size, aspect ratio, ε, a, f
and u0 such that∫ T

t1
‖∇e‖2

L2(Ω) dt +
1

ε
‖e(·, T )‖2

L2(Ω) ≤
1

ε

∥∥e(·, t1)∥∥2

L2(Ω)
+ C

N∑
n=2

∑
K∈Th

{
∫ tn

tn−1

(∥∥∥∥1

ε

(
f − ∂ũhτ

∂t
− a · ∇uhτ

)
+ Δuhτ

∥∥∥∥
L2(K)

+
1

2λ
1/2
2,K

∥∥∥∥[∂uhτ

∂n

]∥∥∥∥
L2(∂K)

)

×
(

λ2
1,K

(
rT
1,KGK(ẽ)r1,K

)
+ λ2

2,K

(
rT
2,KGK(ẽ)r2,K

))1/2

dt

+

(
τ 2
n−1τ

3
n

48
+

τ 5
n

120

)(∥∥∇∂2
nuh

∥∥2

L2(K)
+

|a|2∞
ε2

∥∥∂2
nuh

∥∥2

L2(K)

)
+

∫ tn

tn−1

∥∥∥∥1

ε

(
f − f̄

)∥∥∥∥2

L2(K)

dt

+
|a|2∞λ4

2,K

ε2

∫ tn

tn−1

∥∥∥∥1

ε

(
f̄ − ∂ũhτ

∂t
− a · ∇ūhτ

)∥∥∥∥2

L2(K)

dt

}
. (2.9)

[·] denotes the jump of the bracketed quantity across an internal edge with the
convention that [·] = 0 for an edge on the boundary ∂Ω, and n is the unit edge
normal (in arbitrary direction).
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2.3 An upper bound for the error

Remark 2.3.3. The estimate in Theorem 2.3.2 is not a usual a posteriori error
estimation since ẽ = u − ũhτ , and hence the gradient of u, is still involved in the
right-hand side of the estimate. An efficient manner to approximate this quantity
was proposed in [30, 29] by introducing a Zienkiewicz-Zhu post-processing proce-
dure. This was also been done to derive the a posteriori space error estimator in
the previous Chapter, see Section 1.4.3.

Remark 2.3.4. Condition (2.8) with c = 1 will be enforced by our adaptive algo-
rithm as in the previous Chapter, see Section 1.5.

Remark 2.3.5. In the case of isotropic meshes λ1,K � λ2,K � hK, then the above
a posteriori error estimate becomes

∫ T

t1
‖∇e‖2

L2(Ω) dt +
1

ε
‖e(·, T )‖2

L2(Ω) ≤
1

ε

∥∥e(·, t1)∥∥2

L2(Ω)
+ C

N∑
n=2

∑
K∈Th

{
∫ tn

tn−1

(
h2

K

∥∥∥∥1

ε

(
f − ∂ũhτ

∂t
− a · ∇uhτ

)
+ Δuhτ

∥∥∥∥2

L2(K)

+ hK

∥∥∥∥[∂uhτ

∂n

]∥∥∥∥2

L2(∂K)

)
dt

+

(
τ 2
n−1τ

3
n

48
+

τ 5
n

120

)(∥∥∇∂2
nuh

∥∥2

L2(K)
+

|a|2∞
ε2

∥∥∂2
nuh

∥∥2

L2(K)

)
+

∫ tn

tn−1

∥∥∥∥1

ε

(
f − f̄

)∥∥∥∥2

L2(K)

dt

+
|a|2∞h4

K

ε2

∫ tn

tn−1

∥∥∥∥1

ε

(
f̄ − ∂ũhτ

∂t
− a · ∇ūhτ

)∥∥∥∥2

L2(K)

dt

}

without having to assume (2.8) but with a constant C depending on the mesh aspect
ratio.

Remark 2.3.6. We will use the terms in the second and third lines of (2.9) in
order to estimate the error due to space discretization and the terms in the fourth
line of (2.9) in order to estimate the error due to time discretization. The term
in the fifth line of (2.9) will be disregarded since it is of higher order.
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The time-dependent convection-diffusion equation

Proof. Let 2 ≤ n ≤ N and t ∈ In. Using (2.2), (1.13) and Proposition 2.3.1, we
obtain for all v ∈ H1

0 (Ω) and all vh ∈ V 0
h

1

ε

∫
Ω

∂ẽ

∂t
v dx +

∫
Ω

∇e · ∇v dx +
1

ε

∫
Ω

a · ∇ẽ v dx

=
1

ε

∫
Ω

(
f − ∂ũhτ

∂t

)
v dx −

∫
Ω

∇uhτ · ∇v dx − 1

ε

∫
Ω

a · ∇ũhτ v dx

=
1

ε

∫
Ω

(
f − ∂ũhτ

∂t

)
(v − vh) dx −

∫
Ω

∇uhτ · ∇(v − vh) dx

− 1

ε

∫
Ω

a · ∇uhτ (v − vh) dx − 1

2ε
(t − tn−1)(t − tn)

∫
Ω

a · ∇∂2
nuh v dx

− τn−1

2
(t − tn−1/2)

∫
Ω

(
∇∂2

nuh · ∇vh +
1

ε
a · ∇∂2

nuh vh

)
dx

+
1

ε

∫
Ω

(f − f̄) vh dx − 1

ε

∑
K∈Th

τK

∫
K

(
f̄ − ∂ũhτ

∂t
− a · ∇ūhτ

)
(a · ∇vh) dx.

Note that since a is an incompressible field, we have for all v ∈ H1
0 (Ω)∫

Ω

a · ∇v v dx = 0.

Then taking v = ẽ, vh = Ihẽ and integrating by parts, we obtain

1

2ε

d

dt

∫
Ω

|ẽ|2 dx +

∫
Ω

∇e · ∇ẽ dx =

∑
K∈Th

{∫
K

{
1

ε

(
f − ∂ũhτ

∂t
− a · ∇uhτ

)
+ Δuhτ

}
(ẽ − Ihẽ) dx

+
1

2

∫
∂K

[
∂uhτ

∂n

]
(ẽ − Ihẽ) dx

}
+

1

2ε
(t − tn−1)(t − tn)

∫
Ω

a · ∇ẽ ∂2
nuh dx

− τn−1

2
(t − tn−1/2)

∫
Ω

(
∇∂2

nuh · ∇Ihẽ −
1

ε
a · ∇Ihẽ ∂2

nuh

)
dx

+

∫
Ω

1

ε

(
f − f̄

)
Ihẽ dx −

∑
K∈Th

τK

∫
K

1

ε

(
f̄ − ∂ũhτ

∂t
− a · ∇ūhτ

)
(a · ∇Ihẽ) dx.
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2.3 An upper bound for the error

Using the fact that ab = 1
2
a2 + 1

2
b2 − 1

2
(a − b)2 and ab ≤ 1

2p
a2 + p

2
b2 ∀p ∈ R

+,
Proposition 1.3.1, the Cauchy-Schwarz and the Poincaré inequality, and recall
that from (1.13) we have

‖∇(e − ẽ)‖2
L2(K) = ‖∇(ũhτ − uhτ )‖2

L2(K)

=
1

4
(t − tn−1)2(t − tn)2

∥∥∇∂2
nuh

∥∥2

L2(K)
,

then

1

2ε

d

dt

∫
Ω

|ẽ|2 dx +
1

2

∫
Ω

|∇e|2 dx +
1

2

∫
Ω

|∇ẽ|2 dx ≤ (2.10)

∑
K∈Th

{
C1

(∥∥∥∥1

ε

(
f − ∂ũhτ

∂t
− a · ∇uhτ

)
+ Δuhτ

∥∥∥∥
L2(K)

+
1

2λ
1/2
2,K

∥∥∥∥[∂uhτ

∂n

]∥∥∥∥
L2(∂K)

)

×
(

λ2
1,K

(
rT
1,KGK(ẽ)r1,K

)
+ λ2

2,K

(
rT
2,KGK(ẽ)r2,K

))1/2

+

{
p τ 2

n−1

8
(t − tn−1/2)2 +

1

8
(t − tn−1)2(t − tn)2

}∥∥∇∂2
nuh

∥∥2

L2(K)

+
p |a|2∞

8ε2

{
(t − tn−1)2(t − tn)2 + τ 2

n−1(t − tn−1/2)2
}∥∥∂2

nuh

∥∥2

L2(K)

+
p

2

∥∥∥∥1

ε

(
f − f̄

)∥∥∥∥2

L2(K)

+
p |a|2∞τ 2

K

2

∥∥∥∥1

ε

(
f̄ − ∂ũhτ

∂t
− a · ∇ūhτ

)∥∥∥∥2

L2(K)

+
1

2p
‖∇ẽ‖2

L2(K) +
3 + C2

2

2p
‖∇Ihẽ‖2

L2(K)

}
,

where C1 is the constant of Proposition 1.3.1 and C2 is the constant in the Poincaré
inequality. Error equidistribution inequality (2.8) combined with Proposition 1.3.1
implies that

ωK(ẽ) ≤ C3λ2,K ‖∇ẽ‖L2(K) and thus ‖∇Ihẽ‖L2(K) ≤ C4 ‖∇ẽ‖L2(K) . (2.11)

Finally, use the second inequality of (2.11) in (2.10), the inequality τK ≤ λ2
2,K

12ε
,

choose p = 1 + C2
4(3 + C2

2) and integrate (2.10) between t = tn−1 and t = tn, to
obtain
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∫ tn

tn−1

‖∇e‖2
L2(Ω) dt +

1

ε
‖ẽ(·, tn)‖2

L2(Ω) ≤
1

ε

∥∥ẽ(·, tn−1)
∥∥2

L2(Ω)
+ C

∑
K∈Th

{
∫ tn

tn−1

(∥∥∥∥1

ε

(
f − ∂ũhτ

∂t
− a · ∇uhτ

)
+ Δuhτ

∥∥∥∥
L2(K)

+
1

2λ
1/2
2,K

∥∥∥∥[∂uhτ

∂n

]∥∥∥∥
L2(∂K)

)

×
(

λ2
1,K

(
rT
1,KGK(ẽ)r1,K

)
+ λ2

2,K

(
rT
2,KGK(ẽ)r2,K

))1/2

dt

+

(
τ 2
n−1τ

3
n

48
+

τ 5
n

120

)(∥∥∇∂2
nuh

∥∥2

L2(K)
+

|a|2∞
ε2

∥∥∂2
nuh

∥∥2

L2(K)

)
+

∫ tn

tn−1

∥∥∥∥1

ε

(
f − f̄

)∥∥∥∥2

L2(K)

dt

+
|a|2∞λ4

2,K

ε2

∫ tn

tn−1

∥∥∥∥1

ε

(
f̄ − ∂ũhτ

∂t
− a · ∇ūhτ

)∥∥∥∥2

L2(K)

dt

}
,

where C = max(1, 2C1, p). Summing up these inequalities on n and noting that
ẽ(tn) = e(tn) ∀n, leads to the final result.

2.3.1 An anisotropic error indicator

Since the a posteriori error estimate of Theorem 2.3.2 involves the exact solution u
we proceed as in Section 1.4.3. Therefore, we introduce the Zienkiewicz-Zhu er-
ror estimator ηZZ(uhτ ) defined by (1.25). Our error indicator is then obtained by
replacing GK(ẽ) in ωK(ẽ) by ĞK(uhτ ) defined for any vh ∈ Vh by (1.27). Approxi-
mating in such a way GK(ẽ) in Theorem 2.3.2 and considering Remark 2.3.6, we
define the anisotropic space error estimator ηA as

ηA =

(
N∑

n=1

∑
K∈Th

(
ηA

K,n(uhτ )
)2

)1/2

,

where the contributions ηA
K,n are defined on each triangle K of Th and each time

interval In by(
ηA

K,n(uhτ )
)2

=∫ tn

tn−1

(∥∥∥∥1

ε

(
f − ∂ũhτ

∂t
− a · ∇uhτ

)
+ Δuhτ

∥∥∥∥
L2(K)

+
1

2λ
1/2
2,K

∥∥∥∥[∂uhτ

∂n

]∥∥∥∥
L2(∂K)

)

×
(

λ2
1,K

(
rT
1,KĞK(uhτ )r1,K

)
+ λ2

2,K

(
rT
2,KĞK(uhτ )r2,K

))1/2

dt,
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2.4 Adaptive algorithm in space and time

and the time error estimator η̃T as

η̃T =

(
N∑

n=2

∑
K∈Th

(
η̃T

K,n(uhτ )
)2

)1/2

,

where the contributions η̃T
K,n are computed on each triangle K of Th and each time

interval In by

(
η̃T

K,n(uhτ )
)2

=

(
τ 2
n−1τ

3
n

48
+

τ 5
n

120

)(∥∥∇∂2
nuh

∥∥2

L2(K)
+

|a|2∞
ε2

∥∥∂2
nuh

∥∥2

L2(K)

)
+

∫ tn

tn−1

∥∥∥∥1

ε

(
f − f̄

)∥∥∥∥2

L2(K)

dt, for n ≥ 2. (2.12)

Note that in our implementation, all the integrals between tn−1 and tn are approx-
imated by the midpoint rule. As in Section 1.4.3, we introduce the corresponding

effectivity indices in space and time, eiA and ẽi
T
, respectively defined by (1.32) and

(1.33). We also check the behavior of the global Zienkiewicz-Zhu error estimator
ηZZ defined by (1.34) and recall that the corresponding effectivity index eiZZ is
defined by (1.35).

2.4 Adaptive algorithm in space and time

The adaptive algorithm is similar to that presented in Section 1.5. The goal is to
build successive anisotropic triangulations T n

h and choose appropriate time steps
τn so that the relative error estimated in space and time in the L2(0, T ; H1(Ω))
norm is close to a preset tolerance TOL. Here we suggest that

0.75 TOL ≤

(
(ηA)2 + (η̃T )2

)1/2

(∫ T

0

∫
Ω

|∇uhτ |2 dx dt

)1/2
≤ 1.25 TOL.

Note that since the time error estimator (2.12) needs a solution un−2
h , we do not

attempt to change the first time step. Thus, sufficient conditions to satisfy the
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The time-dependent convection-diffusion equation

above inequality is that, for all n ≥ 1, the error indicator in space is such that

3

4
0.752 TOL2

∫ tn

tn−1

∫
Ω

|∇uhτ |2 dx dt ≤ (2.13)∑
K∈Th

(
ηA

K,n(uhτ )
)2

≤ 3

4
1.252 TOL2

∫ tn

tn−1

∫
Ω

|∇uhτ |2 dx dt,

and, for all n ≥ 2, the error indicator in time is such that

1

4
0.752 TOL2

∫ tn

tn−1

∫
Ω

|∇uhτ |2 dx dt ≤ (2.14)∑
K∈Th

(
η̃T

K,n(uhτ )
)2

≤ 1

4
1.252 TOL2

∫ tn

tn−1

∫
Ω

|∇uhτ |2 dx dt.

We refer to Section 1.5 for the adaptive procedure where conditions (1.37) and
(1.38) must be replaced by the present conditions (2.13) and (2.14). Moreover, we
decide not to make the space and time adaptation at the same time. We first carry
out the space adaptation before the time adaptation if both conditions (2.13) and
(2.14) are not satisfied.

Remark 2.4.1. In conditions (1.37) and (1.38), we chose to put the same weight
on the space and time error indicators in our adaptive algorithm. Here we decide
to weight the space error condition (2.13) by 3/4 and the time error condition
(2.14) by 1/4.

Remark 2.4.2. The two coefficients 0.75 and 1.25 define the interval of tolerance
for which the relative error estimated is acceptable. Choosing these coefficients
close to one would yield to error indicators close to TOL but conditions (2.13) and
(2.14) would become more restrictive and would lead to many remeshings and time
step modifications. In the case of the time-dependent convection-diffusion problem,
we choose to enlarge this interval of tolerance.

Remark 2.4.3. Here we do not take into account the interpolation error between
two successive meshes. We postulate that this interpolation error can be neglected
provided the total number of remeshings does not depend on the prescribed toler-
ance TOL. This has been successfully satisfied in the previous Chapter and will be
observed in the forthcoming numerical results.
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2.5 Numerical experiments

2.5 Numerical experiments

We apply here our adaptive algorithm to several test cases. We monitor at fi-
nal time T , the absolute error εabs in L2(0, T ; H1(Ω)) norm defined by (1.41), the
relative error εrel in the same norm defined by (1.42), the number of nodes nbn,
maximum and mean aspect ratio, ar and ar, respectively defined by (1.43) and
(1.44). We also report the number of time steps nbτ required to reach the final time
and the number of remeshings nbm occurred. We follow Section 1.6 and do all the
computations by replacing ∇un−1

h by its Zienkiewicz-Zhu recovery, Πn
h

(
∇un−1

h

)
,

when T n−1
h = T n

h and ∇un−1
h by Πn

h

(
∇rn

h(un−1
h )

)
when T n−1

h �= T n
h where Πn

h is
an approximate L2(Ω) projection onto V n

h defined by (1.26). In the following, we
study three examples, 2.5.1 and 2.5.2, taken from [69], and conclude with the nu-
merical simulation of an electroosmotic flow in a long rectangular channel.

Example 2.5.1 We first consider a problem for which an analytical solution is
known. Thus, we consider the convection-diffusion of a small source in a plane
shear flow. We set Ω = (−4000, 26000) × (−3400, 3400), T = 9000, ε = 50, f = 0
and a = (a0 + λy, 0)T where a0 = 0.5 and λ = 1e− 3. The initial condition u0 is a
point source of mass m at (x0, y0) = (7200, 0). Then the solution of (2.1) is given
by

u(x, y, t) =
m

4πεt(1 + λ2t2/12)1/2
exp−χ,

where

χ =
(x − x̄ − λyt/2)2

4εt(1 + λ2t2/12)
+

y2

4εt
and x̄ = x0 + a0t.

To allow the numerical solution of this problem to begin with a finite source size,
the computation is started at a time t = t0 = 2400 with

m = 4πεt0(1 + λ2t20/12)1/2.

We present in Figure 2.1 the adapted meshes for a tolerance TOL=0.0625. In
Figure 2.2 we present a history of the number of nodes and of the time step size
against time. We see that the number of nodes is quite constant whereas the time
step increases as the solution getting more diffused.

To investigate the efficiency of our adaptive algorithm, we provide in Table
2.1 (top) numerical experiments with several values of tolerance TOL. The result
show that eiZZ gets close to one when TOL tends to zero and that the space and
time error estimator are equivalent to the true error as their effectivity indices
tend to a constant value. We note that the error is divided by two each time the
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The time-dependent convection-diffusion equation

Figure 2.1. Example 2.5.1. Adapted meshes and isovalues obtained with a tolerance
TOL=0.0625. Top: time t=2450, isovalues 0.1, 0.5, 0.9, with 6421 nodes. Bottom:
final time T = 9000, isovalues 0.01, 0.05, 0.1, with 8884 nodes.
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Figure 2.2. Example 2.5.1. Number of nodes (left) and time step size (right) with
respect to time t with a tolerance TOL=0.0625.
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2.5 Numerical experiments

TOL εrel εabs eiZZ eiA ẽi
T

nbn nbτ nbm ar ar

0.25 0.110 9.750 0.762 2.131 1.162 1134 22 20 5.2 27.8

0.125 0.0504 4.475 0.882 2.451 1.072 2714 27 21 7.3 48.7

0.0625 0.0250 2.218 0.903 2.469 1.154 8884 37 26 9.5 69.4

0.03125 0.0121 1.073 0.915 2.482 1.137 32664 52 29 10.1 88.4

0.25 0.116 10.092 0.574 1.93 0.939 1679 159 44 6.6 48.5

0.125 0.0551 4.856 0.689 2.082 0.978 3728 206 48 9.7 48.6

0.0625 0.0265 2.344 0.767 2.193 1.082 11990 281 55 9.9 93.2

0.03125 0.0129 1.144 0.837 2.279 1.163 40525 400 59 10.6 74.2

Table 2.1. Example 2.5.1. True error and effectivity indices of the adapted solution at
final time T = 9000. Top: ε = 50. Bottom: ε = 1.
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Figure 2.3. Example 2.5.1. True error (left) and total number of time steps (right) at
final time T = 9000 with respect to the tolerance TOL (ε = 50).

tolerance is and that the optimal second order of convergence with respect to time
is achieved as the number of time steps is multiplied by

√
2 when TOL is divided

by two, see also Figure 2.3. We study now the behavior of the same quantities for
a smaller diffusion coefficient. We have reported the results in Table 2.1 (bottom)
with a diffusion coefficient ε = 1. We can observe that the error is still divided
by two each time the tolerance is and that the optimal rate of convergence with
respect to time is also recovered. The differences concern the Zienkiewicz-Zhu
error estimator and the number of nodes and time steps. Indeed, we observe that
when the diffusion coefficient gets smaller eiZZ is not close to one anymore when
TOL tends to zero. Regarding the number of nodes and time steps it increase as
ε decreases which is not surprising according to our space and time indicators.
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The time-dependent convection-diffusion equation

Example 2.5.2 In this example we consider a more anisotropic finite elements
test case exhibiting both internal and boundary layers. We set Ω = (0, 1)2, f = 0,
T = 0.6, ε = 1e − 3, a = (2, 1)T , δ = 7.8125e − 3. The initial condition u0 = 0
except on ∂Ω where u0 is defined by

u0(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if x = 0, 0 ≤ y ≤ 1,

1 if 0 ≤ x ≤ 1, y = 1,

(δ − x)/δ if x ≤ δ, y = 0,

0 if x > δ, y = 0,

(y − 1 + δ)/δ if x = 1, y ≥ 1 − δ,

0 if x = 1, y ≤ 1 − δ,

see also Figure 2.4. Note that we keep the same boundary conditions for the
computation of the numerical solution.

1

1 0

0

0

(δ-x)/δ

(y-1+δ)/δ

Figure 2.4. Example 2.5.2. Initial condition u0.

Thus, this problem exhibits boundary layers along x = 0 and y = 1 at initial
time. The boundary layer at x = 0 propagates into the domain and creates an
internal boundary layer which finally reaches the boundary at x = 1 and creates
a new boundary layer because of the imposed u = 0 boundary condition. The
boundary layer at y = 1 reduces progressively as the solution gets the value of one
on the top of the domain. Thus this problem exhibits both internal and boundary
layers which make it a very challenging problem. Adapted meshes are presented in
Figure 2.6 for a tolerance TOL=0.0625. In Figure 2.5 we present a history of the
number of nodes and of the time step size against time. We see that the number
of nodes, initially large due to the discontinuous boundary condition, decreases as
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Figure 2.5. Example 2.5.2. Number of nodes (left) and time step size (right) with
respect to time t with a tolerance TOL=0.0625.

the internal layer propagates into the domain and then increases with the devel-
opment of a new boundary layer at the external boundary until finally becoming
constant. For the time step size, we see that it was initially very small in order to
capture the very large gradient of the solution. Then, progressively it increases as
the solution gets more diffused. Moreover, we observe that near the time t = 0.5
the solution reaches its stationary point. At this moment, the number of nodes
stays constant and the time step increases quickly.

We have reported in Table 2.2 the total number of time steps required to reach
the final time for several values of tolerance TOL. We observe that the optimal
second order of convergence with respect to time is recovered as the number of time
steps is multiplied by

√
2 when TOL is divided by two, see also Figure 2.7. Finally,

in Figures 2.8 and 2.9 we present several zooms of the meshes of the numerical
simulation reported in Figure 2.6. In Figure 2.8 we zoom on the left bottom
corner and the right top corner of the domain respectively at the time t = 0.25
(left pictures) and at final time T = 0.6 (right pictures). In Figure 2.9 we present
a progressive zoom of the external boundary layer created by the discontinuity of
the solution due to the imposed zero value condition on this part of the boundary
at final time T = 0.6.

Example 2.5.3 In this example we study the dynamics of a solute carried by
an electroosmotic flow within a rectangular microchannel. All the parameters
are given in the international unit system. The solute is initially modelled by a
rectangular unit pulse. Thus, we set Ω = (0, 6e − 4) × (0, 5e − 5), ε = 1e − 10,
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The time-dependent convection-diffusion equation

Figure 2.6. Example 2.5.2. Adapted meshes (right) and isovalues 0.1, 0.5, 0.9 (left)
obtained with a tolerance TOL=0.0625. From top to bottom: time t=0, 0.05, 0.25 and
0.6 (151, 9464, 6050 and 38874 nodes, respectively).
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2.5 Numerical experiments

TOL nbn nbτ nbm ar ar

0.25 3987 163 93 15.0 190.9

0.125 12222 247 103 17.9 769.7

0.0625 38874 353 109 21.6 2553.8

0.03125 140057 502 130 27.9 9092.1

Table 2.2. Example 2.5.2. Number of nodes and time steps of the adapted solution at
final time T = 0.6.
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Figure 2.7. Example 2.5.2. Total number of time steps at final time T = 0.6 with
respect to the tolerance TOL.

f = 0, T = 0.1. The initial condition u0 is defined by

u0(x, y) =

⎧⎪⎪⎨⎪⎪⎩
0.5 + 0.5 tanh

(
x − 1e − 4

1e − 6

)
if x < 1.5e − 4,

0.5 − 0.5 tanh

(
x − 2e − 4

1e − 6

)
if x > 1.5e − 4.

Note that we consider here a mixed Dirichlet-Neumann boundary condition prob-
lem. Indeed, we impose u = 0 along the left and right sides and homogeneous
Neumann boundary condition on the top and bottom sides. In the case of a
narrow rectangular microchannel with uniformly charged walls and an imposed
constant electric field E along the x-direction such as E = (Ex, 0)T , the velocity
field is horizontal and can be approximated, if the zeta potential at the walls is
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Figure 2.8. Example 2.5.2. Zoom on adapted meshes of the left bottom corner and the
right top corner of the domain respectively at the time t = 0.25 (left pictures) and at
final time T = 0.6 (right pictures).

Figure 2.9. Example 2.5.2. From left to right, top to bottom: zoom of size 1e-1, 1e-2,
1e-3 and 1e-4 of the external boundary layer at x=1 at final time T = 0.6.
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such that |ζ| < 0.25 [8], by

a(x, y) =

⎛⎝ − ε̄ζEx

4πμ
(1 − exp(−κg(y)))

0

⎞⎠ ,

where ε̄ = 6.95e − 10 is the electrical permittivity of the solution, ζ = −0.1,
μ = 1e − 3 is the viscosity, g(y) is the normal distance of the wall, Ex = 5e5
and κ−1 is called the Debye length and it corresponds to the thickness of the
Debye layer. Thus the velocity profile is horizontal, equal to zero on the top and
bottom sides of the domain, constant in the whole domain except in the Debye
layer region very close to the wall. In Figure 2.10 we plot the velocity profile
against the normal distance to the wall for various values of κ−1. Note that the
Debye thickness (κ−1) is usually of the order 10−9, which will be the value that
we will use in our numerical simulations. We can refer to [70, 71] for the all set
of equations describing the electroosmotic flow in the general case and [8, 72] in
the case of rectangular microchannels. The numerical simulations are presented
in Figure 2.11 for a tolerance TOL=0.0625.

In Figure 2.12 we present the evolution of the number of nodes and of the time
step size against time. Here again, the time step size increases with the diffusion
of the solution. The number of nodes increases too as the solution gets diffused.
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Figure 2.10. Example 2.5.3. Velocity profiles for various values of κ−1. From left to
right: κ−1 = 1e − 7, 5e − 7, 1e − 6, 2e − 6.
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Figure 2.11. Example 2.5.3. Adapted meshes and isovalues 0.1, 0.5 and 0.9 obtained
with a tolerance TOL=0.0625. From top to bottom: time t=0, 0.0001, and 0.1 (401,
10663 and 34443 nodes, respectively).

10000

20000

30000

40000

0 0.02 0.04 0.06 0.08 0.1

N
u
m

b
er

of
n
o
d
es

Time

2e-05

4e-05

6e-05

8e-05

0 0.02 0.04 0.06 0.08 0.1

T
im

e
st

ep

Time

Figure 2.12. Example 2.5.3. Number of nodes (left) and time step size (right) with
respect to time t with a tolerance TOL=0.0625.

In Table 2.3 we have reported the total number of time steps required to reach the
final time for several values of tolerance TOL. We still observe the optimal second
order of convergence with respect to the time step, see also Figure 2.13. Finally, in
Figure 2.14, we zoom on the solute at final time T = 0.1 for all the four tolerances
of Table 2.3.
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TOL nbn nbτ nbm ar ar

0.25 10700 864 173 4.5 62.1

0.125 16201 1272 240 5.3 49.7

0.0625 34443 1842 290 5.4 63.2

0.03125 60059 2626 316 5.9 78.3

Table 2.3. Example 2.5.3. Number of nodes and time steps of the adapted solution at
final time T = 0.1.
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Figure 2.13. Example 2.5.3. Total number of time steps at final time T = 0.1 with
respect to the tolerance TOL.

2.6 Conclusion

An anisotropic error estimator for the time-dependent convection-diffusion prob-
lem using the second order Crank-Nicolson scheme has been derived. The corre-
sponding space and time error estimators have been successfully used in a space and
time adaptive algorithm. All the numerical experiments show optimal order with
respect to both the mesh size and time step and demonstrate that these indica-
tors provide an efficient tool for the computation of unsteady convection-diffusion
problem exhibiting sharp boundary layers. Based on these error indicators, we
now focus on the numerical simulation of EOF and mass transport of a sample
concentration within a network of microchannels.
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Figure 2.14. Example 2.5.3. Adapted meshes and isovalues 0.1 to 0.9 at final time
T = 0.1. From top to bottom: tolerance TOL=0.25, 0.125, 0.0625, 0.03125 (10700,
16201, 34443, 60059 nodes, respectively).
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Chapter 3

Adaptive finite elements with
large aspect ratio for
electroosmosis and
pressure-driven microflows

A space and time adaptive method with possibly finite elements having large
aspect ratio are presented for the numerical simulation of mixed electroosmotic
and pressure-driven microflows in two space dimensions. The method allows the
electroosmotic flow to be solved accurately, despite the presence of strong boundary
layers. The unknowns are the external electric potential, the electrical double layer
potential, the velocity field and the sample concentration. Continuous piecewise
linear stabilized finite elements with large aspect ratio and the Crank-Nicolson
scheme are used for the space and time discretization of the concentration equation.
Numerical results are presented showing the efficiency of this approach, first in a
straight channel, then in a crossing, double and multiple T-form configuration
channel.
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AFEM for electroosmosis and pressure-driven microflows

3.1 Situation

Due to the recent development of various micro-system devices for fluid handling
and analysis, EOF has received much attention over the last decade. It has been
widely investigated as well experimentally, theoretically or numerically [8, 73, 6].
Patankar and Hu [70] carried out three-dimensional numerical simulations of EOF
in a cross-channel device using a finite volume method. Bianchi et al. [74] stud-
ied EOF in T-junctions and the influence of the ζ-potential distribution and the
Reynolds number on the flow distribution using a finite element formulation. Nu-
merical simulations of microfluidics injection have been done by Ren et al. [75]
who used artificial boundary conditions in order to truncate the physical domain
to a smaller one. Ermakov et al. [76, 77] investigated mass transport and EOF in
two-dimensional channels. Injection techniques were also simulated. Electrokinetic
injection techniques within complex geometries have been also widely studied by
Fu et al. [78, 79] who made simulations in a cross-shaped, double-T and triple-T
shaped configuration system. Mixed electroosmotic and pressure-driven flows in
straight channel and T-shaped junction have been studied by Dutta et al. [80] us-
ing a spectral element method. Dutta and Beskok also presented in [81] analytical
results of combined electroosmotic and pressure-driven flows in a two-dimensional
straight channel. Optimization of the design of microchannel turns to minimize
electrokinetic dispersion of analyte bands is carried out in [82, 83] using adaptive
finite elements.

The aim of the Chapter is to simulate the behavior of EOF and mass transport
in complex geometries. The key issue is to compute accurately and efficiently the
electric potential near the walls. As the thickness of the EDL is very thin (∼nm)
compared to the capillary diameter (∼ μm), the estimation of this potential is a
challenging task when considering its numerical simulation. A novel approach will
be used. An adaptive finite element method will be considered. This method will
allow to automatically refine the mesh grid in the EDL region and thus capture
accurately and efficiently the variation of the electric wall potential. Instead of
assuming a slip electroosmotic condition at the walls, avoiding the computation of
the EDL potential, we will be able to fully solve the EDL near the capillary walls.
Moreover this approach will allow to follow accurately the transport of a sample
solution through the capillary channels. The use of finite elements with large as-
pect ratio is then well suited to the strong boundary layers which are present in
such problem. Thus based on error estimators developed in the previous Chapter
for the time-dependent convection-diffusion problem, a space and time adaptive
algorithm with large aspect ratio finite elements will be used to study the mass
transport of a sample solution. The refinement/coarsening criterion will also be
based on error estimators already presented for parabolic problems [29] and the
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Stokes problem [33].

The outline is the following. Section 3.2 covers the model consisting of the
two electric potentials, the EOF and the sample concentration. The numerical
method is described in Section 3.3. It is based on a finite element method and a
posteriori error estimators presented in [33, 29, 35]. In Section 3.4 the numerical
validation of the EOF in a straight channel is presented. Finally in Section 3.5,
we present numerical simulations of injection and separation in a crossing, double
and multiple T-form configuration channel.

3.2 The model

Numerical simulations of EOF in a slit microchannel require a thorough under-
standing of microscale electrokinetic phenomena. One of the most important ap-
pears at the solid-liquid interface. Because most channel walls have an electrostatic
charge, in contact with an ionic solution, an electric field is created near the walls.
This plays an important role in microchannel transport processes and is at the
base of EOF. In the following, we present the mathematical model describing
the EOF and the mass transport of a sample solution in a rectangular domain
Ω = (0, L) × (0, H) ∈ R

2 with boundary ∂Ω = Γin ∪ Γout ∪ Γwall, see Figure 3.1.
However, the model can be extended to any geometry Ω, see the results of Sec-
tion 3.5. The mathematical model considered here is taken from [8, 80]. For the
sake of clarity, we briefly summarize the set of equations describing the EOF.

Debye layer

Γwall

Γwall

Γin Γout

H

L

Figure 3.1. Schematic representation of EOF in a straight channel in the situation of
negatively charged walls.
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3.2.1 External electric potential and electrical double layer
potential

The distribution of the overall electric potential can be divided into two potentials.
One due to the EDL at the channel surface, and the other due to the external
applied electric field. In contact with an ionic solution, the channel walls acquire
a certain potential due to the wall charge. This potential is called the ζ-potential.
When the thickness of the EDL is small and the ζ-potential is not large, the
distribution of the charge species near the walls is mainly governed by the ζ-
potential and is not affected by the external electric potential [84, 73]. Thus
these two potentials can be determined independently and the distribution of the
overall electric potential can be decomposed into the potential φ due to the external
electric field and the potential ψ due to the charge of the wall. The potential φ
satisfies, ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Δφ = 0 in Ω,

φ = φin on Γin,

φ = φout on Γout,

∂nφ = 0 on Γwall,

(3.1)

where φin, φout ∈ R are constant potentials with the choice that φin > φout. Accord-
ing to electrostatic theory, the relationship between the electric potential, ψ, and
the net charge density per unit volume, ρe, is described by the Poisson equation,

Δψ = − ρe

εrε0

, (3.2)

where εr is the dielectric constant of the solution, ε0 is the permittivity of the
vacuum and ρe is given by

ρe = −2n0ze sinh

(
zeψ

κbTa

)
, (3.3)

where n0 is the bulk ionic concentration, z is the ion valence, e is the elemen-
tary charge, Ta is the absolute temperature and κb is the Boltzmann constant.
Substituting (3.3) in (3.2) leads to the well-known Poisson-Boltzmann equation,⎧⎪⎪⎪⎨⎪⎪⎪⎩

Δψ =
2n0ze

εrε0

sinh

(
zeψ

κbTa

)
in Ω,

ψ = ζ on Γwall,

∂nψ = 0 on Γin ∪ Γout,

(3.4)

where ζ ∈ R is the wall potential.
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3.2.2 Electroosmotic flow and sample concentration

A characteristic of microfluidics is the laminar nature of the flow. Due to the small
dimensions of the microchannels, the Reynolds number is usually less than 1 and
the flow is laminar, no turbulence occurs. Thus the EOF is governed by the Stokes
equation with a body force term including the effect between the excess ions of
the EDL and the external electric field. Thus the fluid flow can be considered as
a steady state problem and the velocity and pressure field satisfy{

−μΔu + ∇p = ρeE in Ω,

div u = 0 in Ω,
(3.5)

where u is the velocity vector, p the pressure, μ the viscosity and E is the external
electric field related to the external electric potential φ such that

E = −∇φ. (3.6)

Substituting (3.3) and (3.6) in (3.5) leads to the electroosmotic flow problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−μΔu + ∇p = 2n0ze sinh

(
zeψ

κbTa

)
∇φ in Ω,

div u = 0 in Ω,

u = 0 on Γwall,

− p + μ∂nu · n = 0 on Γin ∪ Γout,

u · t = 0 on Γin ∪ Γout,

(3.7)

where t is a unit tangential vector normal to n. Given a final time T > 0, the
mass transport equation for the study of the sample concentration solution is the
classical convection-diffusion equation,⎧⎪⎪⎨⎪⎪⎩

∂c

∂t
− εΔc + u · ∇c = 0 in Ω × (0, T ),

∂nc = 0 on ∂Ω × (0, T ),

c(·, 0) = c0 in Ω,

(3.8)

where c is the sample concentration, c0 is the concentration initial condition, u is
given by (3.7) and ε is the diffusion coefficient.

3.2.3 Summary of the model

To solve the electroosmotic transport of a sample concentration field within a mi-
crochannel, we first have to determine the EOF. For this purpose, the two electric
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potentials φ and ψ have to be computed by solving problems (3.1) and (3.4). These
two potentials are then used in the right hand side of the Stokes problem (3.7) to
solve the electroosmotic velocity, u, and pressure, p. The concentration field c is
finally given by (3.8) with the electroosmotic velocity field given by (3.7). Please
note that only c depends on time, thus φ, ψ, u and p could be in principle computed
once for all before computing the evolution of c. However, since adapted meshes
will be generated in order to compute the concentration field c with precision, φ,
ψ, u and p have to be recomputed each time remeshing occurs.

3.3 Numerical method

The sample concentration problem is discretized in time using a Crank-Nicolson
scheme. Space discretization is based on continuous piecewise linear finite ele-
ments. Stabilization terms have to be added to the weak formulations, see for
instance [85] for the Stokes problem and [66] for the convection-diffusion problem.
Moreover, note that problem (3.4) exhibits a nonlinear term. In order to treat
this nonlinearity, a Newton iteration strategy will be used to solve the EDL po-
tential ψ. Since boundary layers are expected, an adaptive finite element method
with triangles having large aspect ratio will be used. The refinement/coarsening
criterion is based on a posteriori error estimates already presented in the previous
Chapter and in [33, 29, 35].

3.3.1 The finite element method

The finite element is now described for a fixed mesh. Since the formulation of the
two electric potentials is quite standard, we can refer to classical finite element
textbooks, see for instance [86, 87, 88]. For the sake of clarity, we briefly present
their weak formulations.

The discretized problem (3.1) consists in finding φh ∈ Vh such that φh = rhφin

on Γin, φh = rhφout on Γout and∫
Ω

∇φh · ∇vh dx = 0 ∀vh ∈ Vh.

As the problem (3.4) presents a nonlinear term, the EDL potential ψ is solved
using a Newton algorithm which takes the following form:

Δψk+1 − κ2 cosh
(
ωψk

)
ψk+1 = β sinh

(
ωψk

)
− κ2 cosh

(
ωψk

)
ψk,

86



3.3 Numerical method

where k is the iteration number, the two constants β and ω are respectively defined
by

β =
2zen0

εrε0

and ω =
ze

κbTa

, (3.9)

and κ−1 is called the Debye length and corresponds to the thickness of the EDL
such that

κ =

√
2z2e2n0

εrε0κbTa

. (3.10)

Thus, the corresponding finite element method consists in seeking ψk+1
h ∈ Vh such

that ψk+1
h = rhζ on Γwall and∫

Ω

∇ψk+1
h · ∇vh dx +

∫
Ω

κ2 cosh
(
ωψk

h

)
ψk+1

h vh dx =

∫
Ω

κ2 cosh
(
ωψk

h

)
ψk

h vh dx

−
∫

Ω

β sinh
(
ωψk

h

)
vh dx ∀vh ∈ Vh.

The latter equation is then solved until the discrepancy ‖ψk+1
h −ψk

h‖2
L2(Ω) is smaller

than a preset tolerance (typically 10−9).

Then let φh and ψh be respectively the finite element solutions belonging to
Vh of the two electric potential problems (3.1) and (3.4). We are now looking
for the solution of the steady Stokes problem (3.7). Referring to [50, 33], the
stabilized finite element method for the Stokes problem consists in finding the
velocity uh ∈ Vh ×Vh and the pressure ph ∈ Vh such that uh = 0 on Γwall, uh · t = 0
on Γin ∪ Γout and such that∫

Ω

μ∇uh · ∇vh dx −
∫

Ω

ph div(vh) dx −
∫

Ω

div(uh) qh dx (3.11)

−
∑

K∈Th

αλ2
2,K

μ

∫
K

∇ph · ∇qh dx =

∫
Ω

2n0ze sinh

(
zeψh

κbTa

)
∇φh vh dx

−
∑

K∈Th

αλ2
2,K

∫
K

2n0ze sinh

(
zeψh

κbTa

)
∇φh · ∇qh dx,

for all test functions vh ∈ Vh × Vh and qh ∈ Vh such that vh = 0 on Γwall and
vh · t = 0 on Γin ∪ Γout. Here α > 0 is a dimensionless stabilization parameter
to be suitably chosen and λ2,K is the local mesh size in the direction of minimum
stretching defined by (1.8).

For the sake of clarity we briefly recall the discretization of the time-dependent
convection-diffusion problem (3.8). We keep the same notations as in Section 2.2.
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Then, considering the Crank-Nicolson time discretization scheme, the stabilized
finite element method for the sample concentration problem consists in finding
cn
h ∈ Vh such that ∀vh ∈ Vh,∫
Ω

cn
h − cn−1

h

τn

vh dx +
ε

2

∫
Ω

∇(cn
h + cn−1

h ) · ∇vh dx +
1

2

∫
Ω

uh · ∇(cn
h + cn−1

h )vh dx

+
∑

K∈Th

τK

∫
K

(
cn
h − cn−1

h

τn

+
1

2
uh · ∇(cn

h + cn−1
h )

)
(uh · ∇vh) dx = 0,

where the stabilization parameter τK is defined by

τK =
λ2,K

2|uh|∞
ξ(PeK),

where |uh|∞ = ‖uh‖L∞(K), the function ξ is defined by (2.4) and PeK , the local
Péclet number, is defined by

PeK =
λ2,K |uh|∞

6ε
.

3.3.2 A posteriori error estimators

A space and time adaptive algorithm will be presented to compute the sample
concentration field c. Since the EOF is considered at a stationary state, φh, ψh,
uh and ph could be computed only once and interpolated from mesh to mesh, each
time a new mesh is generated. However, the interpolated error would be too large
and the accuracy would not be guaranteed. Thus, each time a new mesh is built,
φh, ψh, uh and ph have to be recomputed on this new mesh. Moreover, to ensure
optimal accuracy of the electroosmotic velocity field, the error estimator used in
the space adaptive algorithm has to take into account not only the concentration
field but also the velocity and potential fields. Thus, the space adaptive algorithm
will couple three error estimators derived from the EDL potential problem (3.4),
the Stokes problem (3.7) and the convection-diffusion problem (3.8). The mesh
grid will then be refined near the walls where the EDL potential ψ drops from the
ζ-potential at the capillary walls to zero through the Debye Layer. Despite the
very thin thickness of the Debye Layer, the adapted mesh will then enable us to
capture the strong variation of the EDL potential and thus provide an optimal ac-
curacy of the EOF. The error estimators have been already justified theoretically
in the previous Chapter for the time-dependent convection-diffusion problem, for
parabolic problems in [29, 35] and for the Stokes problem in [33].
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Considering the convection-diffusion problem, we now introduce the continu-
ous, piecewise linear approximation in time chτ defined for all t ∈ In by

chτ (x, t) =
t − tn−1

τn

cn
h +

tn − t

τn

cn−1
h ,

and c̃hτ the three-point quadratic time reconstruction defined for all t ∈ In, 2 ≤
n ≤ N , by

c̃hτ (x, t) = chτ (x, t) +
1

2
(t − tn−1)(t − tn)∂2

nch,

where

∂2
nch =

cn
h − cn−1

h

τn

− cn−1
h − cn−2

h

τn−1

(τn + τn−1)/2
.

Then, following the previous Chapter and [33, 29, 35], we introduce the anisotropic
concentration space error estimator ηA,c, the anisotropic Stokes space error estima-
tor, ηA,u, and the anisotropic EDL space error estimator, ηA,ψ, respectively defined
by

ηA,c =

(
N∑

n=1

∑
K∈Th

(
ηA,c

K,n(chτ )
)2
)1/2

,

ηA,u =

(∑
K∈Th

(
ηA,u

K (uh)
)2
)1/2

,

ηA,ψ =

(∑
K∈Th

(
ηA,ψ

K (ψh)
)2
)1/2

,

where the contributions ηA,c
K,n are defined on each triangle K of Th and each time

interval In by

(
ηA,c

K,n(chτ )
)2

=

∫ tn

tn−1

(∥∥∥∥1

ε

(
∂c̃hτ

∂t
+ uh · ∇chτ

)∥∥∥∥
L2(K)

+
1

2λ
1/2
2,K

∥∥∥∥[∂chτ

∂n

]∥∥∥∥
L2(∂K)

)

×
(

λ2
1,K

(
rT
1,KĞK(chτ )r1,K

)
+ λ2

2,K

(
rT
2,KĞK(chτ )r2,K

))1/2

dt,
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the contributions ηA,u
K are defined on each triangle K of Th by

(
ηA,u

K (uh)
)2

= ‖div uh‖2
L2(K) +

(∥∥∥∥ 1

μ
(ρeE −∇ph)

∥∥∥∥
L2(K)

+
1

2λ
1/2
2,K

∥∥∥∥[∂uh

∂n

]∥∥∥∥
L2(∂K)

)

×
(

λ2
1,K

(
rT
1,KĞK(uh)r1,K

)
+ λ2

2,K

(
rT
2,KĞK(uh)r2,K

))1/2

,

and the contributions ηA,ψ
K are defined on each triangle K of Th by

(
ηA,ψ

K (ψh)
)2

=

(
1

2λ
1/2
2,K

∥∥∥∥[∂ψh

∂n

]∥∥∥∥
L2(∂K)

)

×
(

λ2
1,K

(
rT
1,KĞK(ψh)r1,K

)
+ λ2

2,K

(
rT
2,KĞK(ψh)r2,K

))1/2

.

In all these contributions, [·] denotes the jump of the bracketed quantity across an
internal edge with the convention [·] = 0 for an edge on the boundary ∂Ω, n is
the unit edge normal (in arbitrary direction) and the matrix ĞK is defined for any
vh ∈ Vh by (1.27). Finally, as regards the time error estimator, it is only based on
the concentration field. Thus we introduce the time error estimator η̃T,c defined
by

η̃T,c =

(
N∑

n=2

∑
K∈Th

(
η̃T,c

K,n(chτ )
)2
)1/2

,

where the contributions η̃T,c
K,n, for all n ≥ 2, are computed on each triangle K of Th

and each time interval In by

(
η̃T,c

K,n(chτ )
)2

=

(
τ 2
n−1τ

3
n

48
+

τ 5
n

120

)(∥∥∇∂2
nch

∥∥2

L2(K)
+

|uh|2∞
ε2

∥∥∂2
nch

∥∥2

L2(K)

)
. (3.12)

3.3.3 Adaptive algorithm

We now propose a space and time adaptive algorithm. The space adaptive algo-
rithm will couple three anisotropic space error estimators, ηA,c, ηA,u, ηA,ψ and the
time adaptive algorithm is only based on the concentration time error estimator
η̃T,c. This algorithm is similar to those presented in Sections 1.5 or 2.4. The goal is
to build successive triangulations T n

h with possibly large aspect ratio elements and
choose appropriate time steps τn such that the concentration relative estimated
error in space and time in the L2(0, T ; H1(Ω)) norm is close to a preset tolerance
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TOL,

0.75 TOL ≤
(
(ηA,c)2 + (η̃T,c)2

)1/2(∫ T

0

∫
Ω

|∇chτ |2 dx dt

)1/2
≤ 1.25 TOL.

We also require that the Stokes and the EDL relative estimated errors in space in
the L2(H1(Ω)) norm are close to another preset tolerance TOL,

0.75 TOL ≤ ηA,u(∫
Ω

|∇uh|2 dx

)1/2
≤ 1.25 TOL,

and

0.75 TOL ≤ ηA,ψ(∫
Ω

|∇ψh|2 dx

)1/2
≤ 1.25 TOL.

Note that since the time error estimator (3.12) needs a solution cn−2
h , we do not

attempt to change the first time step. Thus, sufficient conditions to satisfy the
above inequality is that, for all n ≥ 1, the concentration error indicator in space
is such that

3

4
0.752 TOL2

∫ tn

tn−1

∫
Ω

|∇chτ |2 dx dt ≤ (3.13)∑
K∈Th

(
ηA,c

K,n(chτ )
)2

≤ 3

4
1.252 TOL2

∫ tn

tn−1

∫
Ω

|∇chτ |2 dx dt,

for all n ≥ 2, the concentration error indicator in time is such that

1

4
0.752 TOL2

∫ tn

tn−1

∫
Ω

|∇chτ |2 dx dt ≤ (3.14)∑
K∈Th

(
η̃T,c

K,n(chτ )
)2

≤ 1

4
1.252 TOL2

∫ tn

tn−1

∫
Ω

|∇chτ |2 dx dt,

and that the Stokes space error indicator and the EDL space error indicator satisfy
respectively

0.752 TOL
2
∫

Ω

|∇uh|2 dx ≤
∑

K∈Th

(
ηA,u

K (uh)
)2

≤ 1.252 TOL
2
∫

Ω

|∇uh|2 dx,

(3.15)
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and

0.752 TOL
2
∫

Ω

|∇ψh|2 dx ≤
∑

K∈Th

(
ηA,ψ

K (ψh)
)2

≤ 1.252 TOL
2
∫

Ω

|∇ψh|2 dx.

(3.16)
We then proceed as Section 1.5 and build anisotropic meshes using the BL2D mesh
generator software [49] considering the three conditions (3.13), (3.15) and (3.16).
Thus, at each vertex, the estimated error of the concentration, Stokes and EDL are
equidistributed in the two directions of maximum and minimum stretching, which
yields to new appropriate values of stretching in the maximum and minimum
stretching directions. Then, the desired directions of anisotropy are aligned with
the direction of the eigenvectors of a matrix which takes into account the matrices
of the estimated gradient error of the three above mentioned problem, which are
respectively ĞK(chτ ), ĞK(uh) and ĞK(ψh). Moreover, as in Section 2.4 we decide
not to make the space and time adaptation at the same time. We first carry out
the space adaptation before the time adaptation if conditions (3.13)-(3.16) are not
satisfied. Interpolation of the concentration field between two successive meshes
are carried out by the BL2D mesh generator. Here we do not take into account
the interpolation error between two successive meshes provided the total number
of remeshings does not depend on the prescribed tolerances TOL and TOL. This
has been successfully satisfied in the previous Chapters and will be observed in
the forthcoming numerical results.

3.4 Numerical validation of the EOF in a straight

channel

In this Section, we consider the case of a straight microchannel and focus on the
numerical validation of our method to solve the EOF. We derive an analytical
solution for a mixed electroosmotic and pressure-driven flow in a straight channel
and then study the efficiency of our adaptive algorithm taken into account only
conditions (3.15) and (3.16).

3.4.1 Analytical solution in a straight channel

Let us consider a channel formed with two parallel plates. Assume that the length,
L, of the channel is much larger than its height, H, then both the EDL field and the
flow field can be considered as one-dimensional and thus vary only in the channel
height direction, that is the y-axis. We assume that the ζ-potential is known and
remains constant along the channel walls. Then the EDL potential, ψ, has an
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analytical solution (see [8, 6]) given by

ψ =
4

ω
argth

[
tanh

(
ωζ

4

)
exp (−κg(y))

]
, (3.17)

where g(y) is the normal distance to the wall and ω and κ−1 are respectively
defined by (3.9) and (3.10). Moreover, consider a one-dimensional fully developed,
steady-state flow with no-slip boundary conditions on Γwall, then the momentum
equation of problem (3.5) becomes

−μ
∂2ux

∂y2
+

∂p

∂x
= ρeEx,

where ux is the flow velocity in the x-direction and Ex is the electrokinetic potential
gradient in the x-direction. Using (3.2) we obtain

−μ
∂2ux

∂y2
+

∂p

∂x
+ εrε0Ex

∂2ψ

∂y2
= 0. (3.18)

Then integrating (3.18) twice and using the boundary conditions for the flow field
and the EDL field, we end with an analytical solution for a mixed electroosmotic
and pressure-driven flow in straight microchannels, given by⎧⎨⎩ ux(x, y) =

εrε0Ex

μ
(ψ − ζ) − ∂p

∂x

y

2μ
(H − y) in Ω,

uy(x, y) = 0 in Ω,

where ψ is given by (3.17), ζ is the known ζ-potential at the capillary walls, Ex is
given by

Ex =
φin − φout

L
,

and
∂p

∂x
is the pressure gradient given by

∂p

∂x
= −Δp

L
,

where Δp is a known pressure difference. The velocity profile in a straight chan-
nel is thus a combination of a flat profile, expressed by the term including the
electrokinetic potential gradient, and a parabolic profile, the well-known Poiseuille
flow, expressed by the term including the pressure gradient.
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3.4.2 Numerical validation

The computational domain Ω is a rectangle (0, 5e − 4) × (0, 5e − 5). In order to
measure the quality of the Stokes and EDL error estimators, the estimated error
is compared to the true error introducing the so-called effectivity index. Thus, we
define the following Stokes and EDL effectivity indices in space

eiA,u =
ηA,u(∫

Ω

|∇(u − uh)|2 dx

)1/2

and

eiA,ψ =
ηA,ψ(∫

Ω

|∇(ψ − ψh)|2 dx

)1/2
.

We will also check the behavior of the Zienkiewicz-Zhu error estimators correspond-
ing to the Stokes and EDL problems. We thus introduce the corresponding error
estimators and effectivity indices respectively for the Stokes and EDL problems

ηZZ,u =

(∑
K∈Th

∫
K

|ηZZ(uh)|2 dx

)1/2

, eiZZ,u =
ηZZ,u(∫

Ω

|∇(u − uh)|2 dx

)1/2
,

and

ηZZ,ψ =

(∑
K∈Th

∫
K

|ηZZ(ψh)|2 dx

)1/2

, eiZZ,ψ =
ηZZ,ψ(∫

Ω

|∇(ψ − ψh)|2 dx

)1/2
.

Following [33, 35], we have implemented an adaptive algorithm and generate suc-
cessive triangulations so that conditions (3.15) and (3.16) are satisfied. For the
first numerical experiment, we decide to set the pressure difference Δp = 0 Pa, the
inflow and the outflow external potential, φin = 5 V and φout = 0 V, and the po-
tential at the walls ζ = −15 mV. As the bulk ionic concentration n0 is expressed in
terms of the molarity M and the avogadro number Na such that n0 = 1000 Na M ,
we choose a molarity constant, M = 10−6, which corresponds to a Debye thickness
(see equation (3.10)) κ−1 = 3.04× 10−7. Some values of κ−1 are reported in Table
3.1 when varying M . We assume that the buffer solution has similar properties as
water and give all values of the physical parameters used in the numerical simula-
tions in the international system of units. We reported in Table 3.2 these values.
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M κ−1

10−8 3.04 × 10−6

10−7 9.62 × 10−7

10−6 3.04 × 10−7

10−5 9.62 × 10−8

Table 3.1. Values of the Debye length when varying the molarity M of the ionic con-
centration.

ε0 e kb n0 Na Ta εr z μ

8.85 × 10−12 1.602 × 10−19 1.381 × 10−23 1000 Na M 6.022 × 1023 298 78.5 1 1e-3

Table 3.2. Values of the physical parameters used in the numerical simulations.

TOL εu
rel εu

abs eiZZ,u eiA,u εψ
rel εψ

abs eiZZ,ψ eiA,ψ nbn ar ar

0.25 0.115 5e-4 0.98 1.57 0.115 0.07 0.98 1.57 48 1887 13477

0.125 0.059 2.5e-4 0.97 1.64 0.059 0.036 0.97 1.59 79 4054 27042

0.0625 0.033 1.3e-4 0.99 1.75 0.032 0.02 0.99 1.75 128 6782 59001

0.03125 0.015 6.6e-5 0.99 1.78 0.0155 0.01 0.99 1.77 305 10935 140386

Table 3.3. True error and effectivity indices for various values of the preset tolerance
TOL of the EOF problem in a straight channel when Δp=0 Pa.

The number of generated triangulations is 50. The numerical simulation is
presented in Figure 3.2 and the numerical results are presented in Table 3.3 where
we have compared the effectivity indices eiA,u and eiZZ,u for the Stokes problem
and eiA,ψ and eiZZ,ψ for the EDL problem when varying TOL. We also monitor
the absolute error εabs in L2(H1(Ω)) and the relative error εrel in the same norm
for both problems with a exponent u for the Stokes problem and ψ for the EDL
problem, the number of nodes nbn, maximum and mean aspect ratio respectively
defined by (1.43) and (1.44). From Table 3.3 we can observe that, first, both the
Stokes and EDL errors are divided by two each time the tolerance TOL is. Second,
both error estimators behave as the true error as the Stokes and EDL anisotropic
effectivity indices, respectively eiA,u and eiA,ψ, tend to a constant value when the
mesh size tends to zero. Third, both Zienkiewicz-Zhu error estimators, respectively
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ηZZ,u and ηZZ,ψ, are asymptotically exact as their effectivity indices, respectively
eiZZ,u and eiZZ,ψ, tend to one when the mesh size tends to zero. These obser-
vations correspond to those reported in [33] for the Stokes problem and [29] for
the Laplace problem. Thus the expected good behavior of both anisotropic error
estimators ηA,u and ηA,ψ are verified. The adaptive algorithm used to compute the
EOF provides a good agreement and can enable us to solve accurately the EDL
problem and so consequently the EOF which will transport the sample solution
through the capillary channels.

In Figure 3.2, we can observe that the final adapted mesh, generated after
50 iterations, is extremely refined in the EDL near the walls. This final mesh is
strongly anisotropic with a mean aspect ratio of order 105 and only 305 nodes. A
closer look on the mesh refinement is proposed in Figure 3.3 with a progressive
zoom on the EDL near the bottom wall boundary of the channel. In Figure 3.4,
we plot the EDL potential profile and the velocity profile against the normal dis-
tance to the wall for various values of molarity M and so consequently for various
Debye lengths κ−1. The velocity profile is horizontal, equal to zero at the top and
bottom sides of the domain, constant in the whole domain except in the Debye
layer region where the velocity drops from a constant value to zero exponentially.
As expected, the EDL region gets thinner for smaller values of the Debye length.

Figure 3.2. Initial (330 nodes) and final adapted meshes (305 nodes) of the EOF
problem in a straight channel (TOL=0.03125, 50 mesh generations, Δp=0 Pa).

We now impose a pressure difference Δp. The pressure value at the boundary
Γout is then set to zero and we impose an inlet pressure pin at Γin. This corresponds
to adding an extra term to the right hand side of the finite element formulation
(3.11). Numerical results of the velocity profile are presented in Figure 3.5 for
different values of pressure difference. We can observe that for a positive pressure
difference, the velocity profile is, as expected, a typical Poiseuille flow velocity
profile. The resulting velocity is a combination of a parabolic velocity profile and
a classical EOF with an uniform velocity in the bulk region, which corresponds
to the case Δp = 0 Pa. For negative pressure difference, the velocity profile is a
combination of a classical EOF and a reverse flow in the middle of the microchannel
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Figure 3.3. From left to right: zoom of size 2.5e-5, 2.5e-6 and 2.5e-7 of the final
mesh of the EDL near the bottom wall boundary of the channel of the EOF problem in
a straight channel (TOL=0.03125, 50 mesh generations, Δp=0 Pa, 305 nodes).
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Figure 3.4. EDL potential and velocity profiles for various values of molarity M of the
EOF problem in a straight channel (TOL=0.03125, 50 mesh generations, Δp=0 Pa).
From the nearest to farther to the wall: M = 10−5 , 10−6 , 10−7 and 10−8 .

due to the adverse applied pressure gradient. In the case of small negative pressure
difference, as presented in Figure 3.5, the flow direction is still driven by the EOF
but with a reduced flow rate velocity. When considering higher negative pressure
difference the resulting velocity would be obviously in the opposite direction of the
EOF.

We finally reproduced the same experiment as presented in Figure 3.2 but with
a negative pressure difference, Δp = −0.1 Pa, and reported the numerical results
in Table 3.4. We observe here again an excellent behavior of both Stokes and EDL
error estimators with an asymptotical convergence of both Zienkiewicz-Zhu error
estimators and the equivalence of both anisotropic error estimators with the true
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Figure 3.5. Velocity profiles for various values of pressure difference Δp of the EOF
problem in a straight channel. From bottom to top: Δp=-0.1, -0.05, 0, 0.05 and 0.1 Pa
(TOL=0.03125, 50 mesh generations).

TOL εu
rel εu

abs eiZZ,u eiA,u εψ
rel εψ

abs eiZZ,ψ eiA,ψ nbn ar ar

0.25 0.116 4.8e-4 1.01 1.69 0.11 0.068 1.00 1.61 46 2123 16454

0.125 0.057 2.4e-4 1.00 1.73 0.054 0.033 1.00 1.63 90 3808 30483

0.0625 0.029 1.2e-4 1.00 1.87 0.027 0.016 1.00 1.76 170 6568 37498

0.03125 0.015 6.6e-5 1.00 1.88 0.014 0.0085 1.00 1.79 388 9428 100180

Table 3.4. True error and effectivity indices for various values of the preset tolerance
TOL of the EOF problem in a straight channel when Δp=-0.1 Pa.

error. The error is still divided by two each time TOL is and the accuracy of our
method is preserved, enable us to get an optimal solution with fewer triangles.

3.5 Numerical results

We now focus on injection and separation processes. In the first experiment we
consider electrokinetic injection in a crossing microchannel and reproduce the nu-
merical simulations taken from [76]. We apply our adaptive algorithm using condi-
tions (3.13)-(3.16) and solve the numerical mass transport concentration problem
driven by an EOF. Then we focus on a complete simulation of injection and sep-
aration technique in a more complex geometry that is to say in a multiple T-form
channel, see [78] for similar numerical results and for experimental results. Finally,
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the last numerical experiment concerns pressure-driven flow. We consider a dou-
ble T-shape channel. The sample concentration is transported by a standard EOF
and then a short sample plug is injected in the separation channel by a pressure
pulse, see [89] for experimental results. As previously, we assume that the buffer
solution has similar properties as water. All the parameters used in the following
numerical simulations are reported in Table 3.2.

3.5.1 Electrokinetic injection in a crossing microchannel

We are interested now in the numerical simulation of the injection process in a
crossing microchannel. We reproduce here the numerical simulation of electroki-
netic sample focusing taken from [76]. Thus we consider a 2D crossing microchan-
nel of width 24 μm and four channels of length 2e − 4 m, as shown in Figure
3.6. There are four reservoirs, Sample, Waste, Analyze, Buffer, connected to the
four ends of the microchannel. At time t = 0, the sample solution is filled in the
Sample reservoir S. Then under an applied electric field the sample solution will
be driven toward the Waste reservoir W passing through the cross section of the
microchannel. This is the loading step. (the separation step will be considered in
the next Subsections).

W

A

S

B

Figure 3.6. Schematic representation of a loading process in a crossing microchannel.

Reservoir (Volt) case a case b case c

Waste 0 0 0

Sample 79.3 65.2 51.1

Buffer and Analyze 73.8 73.2 72.2

Table 3.6. Applied potential to the four reservoirs during the injection process in a
crossing microchannel.
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Channel (KV/cm) case a case b case c

Waste 2.82 2.63 2.43

Sample 1.12 0.61 0.11

Buffer and Analyze 0.85 1.01 1.16

Table 3.5. Electric field strength in the four channels during the injection process in a
crossing microchannel.

We consider the three different injection experiments presented in Figure 2
of [76] and take the same electric fields strength, see Table 3.5 for the electric
fields strength and Table 3.6 for the corresponding applied potentials to the four
ends of the microchannel. These potentials are computed by a simple calculus.
First, we have to find the potential φc at the center of the crossing microchannel.
For example, consider case a of Table 3.5. As the electric field strength gradient
is linear from the Waste reservoir to the center of the crossing microchannel, φc

satisfies
φc − 0

2.012e − 4
= 2.82e5,

where we have imposed a zero value potential to the Waste reservoir and recall
that the channel length and width are respectively 2e − 4 m and 24 μm. Then
we find that φc = 56.7 V and find the three others potentials, Sample, Buffer and
Analyze, using φc and the corresponding channel electric field strength. Thus, we
set the diffusion coefficient ε = 3e−10, the potential at the walls ζ = −15 mV, the
molarity M = 10−6, the final time T = 1 and assume that the pressure is constant
in the whole domain. The initial condition c0 for the convection-diffusion problem
(3.8) is given by

c0(x, y) = 0.5 − 0.5 tanh

(
y + 1.7e − 4

1e − 6

)
.

We apply our space and time adaptive algorithm and build successive triangula-
tions and choose appropriate time step such as conditions (3.13)-(3.16) are satis-
fied at each time tn. For all the numerical simulations we set TOL = 0.25 and
we are only going to study the numerical simulations when varying TOL. The
injection process corresponding to case a is reported in Figure 3.7 with a tolerance
TOL=0.125. So at initial time, the concentration is filled in the Sample reservoir
and moves into the injection channel toward the Waste reservoir. A zoom of the
crossing channel is presented in Figure 3.8 at final time T = 1, where we have
reported the adapted mesh, the streamline velocity field and the concentration
field. We can observe that the mesh is refined near the channel walls and that
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0.0 0.5 1.0

Figure 3.7. From left to right: concentration at times t=0, 0.01, 1 during the injection
process in a crossing microchannel with the electric field strength corresponding to case a
and a tolerance TOL=0.125.

0.0 0.5 1.0

Figure 3.8. Zoom on the adapted mesh, the streamline velocity field and concentration
field at final time T=1 of the injection process in a crossing microchannel with the electric
field strength corresponding to the case a and a tolerance TOL=0.125.

it follows accurately the concentration field. Our adaptive algorithm allows us to
solve efficiently the EDL problem and consequently the EOF without assuming a
slip velocity condition along the channel walls as considered in [76]. In Figure 3.9,
we present the evolution of the number of nodes and the time step size against
time. We see that the number of nodes is quite constant during the injection pro-
cess whereas the time step size can be decomposed into two phases. The first one
consists in the injection process where the time step size slowly increases with the
slight diffusion of the concentration field. This part is approximatively between
times t=0 and t=0.25. The second one is between times t=0.25 and the final time
T = 1 when the concentration field reaches the Waste reservoir. At time t=0.25,
the concentration field completely pass through the injection channel and the time
step size strongly increases until the end of the simulation time. We have reported
in Table 3.7 the total number of time steps required to reach the final time for
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Figure 3.9. Number of nodes (left) and time step size (right) with respect to time t of the
injection process in a crossing microchannel with the electric field strength corresponding
to case a and a tolerance TOL=0.125.

TOL nbn nbτ nbm ar ar

0.5 1305 690 79 208 6288

0.25 3979 932 102 127 7068

0.125 8063 1304 139 111 9305

0.0625 20896 1827 181 87 14504

Table 3.7. Total number of nodes and time steps of the adapted solution at final time
T=1 of the injection process in a crossing microchannel with the electric field strength
corresponding to case a.

several values of TOL. We observe that the optimal second order of convergence
with respect to the time step is achieved as the number of time steps is multiplied
by

√
2 when TOL is divided by two, see also Figure 3.10. Finally, in Figures 3.11

and 3.12 we present the numerical simulations at final time T = 1 of the three ex-
periments taken from [76]. The corresponding results give a good agreement with
the numerical simulations presented in Figure 2 of [76] and confirm the accuracy
of our method based on a space and time adaptive finite element method.

102



3.5 Numerical results

102

103

104

10−1 100

N
u
m

b
er

of
ti

m
e

st
ep

s

TOL

+
+

+
+

slope -0.5

Figure 3.10. Total number of time steps required to reach the final time T=1 with
respect to the tolerance TOL of the injection process in a crossing microchannel with the
electric field strength corresponding to case a.

Reservoir R1 R2 R3 R4 R5 R6

Injection (Volt) 42 120 42 0 0 0

Separation (Volt) 140 75 0 61 75 89

Channel width (μm) 100 100 100 80 100 80

Table 3.8. Applied potentials to the six reservoirs during the injection and separation
processes in a multiple T-form channel.

3.5.2 Electrokinetic injection and separation in a multiple
T-form channel

We now consider the injection and separation processes in a multiple T-form chan-
nel as shown in Figure 3.13 where L = 7e − 4 m, L1 = 1e − 4 m and H = 5e − 4
m. There are six reservoirs, R1-R6, connected to the six ends of the microchannel.
During the injection process, the sample concentration moves from reservoir R2
to reservoirs R4, R5 and R6, passing through the triple cross section area. Then
during the separation process, the part of the sample loaded in the triple cross
section will be driven through the separation channel, towards the reservoir R3,
see Figure 3.13. In Table 3.8, we have reported the values of the electric poten-
tials applied to the six reservoirs during the loading and dispensing step and the
diameters of the different channels of the microchannel.

We set the diffusion coefficient ε = 6.9e − 11, the potential at the walls
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Figure 3.11. Velocity streamlines and concentration fields of the injection process in a
crossing microchannel at final time T=1 obtained with a tolerance TOL=0.125. From
top to bottom: case a, b, c.
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Figure 3.12. Adapted meshes of the injection process in a crossing microchannel at
final time T=1 obtained with a tolerance TOL=0.125. From top to bottom: case a, b, c
with respectively 7141, 5743 and 8236 nodes.
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R6 R5 R4

R3

R2

R1

L L

L1L1

H

H

Figure 3.13. Schematic representation of a loading and separation processes in a mul-
tiple T-form channel.

ζ = −75 mV, the molarity M = 10−8, the final time T = 0.6 and assume that
the pressure is constant in the whole domain. The initial condition c0 for the
convection-diffusion problem (3.8) is given by

c0(x, y) = 0.5 − 0.5 tanh

(
y + 4.4e − 4

1e − 6

)
.

We apply our space and time adaptive algorithm and build successive triangula-
tions and choose appropriate time step such as conditions (3.13)-(3.16) are sat-
isfied at each time tn. The numerical simulation is reported in Figure 3.14 with
TOL = TOL = 0.25. So at initial time, the sample concentration is filled in the
reservoir R2 and then moves towards the three reservoirs R4, R5 and R6, passing
through the triple cross section of the microchannel. This corresponds to the in-
jection process and is reported on the three first pictures of Figure 3.14. The first
picture is the initial time. In the second picture, the sample separates in three.
The sample starts to join the channels corresponding to the reservoirs R4 and R6.
It has already joined that of corresponding to the reservoir R5. Finally, the third
picture is the stationary state of the injection process. Then at time t=0.3, all
the potentials applied to the six reservoirs change and the sample concentration
is injected in the separation channel, towards the reservoir R3. This is reported
on the three last pictures of Figure 3.14. In the first of the three last pictures, the
sample plug starts to move in the separation channel. In the second picture, this
plug is now injected and its front almost reaches the reservoir R3. Finally in the
third picture, the plug completely pass through the reservoir R3 and leaves the
computation domain.

In Figure 3.15, we present the evolution of the number of nodes and the time
step size against time. We see that the number of nodes is quite constant in the
beginning when the sample concentration moves to the triple cross section area.
Then it increases as the sample concentration separates in three, stays approxima-
tively constant until the solution completely pass through the three reservoirs R4,
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0.0 0.5 1.0

Figure 3.14. From top to bottom, left to right: solutions at times t=0, 0.11, 0.3, 0.31,
0.4, 0.6 of the injection and separation processes in a multiple T-form channel with
TOL=TOL=0.25.
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Figure 3.15. Number of nodes (left) and time step size (right) with respect to
time t of the injection and separation processes in a multiple T-form channel with
TOL=TOL=0.25.

R5 and R6. At that time the solution reaches the stationary state of the injection
process and the number of nodes decreases. Then the potentials change and the
separation process begins. The number of nodes then increases until the front
of the injected plug concentration reaches the reservoir R3. At that moment the
number of nodes starts to decrease. As regards the time step evolution, it can be
decomposed into two parts, the injection process and the separation process. Dur-
ing the injection process, we can distinguish three steps. The first one concerns the
time when the sample concentration moves towards the triple cross section area.
The second one is the transport of the sample concentration in the direction of
the three reservoirs, R4, R5 and R6, passing through the triple cross section area.
Finally the third one corresponds to the time when the solution reaches the sta-
tionary state of the injection process. During these three steps the time step size
increases gradually. At time t=0.3, the potentials change and the separation pro-
cess begins. At that time, the time step size drops significantly. Then it increases
until the time t=0.5 corresponding to the time when the sample plug leaves the
computation domain. Finally, in Figures 3.16 and 3.17 we reported the adapted
mesh, the velocity streamlines and the concentration field corresponding to the
times t=0.11 and t=0.31 of the numerical simulation presented in Figure 3.14.

3.5.3 Pressure pulse injection

We end with a numerical experiment of injection and separation processes when
the sample concentration is transported by a standard EOF and injected in the
separation channel by a pressure pulse, see Figure 3.18. We consider a double
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Figure 3.16. Velocity streamlines and concentration fields at times t=0.11 (top) and
t=0.31 (bottom) of the injection and separation processes in a multiple T-form channel
with TOL=TOL=0.25.

T-form channel as shown in Figure 3.18. There are four reservoirs S, B, A, W,
connected to the four ends of the microchannel. At initial time, the sample con-
centration is filled in the reservoir S. Then under an applied electric field, it moves
towards the reservoir W. Note that because of the set of electric potentials applied
to the four reservoirs, the sample concentration does not move to the others reser-
voirs. During the pressure pulse period, we impose a constant positive pressure
value at the boundary corresponding to the entrance reservoir S and set the three
other reservoirs boundaries to zero. This corresponds to adding an extra term to
the right hand side of the finite element formulation (3.11). In Table 3.9, we have
reported the potential value at the four reservoirs, the imposed pressure value at
each reservoir during the pressure pulse period and the diameter of the different
channels of the microchannel. We set the diffusion coefficient ε = 6.9e − 11, the
potential at the walls ζ = −75 mV, the molarity M = 10−7, the final time T = 1.5
and we assume that the pressure is constant in the whole domain except during the
pressure pulse period. The initial condition c0 for the convection-diffusion problem
(3.8) is given by

c0(x, y) = 0.5 − 0.5 tanh

(
x − 2e − 4

1e − 6

)
.
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Figure 3.17. Adapted meshes at times t=0.11 (top, 16941 nodes) and t=0.31 (bottom,
19921 nodes) of the injection and separation processes in a multiple T-form channel with
TOL=TOL=0.25.
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Figure 3.18. Schematic representation of a loading and separation processes when the
sample is transported by a standard EOF and separated by a pressure pulse.

Reservoir S B A W

Potential (Volt) 200 270 0 0

Pressure (Pa) 20 0 0 0

Channel length (m) 1e-3 9e-4 1e-3 1e-3

Channel width (μm) 200 100 100 100

Table 3.9. Applied potential to the four reservoirs and imposed pressure value during
the pressure pulse period when the sample is transported by a standard EOF and separated
by a pressure pulse.

We apply our space and time adaptive algorithm and build successive triangula-
tions and choose appropriate time step such as conditions (3.13)-(3.16) are sat-
isfied at each time tn. The numerical simulation is reported in Figure 3.19 with
TOL = TOL = 0.25. So at initial time, the concentration is filled in the reservoir
S and moves towards the reservoir W (top pictures of Figure 3.19). After time
t=0.8, when the solution reaches the stationary state of the injection process, we
applied a pressure pulse of 20 Pa at the reservoir S during a period of 20 ms.
Thus, the sample concentration moves towards the three reservoirs B, A, W (first
bottom picture of Figure 3.19). After this period, the pressure becomes again
constant in the whole domain and the sample injected in the separation channel
moves towards the reservoir A (second and third bottom pictures of Figure 3.19).

In Figure 3.20, we have reported the evolution of the number of nodes and
time step size against time. We can see that the number of nodes suffers of many
oscillations except when the solution is at a stationary state which corresponds to
a constant number of nodes. A important increase is observed when the pressure
pulse is applied. The time step size can be decomposed into three phases. The first
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0.0 0.5 1.0

Figure 3.19. From top to bottom, left to right: solutions at times t=0, 0.28, 0.85,
0.87, 0.90, 1.5 of a loading and separation processes when the sample is transported by
a standard EOF and separated by a pressure pulse with TOL=TOL=0.25.
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Figure 3.20. Number of nodes (left) and time step size (right) with respect to time t
of a loading and separation processes when the sample is transported by a standard EOF
and separated by a pressure with TOL=TOL=0.25.

one is the injection process when the sample concentration moves from reservoir
S to W. The time step size increases gradually at this moment with a stronger
increase when the solution reaches the stationary state of the injection process.
The second phase concerns the applied pressure pulse. At that time, the time step
size drops significantly then stays approximatively constant during the applied
pressure pulse period. At the end of this period, the time step size drops again
and then increases. This is the third step where the sample plug injected in the
separation channel moves towards the reservoir A. Around time t=1, the sample
plug leaves the computation domain and the time step size increases strongly until
the end of the simulation time.

Finally, we reported in Figures 3.21 and 3.22, the velocity streamlines, the
concentration field and the adapted mesh corresponding to the times t=0.85 and
t=0.87 of the numerical simulation presented in Figure 3.19.

3.6 Conclusion

We have applied an adaptive finite element method to solve the electroosmotic
transport of a sample concentration through a network of microchannels. This
method enables us to fully solve the EDL potential near the walls of the mi-
crochannel required to solve the fluid flow velocity. In the numerical simulations
considered in this Chapter, the ratio between the channel height and the Debye
layer is about 100. Solving accurately the electric wall potential problem with a
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standard finite element method would lead to an enormous number of nodes. The
use of an adaptive method reduces drastically this number and allows to com-
pute accurately this potential. Moreover, the adaptive algorithm coupled a space
adaptation with a time adaptation. It becomes very useful for instance when the
solution reaches the stationary state of the injection process. During that time,
higher time step are used, and when the separation process begins, the time step
size automatically reduces in order to compute an accurate solution. The results
obtained prove that the method is efficient and robust and provides a useful tool to
compute electroosmotic sample transport processes in complex microfluidic chips.
All the numerical experiments are done in two-dimensional space. We are looking
forward to extend these results to the three-dimensional case using the MeshAdapt
software [90], especially for the numerical simulation of the pressure pulse injection
where the depth of the microchannels can have a significant impact on the velocity
field rate.

0.0 0.5 1.0

0.0 0.5 1.0

Figure 3.21. Velocity streamlines and concentration fields at times t=0.85 (top) and
t=0.87 (bottom) of a loading and separation processes when the sample is transported by
a standard EOF and separated by a pressure pulse with TOL=TOL=0.25.
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Figure 3.22. Adapted meshes at times t=0.85 (top, 5987 nodes) and t=0.87 (bottom,
21722 nodes) of a loading and separation processes when the sample is transported by a
standard EOF and separated by a pressure pulse with TOL=TOL=0.25.
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Conclusion

A space and time adaptive method for the numerical simulation of electroosmotic
transport of a sample concentration within a network of microchannels is imple-
mented.

The main difficulty in such problem is the computation of the electric dou-
ble layer potential which drops rapidly across the Debye layer from a constant
value at the microchannel walls, to zero in a bulk region. As the ratio between
the microchannel diameter and the Debye layer length can be up to 104, specific
numerical method has to be used to compute accurately the electroosmotic flow
with a reasonable computation cost. This has been successfully addressed using
an adaptive finite element method with large aspect ratio. Thus, on one hand,
the electroosmotic flow has been solved accurately, despite the presence of strong
boundary layers, and on the other hand, this approach allowed to follow with
precision the transport of a sample concentration through complex geometries of
microchannels. Obtained results show that this method is efficient and robust and
give good agreement with works of other authors.

Another important feature of this work is the use of an adaptive time step
method. Usually, adaptive method only focus on space adaptation. Of course,
generating meshes that fit ideally to the finite element solution is an efficient man-
ner to improve its quality. However, if the adaptive method can couple a time
adaptive procedure to the one in space, the numerical solution would obviously
be even more accurate. For this purpose, time error estimators have first been
derived for two model problems, that is to say the linear heat equation and the
time-dependent convection-diffusion problem, both discretized in time with the
Crank-Nicolson scheme. Optimality of both time error estimators have been ob-
tained using a continuous piecewise quadratic time reconstruction and numerical
results reported show that these estimators provide an efficient tool to improve
the accuracy of a finite element solution. Nevertheless, for a complete theoretical
study of these error estimators, the derivation of lower bounds such as the one
presented in [29] in the case of anisotropic meshes is still needed.
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[56] P. Houston, R. Rannacher, and E. Süli. A posteriori error analysis for sta-
bilised finite element approximations of transport problems. Comput. Methods
Appl. Mech. Engrg., 190(11-12):1483–1508, 2000.

123



Bibliography

[57] A. Papastavrou and R. Verfürth. A posteriori error estimators for stationary
convection-diffusion problems: a computational comparison. Comput. Meth-
ods Appl. Mech. Engrg., 189(2):449–462, 2000.

[58] R. Verfürth. Robust a posteriori error estimates for stationary convection-
diffusion equations. SIAM J. Numer. Anal., 43(4):1766–1782 (electronic),
2005.

[59] G. Sangalli. Robust a-posteriori estimator for advection-diffusion-reaction
problems. Math. Comp., 77(261):41–70 (electronic), 2008.

[60] L. Formaggia, S. Micheletti, and S. Perotto. Anisotropic mesh adaptation in
computational fluid dynamics: application to the advection-diffusion-reaction
and the Stokes problems. Appl. Numer. Math., 51(4):511–533, 2004.

[61] L. Formaggia, S. Perotto, and P. Zunino. An anisotropic a-posteriori error
estimate for a convection-diffusion problem. Comput. Vis. Sci., 4(2):99–104,
2001. Second AMIF International Conference (Il Ciocco, 2000).

[62] T. Apel and S. Nicaise. A posteriori error estimations of a SUPG method for
anisotropic diffusion-convection-reaction problems. C. R. Math. Acad. Sci.
Paris, 345(11):657–662, 2007.

[63] R. Verfürth. Robust a posteriori error estimates for nonstationary convection-
diffusion equations. SIAM J. Numer. Anal., 43(4):1783–1802 (electronic),
2005.

[64] A. Ern and J. Proft. A posteriori discontinuous Galerkin error estimates for
transient convection-diffusion equations. Appl. Math. Lett., 18(7):833–841,
2005.
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