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Abstract—In this paper we propose a novel method which is
able to detect and separate audio-visual sources present in a
scene. Our method exploits the correlation between the video
signal captured with a camera and a synchronously recorded
one-microphone audio track. In a first stage, audio and video
modalities are decomposed into relevant basic structures using
redundant representations. Next, synchrony between relevant
events in audio and video modalities is quantified. Based on
this co-occurrence measure, audio-visual sources are counted
and located in the image using a robust clustering algorithm
that groups video structures exhibiting strong correlations with
the audio. Next periods where each source is active alone are
determined and used to build spectral Gaussian Mixture Models
(GMMs) characterizing the sources acoustic behavior. Finally,
these models are used to separate the audio signal in periods
during which several sources are mixed. The proposed approach
has been extensively tested on synthetic and natural sequences
composed of speakers and music instruments. Results show that
the proposed method is able to successfully detect, localize,
separate and reconstruct present audio-visual sources.

Index Terms—Audio-visual processing, blind source separa-
tion, sparse signal representation, Gaussian Mixture Models.

I. INTRODUCTION

It is well known from every-day experience that visual in-

formation strongly contributes to the interpretation of acoustic

stimuli. This is particularly evident if we think about speech:

speaker lips movements are correlated with the produced

sound and the listener can exploit this correspondence to better

understand speech, especially in adverse environments [1], [2].

The multi-modal nature of speech is exploited since at least

two decades to design speech enhancement [3], [4], [5] and

speech recognition algorithms [6], [7] in noisy environments.

Lately, this paradigm has been adopted also in the speech

separation field to increase the performances of audio-only

methods [8], [9], [10], [11], [12].

Audio-visual analysis is receiving increasing attention from

the signal processing and computer vision communities, as
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Fig. 1. Example of a sequence considered in this work. The sample frame
[left] shows the two speakers; as highlighted on the audio spectrogram [right],
in the first part of the clip the girl on the left speaks alone, then the boy on
the right starts to speak as well, and finally the girl stops speaking and the
boy speaks alone.

it is at the basis of a broad range of applications, from

automatic speech/speaker recognition to robotics or indexing

and segmentation of multimedia data [13], [14], [15], [16]. Let

us consider the example of a meeting. The scene is composed

of several people speaking in turns or, sometimes, having

parallel conversations. Detecting the current speaker/speakers

and associating to each one of them the correct audio portions

is extremely useful. For example, one could select one person

and obtain the corresponding speech and image without the

interference of other speakers. It can then be possible to index

the whole meeting by using a speech-to-text algorithm. In this

way one can search through amounts of indexed data by key-

words and recover the target scene (or the person or exact date

where the word appeared for example). The core of all these

applications is the audio-visual source separation. In this paper

we present a new algorithm which is able to automatically

detect and separate the audio-visual sources that compose a

scene.

One typical sequence that we consider in this work, taken

from the groups section of the CUAVE database [17], is shown

in Fig. 1. It involves two speakers arranged as in Fig. 1 [left]

that utter digits in English. As highlighted in Fig. 1 [right], in

the first part of the clip the girl on the left speaks alone, then

the boy on the right starts to speak as well, and finally the

girl stops speaking and the boy speaks alone. In this case, one

audio-visual source is composed of the image of one speaker

and the sounds that she/he produces. However, we must not

associate to this source a part of the image (or soundtrack)

belonging to the other speaker. What we want to do here is to

detect and separate these audio-visual sources.

In a first stage towards a complete audio-visual source sep-

aration, several methods exploited synchrony between audio

and video channels to improve the results in the audio source

separation domain when two microphones are available [8],
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[9], [10], [11], [12]. In [10] the audio activity for each source

(speaker) is assessed by computing the amount of motion

in a previously detected mouth region. Then, the sources

activity is used to improve the audio separation results when

important noise is present. This method can only be used in

speech mixtures recorded with more than one microphone.

Approaches described in [8], [9], [11], [12] first build audio-

visual models for each source and then they use them to

separate a given audio mixture. For those last methods, the

sources in the mixture and the video part of each one of them

need to be known in advance, and the audio-visual source

model is also built off-line.

Only two methods attempt a complete audio-visual source

separation using a video signal and the corresponding one-

microphone soundtrack [18], [19]. Barzelay and Schechner

propose in [18] to assess the temporal correlation between

audio and video onsets, which are respectively the beginning

of a sound and a significant change on the speed or direction

of a video structure. Audio-visual objects (AVO) are assumed

to be composed of the video structures whose onsets match

a majority of audio onsets and the audio signal associated to

those audio onsets. The audio part of each AVO is computed

by tracking the frequency formants that follow the presence

of its audio onsets. In [19] a similar approach using canonical

correlation analysis for finding correlated components in audio

and video is presented. This approach uses trajectories of

“interest” points in the same way as in [18] and it adds an im-

plementation using microphone arrays. The main differences

between those approaches and our method are the following:

1. The objective of the proposed method is to separate and

reconstruct audio-visual sources. We want to stress that

our sources are audio-visual, not only audio or video.

Existing methods do that only partially: they locate the

video structures more correlated with the audio and separate

the audio (in [19] there is no evidence however). Both

methods do not attempt to reconstruct the video part of

the sources. Concerning the audio, in [18] the separated

soundtracks are recovered with an important energy loss

due to the formants tracking, while in [19] no separated

soundtracks are shown or analyzed.

2. We separate audio-visual sources using a simple and very

important observation: it is very unlikely that sources are

mixed all the time. Thus we detect periods during which

audio-visual sources are active alone and periods during

which they are mixed. This is a very important step because

once one has this information, any one microphone audio

source separation technique can be used. Thus, we do not

need to know in advance the characteristics of the sources

composing the mixture (off-line training is not needed

anymore), since acoustic models for the sources can be

learnt in periods where they are active alone.

In this research work, the robust separation of audio-visual

sources is achieved by solving four consecutive tasks. First,

we estimate the number of audio-visual sources present in

the sequence (i.e. one silent person cannot be considered as a

source). Second, the visual part of these sources is localized

in the image. Third, we detect the temporal periods during

which each audio-visual source is active alone. Finally, these

time slots are used to build audio models for the sources

and separate the original soundtrack when several sources are

active at the same time. From a purely audio point of view,

the video information ensures the blindness of the one micro-

phone audio source separation explained in Section VI-B. The

number of sources in the sequence and their characteristics are

determined by combing audio and video signals. As a result,

our algorithm does not need any previous information or off-

line training to separate the audio mixture and accomplish the

whole audio-visual source separation task.

The paper has the following structure: in Section II we

describe the Blind Audio-Visual Source Separation (BAVSS)

algorithm, while Section III details the audio and video fea-

tures used to represent both modalities. Section IV presents

the method employed to assess and quantify the synchrony

between audio and video relevant events: a key-point in our

algorithm. Next, in Section V and Section VI the methodol-

ogy used for the video and audio separation respectively is

explained in depth. Section VII introduces the performance

measures that are used in the evaluation of our method.

Section VIII presents the separation results obtained on real

and synthesized audio-visual clips. Finally, in Section IX

achievements and future research directions are discussed.

II. BLIND AUDIO-VISUAL SOURCE SEPARATION (BAVSS)

Figure 2 schematically illustrates the whole Blind Audio-

Visual Source Separation (BAVSS) process. We observe N
audio-visual sources, each one composed of its visual part

and its audio part. Thus, the soundtrack can be expressed as

a set of N audio sources a(t) = {a1(t), a2(t), . . . , aN (t)},

and the video signal as a set of N video sources

v(x1, x2, t) = {v1(x1, x2, t), v2(x1, x2, t), . . . , vN (x1, x2, t)}.

Audio and video signals are decomposed using redundant

representations into K audio atoms φ
(a)
k (t) and M video atoms

φ
(v)
m (x1, x2, t) respectively, as explained in Section III. Audio

and video atoms describe meaningful features of each modality

in a compact way: an audio atom indicates the presence of a

sound and each video atom represents a part of the image and

its evolution through time.

In the next block, the fusion between audio and video

modalities is performed at the atom level by assessing the

temporal synchrony between the presence of a sound and

an oscillatory movement of a video structure as explained in

Section IV. The result is a set of correlation scores χk,m that

associate each audio atom k to each video atom m according

to their synchrony.

Next audio-visual sources are counted and localized using

a clustering algorithm that spatially groups video structures

whose movement is synchronous with the presence of sounds

in the audio channel (Section V-A). These initial steps are

the most important ones for the BAVSS process since they

assess the relationships between audio and video structures

and determine the number N of present audio-visual sources.

Thus, in order to recover an estimate of the video part of each

source we only need to assign the video atoms to the sources

taking into account their positions in the image (the procedure

is detailed in Section V-B).



3

φ
(a)
k (t) φ(v)

m (x1, x2, t)

(x1n
, x2n

), n = 1, . . . , N

wn(t)

Sn → φ
(v)
j s.t. j ∈ Sn

Sn → φ
(a)
j s.t. j ∈ Sn

!"#$%&'() !"#$%&'(*

+,-./0

#1234"5678

#19336:6#946$7
;6<"$(94$%3

#19336:6#946$7
92<6$(94$%3

=>>?@93"<
92<6$(3$25#"(3"&95946$7

! "

A$55"1946$7
3#$5"3

)#46;64B
;"#4$53

χk,m

ân(t)

a(t) v(x1, x2, t)

v̂n(x1, x2, t)

Fig. 2. Block diagram of the proposed audio-visual source separation
algorithm. Audio and video channels are decomposed using redundant repre-
sentations. Temporal correlation between relevant events in both modalities is
assessed and quantified in the fusion stage, giving as a result the correlation
scores χk,m between audio and video atoms. Next, video atoms that present
strong correlations with the whole soundtrack are grouped together using
a clustering algorithm that determines the number of audio-visual sources
N in the scene and locates them on the image. Then, video atoms are
assigned to the corresponding sources using a proximity criterion, which
provides an estimation of the video part of the sources. At this point, audio
atoms are classified into the sources taking into account their correlation
with the labelled video atoms. The activity of each source (represented by
activity vectors in the diagram) is determined according to the audio atoms
classification. Finally, spectral GMMs for the sources are built in temporal
periods where the sources are active alone and these models are used to
separate sources when they are mixed. In this way the audio part of the
sources is also estimated and the process is completed.

Then, each audio atom is assigned to one source according

to the classification of the associated video atoms. However,

this labelling of the audio atoms is not sufficient to clearly

separate the audio sources. This is due to the fact that until

this point our method only assesses the temporal synchrony

between audio and video structures, and thus it is not dis-

criminant when several sources are mixed. Thus we use the

audio atoms classification to detect the temporal periods of

activity of each source as explained in Section VI-A. The

audio mixture is separated according to the spectral Gaussian

Mixture Models that are built in time slots during which each

source is active alone (Section VI-B). In this final step we

obtain the estimates for the audio part of the sources and

the complete audio-visual separation is achieved. The choice

of the GMMs for the audio separation is motivated by their

simplicity and the fact that GMMs can effectively represent the

variety of sounds structures [20]. However, once the periods

of activity of the sources are determined any one microphone

audio source separation algorithm can be used.

Two main assumptions are made on the type of sequences

that we can analyze. First, we assume that for each detected

video source there is one and only one associated source

in the audio mixture. This means that if there is an audio

“distracter” in the sequence (e.g. a person speaking out of

the camera’s field of view), it is considered as noise and its

contribution to the soundtrack is associated to the sources

found in the video. This assumption simplifies the analysis,

since we know in advance that a one-to-one relationship

between audio and video entities exists. The relaxation of

this assumption will be the object of future investigation.

Moreover, we consider the video sources approximately static

globally, i.e. their location over the image plane do not change

too much (sources never switch their positions for example).

Again, this second assumption is made for simplicity and

it can be removed by using a 3-D clustering of the video

atoms (using also the temporal dimension) instead of a 2-D

clustering. The video decomposition gives the position of the

atom at each time instant and thus we can group together

atoms that stay close through time to the video atoms most

correlated to the soundtrack.

III. AUDIO AND VIDEO REPRESENTATIONS

The effectiveness of the proposed algorithm is basically

due to the representations used for describing the audio and

video signals. These representations decompose the signals

according to their salient structures, whose variations in char-

acteristics such as dimensions or position represent a relevant

change in the whole signal. For example, a variation in one

pixel value may mean movement or not, but a position change

of one full structure will probably have this meaning. Next

subsections describe representation techniques used for audio

and video signals.

A. Audio Representation

The audio signal a(t) is decomposed using the Matching

Pursuit algorithm (MP) [21] over a dictionary of Gabor atoms

D(a), where a single window function, g(a), generates all the

atoms that compose the dictionary. Each atom φ
(a)
k = Ukg(a),

is built by applying a transformation Uk to the mother function

g(a). The possible transformations are scaling by s > 0,

translation in time by u and modulation in frequency by ξ.

Then, indicating with an index k the set of transformations

(s, u, ξ), an atom can be represented as

φ
(a)
k (t) =

1√
s

g(a)

(

t − u

s

)

eiξt , (1)

where the value 1/
√

s makes φ(a)(t) unitary. According to

these definition, each audio atom represents a sound and, more

concisely, a concentration of acoustic energy around time u
and frequency ξ.

Thus, an audio signal a(t) can be approximated using K
atoms as

a(t) ≈
K−1
∑

k=0

ckφ
(a)
k (t) , (2)

where ck corresponds to the coefficient for every atom φ
(a)
k (t)

from dictionary D(a).
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Fig. 3. The generating function g(v)(x1, x2) expressed by (4).

MP decomposition provides a sparse representation of the

audio energy distribution in the time-frequency plane, high-

lighting the frequency components evolution. Moreover, MP

performs a denoising of the input signal, pointing out the most

relevant structures [21].

B. Video Representation

The video signal is represented using the 3D-MP algorithm

proposed by Divorra and Vandergheynst in [22]. The video

signal is decomposed into a set of video atoms representing

salient video components and their temporal transformations

(i.e changes in their position, size and orientation). Unlike the

case of simple pixel-based representations, when considering

image structures that evolve in time we deal with dynamic

features that have a true geometrical meaning. Furthermore,

sparse geometric video decompositions provide compact rep-

resentations of information, allowing a considerable dimen-

sionality reduction of the input signals.

First of all, the first frame of the video signal, I1(x1, x2),
is approximated with a linear combination of atoms retrieved

from a redundant dictionary D(v) of 2-D atoms as

I1(x1, x2) ≈
∑

p∈Ω

cpφ
(v)
p (x1, x2) , (3)

where cp is the coefficient corresponding to each 2-D video

atom φ
(v)
p (x1, x2) and Ω is the subset of selected atom indexes

from dictionary D(v). As in the audio case, the dictionary

is built by varying the parameters of a mother function, an

edge-detector atom with odd symmetry, that is a Gaussian

along one axis and the first derivative of a Gaussian along

the perpendicular one (see Fig. 3). The generating function

g(v) is thus expressed as

g(v)(x1, x2) = 2x1 · e−(x2

1
+x2

2
) . (4)

Then, this 2-D atoms are tracked from frame to frame using

a modified MP approach based on a Bayesian decision criteria

as explained in [22]. The possible transformations applied to

g(v) to build the video atoms are: translations over the image

plane ~r = (r1, r2), scaling ~s = (s1, s2) to adapt the atom to

the considered image structure and rotations θ to locally orient

the function along the edge.

Thus, the video signal can be approximated using M 3-D

video atoms φ
(v)
m as

(a)

(b)

Fig. 4. (a) [Top row] Original synthetic sequence made by a white bar
moving black uniform background. [Bottom row] Approximation using one
video atom. (b) Parameter evolution of the atom. From left to right and from
up down: coefficient cm(t), horizontal position r1, vertical position r2, short
axis scale s1, long axis scale s2, rotation θ.

V (x1, x2, t) ≈
M−1
∑

m=0

cm(t)φ
(v)
m (x1, x2, t) , (5)

where the coefficients cm(t) vary through time and where each

video atom φ
(v)
m is obtained by changing from frame to frame

the parameters (r1m
, r2m

, s1m
, s2m

, θm) of a reference 2-D

atom φ
(v)
m (x1, x2):

φ(v)
m (x1, x2, t) = φ

(v)
m(t)(x1, x2) . (6)

An illustration of this video decomposition can be observed

in Figure 4, where the approximation of a simple synthetic ob-

ject by means of a single video atom is performed. Figure 4(a)

shows the original sequence (top row) and its approximation

composed of a single geometric term (bottom row). Figure 4(b)

depicts the parametric representation of the sequence: we find

the temporal evolution of the coefficient cm(t) and of the

position, scale and orientation parameters. This 3D-MP video

representation provides a parametrization of the signal which

concisely represents the image geometric structures and their

temporal evolution.

As explained in Section II the correlation between audio

and video signals is determined by assessing the temporal

synchrony between the presence of a sound and an oscillatory

movement of a relevant video structure. At this point, the

video is already decomposed into relevant structures (atoms)

and what we need is to compute their movement. Thus, for

each video atom φ
(v)
m we compute a feature describing its dis-

placement dm(t) =
√

r2
1m

(t) + r2
2m

(t) by using the position

parameters (r1m
(t), r2m

(t)) extracted from the tracking step

of the decomposition at each frame t.

IV. AUDIO-VIDEO ATOMIC FUSION

Quantifying the relationships between audio and video

structures is the most important part in the whole process. All
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Audio

(a) (b)

Fig. 5. Audio feature fk(t) (a) and displacement function dm(t) with
corresponding Activation Vector ym(t) obtained for a video atom (b).

the audio-visual information that is used in the next steps of

the algorithm is extracted here. Thus, the fusion method that

we choose in order to assess the correlation between audio and

video determines the performance of the proposed method.

As explained before, approaches in audio-visual analysis are

based in an assumption of synchrony between related events

in audio and video channels, i.e. when a person is speaking

his/her lips movements are temporally correlated to the speech.

According to this observation, correlation scores χk,m are

computed between each audio atom φ
(a)
k and each video atom

φ
(v)
m . These scores measure the degree of synchrony between

relevant events in both modalities: the presence of an audio

atom (energy in the time-frequency plane) and a peak in

the video atom displacement (oscillation from an equilibrium

position).

Audio feature: The feature fk(t) that we consider is the

energy distribution of each audio atom projected over the

time axis. In the case of Gabor atoms it is a Gaussian

function whose position and variance depend on the

atoms parameters u and s respectively (Fig. 5(a)).

Video feature: An Activation Vector ym(t) [23] is built for

each atom displacement function dm(t) by detecting the

peaks locations as shown in Fig. 5(b). The Activation

Vector peaks are filtered by a window of width W = 13
samples in order to model delays and uncertainty.

There are two important remarks to be done concerning the

video features that we use. First of all, it is important to clarify

that the peaks on the displacement function dm(t) represent

an oscillatory movement of the atom m. Thus, the Activation

Vector ym(t) does not depend on the original or relative

position of the video atom m in the image. Notice that the

peaks are situated at the time instant where a change in the

direction of the movement appears. That can be interpreted as

a change in the sign of the acceleration of the atom or, what

is the same, an oscillation on the movement of that atom.

The second remark concerns the choice of the parameter that

models delays between audio and video relevant events. Here

W = 13 samples corresponds to 0.45 seconds, a time delay

between a movement and the presence of the corresponding

sound that appears to be appropriate. From informal tests the

setting of W results not to be critical as its value can be

changed within a range of several samples without affecting

significantly the algorithm performance.

Finally, a scalar product is computed between audio and

video features in order to obtain the correlation scores:

χk,m = 〈fk(t), ym(t)〉 , ∀ k, m . (7)

This value is high when the audio atom and a peak in the video

atom’s displacement overlap in time or, what is the same, when

a sound (audio energy) occurs more or less at the same time

than the video structure is moving. Thus, a high correlation

score means high probability for a video structure of having

generated the sound.

V. VIDEO SEPARATION

A. Spatial Clustering of Video Atoms

The idea now is to spatially group all the structures belong-

ing to the same source in order to estimate the source position

on the image. We define the empirical confidence value κm

of the m-th video atom as the sum of the MP coefficients ck

of all the audio atoms associated to it in the whole sequence,

κm =
∑

k ck, with k such that χk,m 6= 0. This value is a

measure of the number of audio atoms related to this video

structure and their weight in the MP decomposition of the

audio track. Thus, a video atom m whose motion presents a

high synchrony with sounds in the audio channel will have a

high confidence value κm, since a large number of important

audio atoms in the sequence will be associated to this video

atom in the audio-video atomic fusion step (Section IV). In

contrast, low values for km correspond to video atoms whose

motion is occasionally (and not continually) synchronous to

the sounds.

Typically, the video part of each source is composed of

groups of atoms presenting high confidence values κm (and

thus high coherence with the audio signal), which are concen-

trated in a small region in the image plane. Thus, a spatial

clustering becomes a natural way to count the sources in the

sequence and estimate their position in the image. Let each

video atom be characterized by its position over the image

plane and its confidence value, i.e. ((r1m
, r2m

), κm). In this

work, we cluster the video atoms correlated with the audio

signal (i.e. with κm 6= 0) following these three steps:

1. Clusters Creation: The algorithm creates Z clusters

{Ci}Z
i=1, by iteratively selecting the video atoms with

highest confidence value (and thus highest coherence with

the audio track) and adding to them video atoms closer

than a cluster size R defined in pixels. Video atoms

belonging to a cluster can not be the center of a new

cluster. Thus each new cluster is generated by the video

atom with highest confidence value from those which

have not been classified yet;

2. Centroids Estimation: The center of mass of each clus-

ter is computed taking the confidence value of every atom

as the mass. The resulting centroids are the coordinates

in the image where the algorithm locates the audio-visual

sources;

3. Unreliable Clusters Elimination: We define the cluster

confidence value KCi
as the sum of the confidence values

κj of the atoms belonging to the cluster Ci, i.e. KCi
=

∑

j∈Ci
κj . Based on this measure, unreliable clusters, i.e.

clusters with small confidence value KCi
are removed,

obtaining the final set of N ≤ Z clusters, {C′
n}N

n=1, with

centroids (x1n
, x2n

). In this step we remove cluster Ci if

KCi
< 0.1 · max

h
KCh

with h = 1, . . . , Z , h 6= i . (8)
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Fig. 6. Example of the video sources reconstruction. On the left picture the
left person is speaking while on the right picture the right person is speaking.

Further details about this clustering algorithm can be found in

[24]. At this stage a good localization of sources in the image

is achieved. The number of sources N does not have to be

specified in advance since a confidence measure is introduced

to automatically eliminate unreliable clusters. In [24] we show

that the results are not significantly affected by the cluster

parameters choice. For R ranging between 40 and 90 pixels

the proposed clustering algorithm has been proved to detect

the correct number of sources N (in all experiments image

dimensions are 120 × 176 pixels). In fact, when we decrease

the cluster size R more possible sources appear (Z increases),

but all these clusters are far from the mouth and present a small

correlation with the audio signal. Thus, step 3 of the algorithm

easily removes clusters that do not represent an audio-visual

source as their confidence KCi
is much smaller.

B. Video Atoms Classification

This step classifies all video atoms closer than the cluster

size R to a centroid into the corresponding source. Notice that

only video atoms moving coherently with sounds (κm 6= 0)

are considered for the video localization in Section V-A. Each

such group of video atoms describes the video modality of

an audio-visual source, achieving thus the video separation

objective. Then, an estimate of the video part of the n−th

source, Sn, can be computed simply as

v̂n(x1, x2, t) =
∑

j∈Sn

cj(t)φ
(v)
j (x1, x2, t) . (9)

Figure 6 shows an example of the reconstruction of the

current speaker detected by the algorithm. Only video atoms

close to the sources estimated by the presented technique are

considered. Thus, to carry out the reconstruction, the algorithm

adds their energy and the effect is a highlight of the speaker’s

face. In both frames, the correct speaker is detected.

VI. AUDIO SEPARATION

A. Audio Atoms Classification

For every audio atom we take into account all related video

atoms, their correlation scores and their classification into a

source. Accordingly, an audio atom should be assigned to the

source gathering most video atoms. Since we also want to

reward synchrony, the assignation of each audio entity φ
(a)
k is

performed in the following way:

1. Take all the video atoms φ
(v)
m correlated with the audio

atom φ
(a)
k , i.e. for which χk,m 6= 0 ;

2. Each of these video atoms is associated to an audio-visual

source Sn ; for each source Sn compute a value HSn
that

is the sum of the correlation scores between the audio

atom φ
(a)
k and the video atoms φ

(v)
j s.t. j ∈ Sn:

HSn
=

∑

j∈Sn

χk,j ; (10)

Thus, this step rewards sources whose video atoms

present a high synchrony with the considered audio atom.

3. Classify the audio atom into the source Sn if the value

HSn
is “big enough”: here we require HSn

to be twice

as big as any other value HSh
for the other sources. Thus

we attribute φ
(a)
k to Sn if

HSn
> 2 · HSh

with h = 1, . . . , N , h 6= n . (11)

If this condition is not fulfilled (this is typically the

case when several sources are simultaneously active), this

audio atom can belong to several sources and further

processing is required. This decision bound is not a very

critical parameter since it only affects the classification of

the audio atoms in time slots with several active sources.

In periods with only one source, the difference between

the score for the considered source HSn
and the others

is enormous and it is thus easy to classify the atom into

the correct source.

Using the labels of audio atoms, time periods during which

only one source is active are clearly determined. This is done

using a very simple criterion: if in a continuous time slot

longer than ∆ seconds all audio atoms are assigned to source

Sn, then during this period only source Sn is active. In all

experiments the value of ∆ is set to 1 second. The choice of

this parameter has been done according to the length of the

analyzed sequences (around 20 seconds). This value has to be

small enough to ensure that in a period there is only one source

active. At the same time, it has to be big enough to allow the

presence of periods where to train the source audio models.

Thus, ∆ could be set automatically according to the length of

the analyzed clip, e.g. one tenth of the sequence length.

When several sources are present, temporal information

alone is not sufficient to discriminate different audio sources in

the mixture. To overcome this limitation, in these ambiguous

time slots a time-frequency analysis is performed, which is

presented in details in the next section.

B. GMM-based Audio Source Separation

As explained in Section II, the choice of the spectral

Gaussian Mixture Models (GMMs) as our method for the

separation of the audio part of the sources has been mo-

tivated by two main reasons. Inspite of its simplicity, we

can achieve good audio separation since GMMs are able to

model multiple Power Spectral Densities or, what is the same,

several frequency behaviors for the same source. This is a very

interesting property given the diverse nature of sounds. Thus

GMMs have the capacity of modelling non-stationary signals

contrary to classical Wiener filters [20].

Here, we perform a one microphone GMM-based audio

source separation inspired by the supervised approach in [25]

but introducing the video information. The method in [25]

needs to know in advance the sources that compose the
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Fig. 7. Example of spectral GMM states learned by our algorithm for female
[left] and male [right] speakers. Each state i is represented by its PSD in dB:
log(r2

i (f)).

mixture and their characteristics: the audio model for each

source is built off-line. Here the information extracted from the

video signal through previous steps of our algorithm allows the

application of the method without any off-line training. Thus,

the separation that we perform is completely blind since no

previous information about the sources is required.

The idea is to model the short time Fourier spectra of the

sources by GMMs learned from training sequences atrain
n (t).

Using these models, the audio source separation is performed

applying time-frequency masking on the Short Time Fourier

Transform (STFT) domain. We will first explain our model

for the sources, next the process we use to learn these models

and finally the separation part.

Given an audio signal z(t), we denote the STFT of this

signal Z(τ, f) and Zτ ′ = Z(τ, f)|τ=τ ′ the short time Fourier

spectrum of the signal at time τ ′. The short time Fourier

spectra of the signal, Zτ , are modeled with a GMM, i.e. the

probability density function of Zτ is given by

p(Zτ |Λspec) =
∑

i

uiN(Zτ ; Ri) , (12)

with

N(Zτ ; Ri) =
∏

f

1

πr2
i (f)

exp

[

−|Zτ (f)|2
r2
i (f)

]

. (13)

Here Zτ (f) is the complex value of the short time Fourier

spectrum Zτ at frequency f and r2
i (f), representing the local

Power Spectral Density (PSD) at frequency f in the state i of

the GMM, is the diagonal element of the diagonal covariance

matrix Ri = diag[r2
i (f)]. This spectral GMM is denoted

Λspec = {ui, Ri}i.

Figure 7 shows two states of the GMMs that are learned by

this method for a female [left] and a male [right] speaker. The

states correctly characterize the sources frequency behavior:

the male’s audio energy is mainly present at lower frequencies

(Fig. 7 [left]) while the female’s harmonics (peaks in the PSD)

start to appear at higher frequencies. A deeper analysis of

this figure shows that for the female speaker, the fundamental

frequency f0 is around 220Hz (harmonics appear at multiples

of 220Hz) while for the male it is around 110Hz. Those

values for f0 are within the range of the average speaking

fundamental frequency for women (between 188 and 221 Hz)

and for men (between 100 and 146 Hz) [26].

Let us now describe the learning process. For each source

n, a training sequence atrain
n (t) is composed of the detected

time slots where the source is active alone, which are deter-

mined in Section VI-A. Next, the training sequence atrain
n (t)

is represented on the time-frequency plane Atrain
n (τ, f) by ap-

Algorithm 1: Learning of the spectral GMM parameters

Λspec
n = {un,i, Rn,i}i by Expectation Maximization

Input: Short time Fourier spectra of the training signal

Atrain
nτ

Output: Spectral GMM Λspec
n = {un,i, Rn,i}i

foreach EM iteration (l) do

1. Compute the weights γ
(l)
i (τ) such that

∑

i γ
(l)
i (τ) = 1 and

γ
(l)
i (τ) ∝ u

(l)
n,iN(Atrain

nτ
; R

(l)
n,i) , (14)

where ∝ means proportionality and N(.) is expressed

by equation (13).

2. Update the weights of the Gaussians un,i:

u
(l+1)
n,i =

1

T

∑

τ

γ
(l)
i (τ) . (15)

3. Update the covariance matrices Rn,i:

r
2 (l+1)
n,i (f) =

∑

τ γ
(l)
i (τ)|Atrain

n (τ, f)|2
∑

t γ
(l)
i (τ)

. (16)

end

plying a STFT using temporal windows of 512 samples length

(64ms at 8kHz of sampling frequency) with 50% overlap.

Then, the model Λspec
n = {un,i, Rn,i}i is learned by maxi-

mization of the likelihood p(Atrain
nτ

|Λspec
n ). This maximization

is iteratively adjusted using the Expectation Maximization

(EM) algorithm initialized by Vector Quantization (VQ) to

Qn states. The formulas used for the parameters re-estimation

are shown in Algorithm 1 and explained in detail in [20].

The method used for the audio separation is explained

in Algorithm 2 for a mixture of N = 2 sources. This is

done for simplicity and the procedure can be generalized to

a higher number of sources. Thus, for each time instant we

look for the most suitable couple of states given the mixture

spectrum. This information is used to build a time-frequency

Wiener mask for each source (19) by combining the spectral

PSDs in the corresponding states (r2
1,i∗(τ), r

2
2,j∗(τ)) with the

knowledge about the sources activity wn. When only one

source is active, this weight wn assigns all the soundtrack to

this speaker. Otherwise, wn = 0.5 and the analysis takes into

account only the audio GMMs. In a further implementation

we could assign intermediate values to wn that account for

the degree of correlation between audio and video. However,

such cross-modal correlation has to be accurately estimated to

avoid the introduction of separation errors.

VII. BAVSS PERFORMANCE MEASURES

A. Sources activity detection

The performance of the proposed method is highly related

to accuracy in the estimation of the temporal periods in which

each source is active alone. For our method, it is not funda-

mental to detect all the time instants during which sources

are active alone, provided that the length of the detected
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Algorithm 2: Single-channel Audio Source Separation

using knowledge about sources activity

Input: Mixture x, Spectral GMMs Λspec
n = {un,i, Rn,i}i

and activity vectors wn for the sources n = 1, 2
Output: Estimation of the sources audio part â1 and â2

A. Compute the STFT of the mixture X(τ, f) from the

temporal signal x ;

foreach τ = 1, 2, . . . , T do
1. Find the best combination of states (PSD)

according to the mixture spectrum Xτ , that is

(i∗(τ), j∗(τ)) = argmax
(i,j)

γij(τ) , (17)

where γij(τ) is the probability of choosing the

combination of states (i, j) at time τ for the

observation Xτ with
∑

ij γij(τ) = 1 and

γij(τ) ∝ u1,iu2,jN(Xτ ; R1,i + R2,j) . (18)

2. Build a time-frequency local mask using

knowledge about sources activity. For source n = 1:

M1(τ, f)=
r2
1,i∗(τ)(f) · w1(τ)

r2
1,i∗(τ)(f)·w1(τ) + r2

2,j∗(τ)(f)·w2(τ)
,

(19)

and then M2(τ, f) = 1 − M1(τ, f).
3. Apply the local masks to the mixture X(τ, f) to

obtain the estimated source STFT:

Ân(τ, f) = Mn(τ, f)X(τ, f) . (20)

end

B. Reconstruct estimations of the sources audio part in

the temporal domain ân from the STFT estimations Ân

period is long enough to train the source audio models. In

fact, errors occur only when our algorithm estimates that one

source is active alone while in fact some of the other sources

are active too. In these error frames our algorithm will learn

an audio model for source Si that represents the frequency

behavior of several sources mixed, and that will cause errors

in the separation. Two measures assess the performance of our

method in this domain: the activity-error-rate (ERR) and the

activity-efficiency-rate (EFF).

Let N be the number of audio-visual sources and FT be

the number of video frames. For any fixed time and source Si

we define:

SON
i := “Source Si is active” , (21)

SOFF
i := “Source Si is NOT active” . (22)

Let Sj with j = 1, . . . , N , i 6= j be the set of sources different

from Si . Then we define:

EOFF
j 6=i := AND {SOFF

j ∀j 6= i} , (23)

EON
j 6=i := NOT {EOFF

j 6=i } = OR {SON
j ∀j 6= i} . (24)

EOFF
j 6=i is the event where all sources different from Si are

inactive and EON
j 6=i is the complementary event where one or

more of the sources different from source Si are active.

The activity-error-rate (ERR) for source Si is defined as

ERR
i

=
F (SON

i AND EOFF
j 6=i |EON

j 6=i)

FT

, (25)

where F (A|B) is a function that returns the number of frames

where our algorithm estimates that the event A has place and

the ground truth soundtracks indicate that the current event is

B. Thus, the ERR represents the percentage of time during

which the algorithm makes an important error since it decides

that source Si is active alone and it is not true (one or more

of the other sources are active too).

The activity-efficiency-rate (EFF) for source Si is defined

as

EFF
i

=
F (SON

i AND EOFF
j 6=i |SON

i AND EOFF
j 6=i )

Fi

, (26)

where Fi is the number of frames where source Si is active

alone. Thus, the EFF represents the percentage of time in

which a source is active alone that our method is able to

detect. This parameter is very important parameter given the

short duration of the analyzed sequences: the higher is EFF,

the longer is the period during which we learn the source

audio models and, consequently, we can expect to obtain better

results on the audio separation part.

B. Audio source separation

The BSS Evaluation Toolbox is used to evaluate the perfor-

mance of the proposed method in the Audio Separation part.

The estimated audio part of the sources ân is decomposed

into: ân = atarget + einterf + eartif, as described in [27]. atarget

is the target audio part of the source and einterf and eartif

are, respectively, the interferences and artifacts error terms.

These three terms should represent the part of ân perceived

as coming from the wanted source an, from other unwanted

sources (an′)n′ 6=n and from other causes. Two quantities are

computed using this toolbox, the source-to-interferences ratio

(SIR), and the sources-to-artifacts ratio (SAR), defined as:

SIR = 10 log10

‖atarget‖2

‖einterf‖2
(27)

SAR = 10 log10

‖atarget + einterf‖2

‖eartif‖2
(28)

Thus, the SIR measures the performance of our method in

the rejection of the interferences and the SAR quantifies

the presence of distortions and “burbling” artifacts on the

separated audio sources. By combining SIR and SAR one

can be sure of eliminating the interfering source without

introducing too many artifacts in the separated soundtracks.

For a given mixture and using the knowledge about the

original audio part of the sources an, oracle estimators for

single-channel source separation by time-frequency masking

are computed using the BSS Oracle Toolbox. These oracle

estimators are computed using the ground truth waveforms in

order to result in the smallest possible distortion. As a result,

SIRoracle and SARoracle establish the upper bounds for the

proposed performance measures. For further details about the

oracles estimation, please refer to [28].
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Finally, in order to compare our results to those obtained

in [18], we compute the preserved-signal-ratio (PSR) for

source Si using the method described in [29] as

PSR =
‖Mi(τ, f)ai(τ, f)‖2

‖ai(τ, f)‖2
, (29)

where ai(τ, f) is STFT of the original audio signal corre-

sponding to source Si and Mi(τ, f) is the time-frequency

mask estimated using equation (19) and used in the audio

demixing process. Thus, this measure represents the amount of

acoustic energy that is preserved after the separation process.

VIII. EXPERIMENTS

In a first set of experiments (Section VIII-A), the proposed

BAVSS algorithm is evaluated on synthesized audio-visual

mixtures composed of two persons speaking in front of a cam-

era. These sequences present an artificial mixture generated by

temporally shifting the audio and video signals corresponding

to one of the speakers so that it overlaps with the speech of

the other person. The performance of the proposed method in

identifying the number of sources in the scene, locating them

the image and determining the activity periods of each one of

them is assessed. Furthermore, a quantitative evaluation of the

algorithm’s results in terms of audio separation is performed

since the original soundtracks (ground truth) of each speaker

separately are available for these sequences.

As explained before, at present only two other methods have

attempted a complete audio-visual source separation [18], [19].

The method presented in [19] does not provide any qualitative

or quantitative result in terms of audio separation. In fact, this

paper is mostly concentrated in the localization of the sources

in the image and the only reference to the audio separation

part states that the quality of the separated soundtracks is not

good. Regarding the method presented in [18], two measures

are used to evaluate quantitatively its performance in the audio

separation part: the improvement of the signal-to-interference

ratio (SIR) and the preserved-signal-ratio (PSR). In the last

part of Section VIII-A these two quantities are used to compare

our results to those obtained by the approach in [18] when

analyzing sequences composed of two speakers.

In Section VIII-B we present a second set of experiments

in which speakers and music instruments are mixed. The

complexity of the sequences is higher given the more realistic

background and the presence of distracting motion. These

sequences are real audio-visual mixtures where both sources

are recorded at the same time. Thus, it is not possible to obtain

a quantitative evaluation of the algorithm’s performances as in

Section VIII-A since the audio ground truth is not available

in this case. The main objective of Section VIII-B is to

demonstrate qualitatively that our BAVSS method can deal

successfully with complex real-world sequences involving

speech and music instruments.

Videos showing all the experiments and the estimated audio-

visual sources after applying our method are available online

at http:// lts2www.epfl.ch/∼llagoste/BAVSSresults.htm.

A. CUAVE Database: Quantitative Results

Sequences are synthesized using clips taken from the groups

partition of the CUAVE database [17] with two speakers

uttering sequences of digits alternatively. A typical example

sequences is shown in Fig. 1. The video data is sampled at

29.97 frames/sec with a resolution of 480×720 pixels, and the

audio at 44 kHz. The video has been resized to a 120 × 176
pixels, while the audio has been sub-sampled to 8 kHz. The

video signal is decomposed into M = 100 video atoms and

the soundtrack is decomposed into K = 2000 atoms. The

number of atoms extracted from the decomposition does not

need to be set a priori. It can be automatically chosen setting

a threshold on the reconstruction quality.

Ground truth mixtures are obtained by temporally shifting

audio and video signals of one speaker in order to obtain time

slots with both speakers active simultaneously. In the resulting

synthetic clips, four cases are represented: both persons speak

at the same time, only the boy or the girl speaks or silence. For

further details on the procedure adopted to build the synthetic

sequences the reader is referred to [24]. An example of this

procedure on the audio part is shown on Fig. 8. In (a) the

figure shows the original clip g17 of CUAVE database, in (b)

the ground truth for source 1 (which is the period during which

speaker 1 is uttering numbers) and in (c) the ground truth for

source 2 which is obtained by shifting its audio part. In Fig. 8

(d) we can see the input to our algorithm, a mixture built by

adding ground truth waveforms 1 and 2.

Figure 8 also gives a first qualitative evaluation of our

method. It is possible to compare the ground truth to the esti-

mated audio part of the sources separated using the proposed

method (Fig. 8 (e)-(f)). Waveforms are very similar and the

audible quality of the estimated sequences is also remarkable.

The separation of the mixture when both sources are active is

good as the numbers that each speaker is uttering are clearly

understandable at a good quality.

Results obtained when analyzing ten different synthesized

audio-visual sequences from CUAVE database are summarized

in Table I. In all cases the number of sources present in

the scene and their position in the image has been correctly

detected. An OK in third column means that the estimated

position of the video source is always over the video part of

the source and never over the background or the other source.

As explained before, two measures are used to evaluate the

performance of our method in determining the time slots where

sources are active alone. Results in table I show that in all

sequences the error rate (ERR) is under the 10%, and only

in four cases we are over the 3%. Errors are concentrated in

the boundaries of the source activity, that is just before the

person starts to speak or after he/she stops, because in general

motion in the video signal is not completely synchronous

with sounds in the audio channel. Concerning our method’s

efficiency (EFF), only in three cases we are able to detect less

than 50% of periods where sources are alone, and we average

a 69%, which is a high percentage if we think about longer

sequences. Low values for EFF are caused by the presence

of video motion correlated to the audio on the source that is

not active. In fact, it is difficult to detect the complete periods
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(a) Clip g17 CUAVE database
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(b) Ground truth 1
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(c) Ground truth 2

Time

(d) Mixture g17

Time

(e) Estimated soundtrack 1
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Fig. 8. Comparison between real (b)-(c) and estimated (e)-(f) soundtracks when analyzing a synthetic sequence (d) generated by applying a temporal shift
to speaker 2 in clip g17 of CUAVE database (a).

when sources are active alone without introducing errors, since

there is a trade-off between them. If we choose to detect all

the periods (EFF increases), more false positives will appear

(ERR increases too) and, as explained before, the models for

each source will not be correct. Here we prefer to have a high

confidence when we decide that one source is active alone,

even if then the efficiency decreases.

A 100% on EFF means that periods in which the source is

active alone are perfectly detected. In this case, blind results

for SIR and SAR are the best results that we can achieve

using the GMM-based audio separation method in Section

VI-B since the training sequences are as long as possible.

Consequently, the upper bounds for the performance in the

blind separation of the audio track are clearly conditioned

by the duration of the training sequences and the algorithm

we use for the one microphone audio separation. While in

some sequences the GMM-based separation seems suitable

with performances up to 29dB of SIR (sequence g17), for

some speakers this does not seem to be the case (8dB of SIR
in sequence g12 even if the combined EFF for both speakers

is 81%). However, taking into account the short duration

of the analyzed sequences (20-30 seconds) and the training

sequences (less than 8 seconds), results are satisfactory. Re-

member that the oracles in Table I represent the best results

that we can obtain through any audio source separation method

based on frequency masking if we know in advance the ground

truth soundtracks. In fact, oracles guarantee the minimum

distortion by computing the optimal time-frequency mask

given the original separated soundtracks. The average SIR that

we obtain (16dB) is slightly better than the state-of-the-art on

single-channel audio separation [20] and, unlike this method,

we do it without any kind of supervision. As explained

before, the combination between audio and video signals in

our approach eliminates the necessity of knowing in advance

the sources in the mixture and its acoustic characteristics,

which is typical in one microphone audio separation methods.

Furthermore, in all the resulting separated soundtracks here,

even the ones that present worse SIR, the numbers that each

speaker utters can be well understood.

In sequence g15 we can observe a major problem: there is

no detected period when speaker 2 is active alone (see EFF
in Table I). Consequently, it is not possible to train a model

of that source and our separation method cannot be applied.

This happens because there is video motion correlated to the

audio on source 1 (which is inactive) all over the duration of

the period during which only source 2 is active. However, we

can expect that with longer sequences (and longer time slots

with each source active alone) this problem does not appear

anymore, since in that case it is unlikely that correlated video

motion is present on the inactive source all the time.

The audio separation task is extremely challenging for

sequences g14 and g19, since in this case the mixture is

composed by two male speakers. The fundamental frequencies

of the speakers are extremely close and, as a result, their

formants energy is highly overlapped in the spectrogram. Even

in this difficult context, quantitative results (with an average

SIR of 17dB) are close to those obtained when analyzing

sequences with a male-female combination.

The comparison between our method and the approach

in [18] presents some difficulties. First, the test set in [18]

is composed of three very short sequences (duration ranging

between 5 and 10 seconds), and only one of those sequences

contains a mixture composed of speakers. Furthermore, they

avoid distracting motion by locating the the camera close

to the speakers faces, i.e. we can only observe the lips in

the video corresponding to the male speaker. Although the

differences are considerable, here we compare the results in

the speakers sequence in [18] with the mean results through

all the sequences that we have analyzed. In [18], they report

an improvement in the SIR of 14dB and a PSR of 57.5%

(those values represent the mean between the male and female

results). Here we obtain an average SIR of 16dB and an

average PSR of 85%. Thus, our approach compares specially

favorable in terms of PSR, that is the amount of acoustic

energy that is preserved after the separation process. In fact,

when demixing the audio part of the sources our methods
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Sequence Source
Position in Activity accuracy (%) SIR (dB) SAR (dB)

PSR (%)
the image ERR EFF blind oracle blind oracle

g12
n = 1 OK 0 74 14 33 4 19 83

n = 2 OK 2 87 8 32 7 19 92

g13
n = 1 OK 3 64 10 36 4 21 66

n = 2 OK 0 63 11 37 5 21 87

g14∗ n = 1 OK 6 95 13 39 9 24 100

n = 2 OK 0 73 25 39 4 22 65

g15
n = 1 OK 3 68

n = 2 OK 0 0

g16
n = 1 OK 8 45 10 37 7 22 100

n = 2 OK 2 82 18 38 3 21 56

g17
n = 1 OK 1 95 20 40 11 23 95

n = 2 OK 0 83 29 39 11 24 94

g18
n = 1 OK 0 52 24 38 6 23 84

n = 2 OK 10 69 12 38 7 22 94

g19∗ n = 1 OK 6 44 15 33 7 19 86

n = 2 OK 0 52 15 32 5 18 84

g20
n = 1 OK 0 90 20 35 9 21 88

n = 2 OK 0 77 19 36 9 21 86

g21
n = 1 OK 0 64 16 38 6 23 87

n = 2 OK 1 100 13 38 7 23 90

MEAN 2 69 16 37 7 21 85

TABLE I
RESULTS OBTAINED WITH SYNTHETIC SEQUENCES GENERATED FOR DIFFERENT CLIPS OF CUAVE DATABASE. SEQUENCES MARKED WITH AN ASTERISK

(*) PRESENT TWO MALE SPEAKERS INSTEAD OF ONE MALE AND ONE FEMALE. COLUMNS 1, 2, 3 REPRESENT RESPECTIVELY THE ANALYZED SEQUENCE,
THE NUMBER OF DETECTED AUDIO-VISUAL SOURCES AND IF THE POSITION IN THE IMAGE ESTIMATED BY THE ALGORITHM IS CORRECT. IN COLUMN 4
TWO QUANTITIES THAT EVALUATE THE ACCURACY OF OUR METHOD IN DETECTING THE PERIODS IN WHICH SOURCES ARE ACTIVE ALONE: THE ERROR

RATE [LEFT] AND THE EFFICIENCY RATE [RIGHT]. COLUMNS 5 AND 6 SHOW A QUANTITATIVE COMPARISON BETWEEN RESULTS ON AUDIO SEPARATION

OBTAINED USING OUR BLIND METHOD [LEFT] AND ORACLES COMPUTED USING GROUND TRUTH SOUNDTRACKS [RIGHT]. COLUMN 7 PRESENTS THE

PERCENTAGE OF ENERGY FROM THE ORIGINAL SOUNDTRACK THAT IS KEPT AFTER THE AUDIO SEPARATION PROCESS.

keeps the 85% of the energy in the original audio signal

while in [18] more than the 40% of this energy is lost. These

results are related to the audio separation method used in each

case: our GMM-based separation seems more suitable than the

frequency tracking used in [18] when we consider the PSR.

B. LTS Database: Qualitative results in a challenging envi-

ronment

More challenging sequences including speakers and music

instruments have been recorded in order to qualitetively test

the performance of the proposed method when dealing with

complex situations. The original video data is sampled at 30

frames/sec with a resolution of 240×320 pixels, and the audio

at 44 kHz. For its analysis, the video has been resized to a

120 × 160 pixels, while the audio has been sub-sampled to

8 kHz. The length of the sequences is close to 1 minute in

this case. The video signal is decomposed into M = 120
atoms and the soundtrack is decomposed into K = 6000
atoms. As explained before, a quantitative evaluation can not

be performed in this case since in this section we consider real

mixtures where both sources are recorded at the same time.

In the first experiment (movie1) we analyze an audio-visual

sequence where two persons are playing music instruments

in front of a camera. A frame of this movie is shown in

Fig. 9. In some temporal periods they play at the same time

while in others they do a solo. A first difficulty is given

Fig. 9. Challenging audio-visual sequence where one person is playing a
guitar and another one is hitting two drumsticks in a complex background.
A frame of this movie [left] and the corresponding audio spectrogram [right]
are represented. Drumsticks are active in the begining of the sequence, then
the guitarist starts to play and finally both instruments are mixed.

by the fact that the video decomposition has to reflect the

movement of the present structures, which is not an easy task

when trying to model the drumsticks and their trajectory. Thus,

while the hand that is playing the guitar moves in a smooth

way, drumsticks movement is much more fast and abrupt.

Another problem are some movements correlated with the

sound, specially those of the guitarist’s leg, and the proximity

of the sources. If we compare this sequence with the ones

presented in the literature we can see that, in those cases,

either the sources are much more separated in the image [19]

or distracting motion is avoided by visually zooming into the

sources [18]. Furthermore, these methods always present flat,

or almost flat, backgrounds. Here the complex background (see
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Fig. 10. Video sources reconstruction for movie1. The atoms that are
highlighted in the images are those that characterize the left source [left]
and the right source [right] respectively. Background is composed of the
residual energy after the 3D-MP video decomposition and provides an easier
visualization of the reconstructed sources. Finally, crosses mark the position
in the image where our algorithm locates the sources.

Fig. 11. Estimated spectrograms for drumsticks [left] and guitar [right] in
movie1. Drumsticks are silent in the middle of the sequence and the guitar
at the beginning. Spectrograms show that the sources behavior is correctly
detected by the proposed method.

Fig. 9) makes the video decomposition task more complicated

since a considerable part of the video atoms has to be used to

represent it.

When analyzing movie1 with the proposed BAVSS method,

the number of sources and its position in the image are

perfectly detected (see crosses on Fig. 10). A reconstruction

of the image using the atoms assigned to each source is

shown in Fig. 10. In the left picture it is possible to see

how the stick is successfully represented by one video atom,

and in the right one, the atoms that surround the guitar are

highlighted. In this sequence, the activity periods of each

source are also detected. A good characterization of the

sources in the frequency domain is achieved, which leads to a

satisfactory audio separation of the sources. Figure 11 shows

the spectrograms that we obtain. We can see that drumsticks

sounds [left] are much more sharp in the spectrogram (well-

localized in time, broad range in frequency) while the guitar

spectrogram [right] has much more energy and it is composed

by several harmonic sounds. Concerning the audible quality

of the estimated soundtracks, the audio part of the drumsticks

is perfectly reconstructed at the beginning and it only presents

some distortion at the end, where they are mixed with the

guitar sounds. In addition, it is almost impossible to hear the

guitar in the drumsticks soundtrack. Finally, the quality of

the guitar reconstruction is good even though there are some

attenuated drumstick sounds in the last part.

Second and third experiments are very similar. They

present an audio-visual mixture composed of speech and

guitar sounds. In movie2 a male speaker is uttering numbers

(Fig. 12(a)), while in movie3 there is a female speaker and

another person crosses the scene generating thus distracting

motion (Fig. 12(b)). These sequences share one challenging

(a) (b)

Fig. 12. Two frames belonging to movie2 (a) and movie3 (b). On both frames,
one person is uttering numbers while a guitarist is playing. Frame (b) shows
the distracting motion caused by a person who is crossing the scene behind
the sources. The estimated source positions are marked with crosses.

Fig. 13. Estimated spectrograms for speech [left] and guitar [right] in movie2.
In the first part the speaker is uttering numbers alone, next there is a short
period where the guitar starts to play while the speaker is silent and in the
last part both sources are mixed.

difficulty, the fact that acoustic energy of the guitar is con-

siderably stronger than the energy coming from the speech.

Furthermore, it is not possible to equalize the energies of both

sources since they are recorded at the same time.

Results obtained when analyzing these two sequences are

similar. The number of present sources and their spatial

position are correctly determined (see crosses in Fig. 12).

Despite of not detecting the whole periods during which each

source is active alone, the periods that we detect are correct

and long enough to represent the sources frequency behavior.

Finally, concerning the audio separation part, even though the

speakers estimated soundtracks are pretty clean, in the case

of the guitar we can still hear speech. A first reason for this

behavior is the unbalanced energy between sources that we

discussed before. Another one, and maybe the main one, could

be the fact that the guitar sounds present many harmonics that

overlap with speech in the spectrogram. Thus, some frequency

formants of speech are also characterized in the acoustic model

of the guitar and we can not eliminate them in the audio

separation part using this separation method.

Spectrograms of the estimated audio part of the sources for

movie2 can be observed in Fig. 13. We can observe that the

short time slot where the guitar is active alone is perfectly

detected (between seconds 22 and 27) since it is not present

in the speaker spectrogram [left]. It is also possible to see the

residual energy of the speech signal that remains in the first

part of the guitar spectrogram [right].

Even if the distracting motion present on movie3 (Fig. 12(b))

seems not to affect the performance of the proposed method,

results concerning the audio separation are slightly worse in

this case. However, since the activity periods for the sources

are also correctly detected, this degradation in performance
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cannot be due to the background motion but rather to the fact

that female harmonics overlap more often with the guitar ones

in the spectrogram.

IX. DISCUSSION

In this paper we have introduced a novel algorithm to

perform Blind Audio-Visual Source Separation. We consider

sequences made of one audio signal and the associated video

signal, without the stereo audio track usually employed for

the audio source separation task. The method correlates salient

acoustic and visual structures that are represented using atoms

taken from redundant dictionaries. Video atoms synchronous

with the audio track and that are spatially close are grouped

together using a clustering algorithm that counts and localizes

on the image plane audio-visual sources. Then, using this

information and exploiting the coherence between audio and

video signals, the audio activity of the sources is determined

and its audio part is separated and reconstructed.

One of the contributions of this paper is an extensive

evaluation of the proposed method on sequences involving

speakers and music instruments. This systematic study of

the algorithm performances represents a sensible improvement

with respect to previously published works in [18], [19] that

test algorithms’ performances on few, very short sequences.

Here, a first set of experiments has been performed on syn-

thetic sequences built from CUAVE database in which two

persons utter numbers in front of a camera. In all cases, the

scene has been well interpreted by our algorithm, leading

to state-of-the-art audio-visual source separation. The audible

quality of the separated audio signals is good. A rigorous

evaluation of the audio separation results has been performed

using the BSS Evaluation Toolbox. These quantitative results

do not show any significant difference between sequences

where two male speakers are mixed and those where a male

and a female appear. A second set of tests has been performed

on more realistic sequences where speakers are mixed with

music instruments. Even if the nature of this second set of

sequences does not allow a quantitative evaluation of the re-

sults, we have demonstrated that the proposed BAVSS method

is able to deal with less static sources, complex backgrounds

and distracting motion representing a much more realistic

environment. Given the short length of the analyzed sequences,

a possible improvement for the audio separation part could be

the adaptation of a general acoustic model to the detected

sources as explained in [25].
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