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Abstract A new algorithm for the control of formations of mobile robas pre-
sented. Formations with a triangular lattice structureaeated using distributed
control rules, using only local information on each robdteToverall direction of
movement of the formation is not pre-established but ratbgults from local in-
teractions, giving all the robots a common, self-organikedding. Experiments
were done to test the algorithm, yielding results in whichats behaved as ex-
pected, moving at a reasonable speed and maintaining tiredidstances among
themselves. Up to seven robots were used in real experinaedtsip to forty in
simulation.

1 Introduction

A robot formation can be defined as a group of robots that mases collective
maintaining pre-determined positions and orientationsragrits members. Having
a pre-defined global shape is not always a requirement, andtsuoes only relative
positions between the members are defined.

A different but related problem to formation is flocking, wleobots move as
a group but the flock shape and the robots’ relative positamesnot strictly en-
forced, allowing robots to shift within the group. The firsbsk in artificial flocking
was a computer graphic animation of a group of birds by Reis\fl8]. With just
three simple local rules, the artificial birds were able tovenas a cohesive group:
Collision Avoidance, avoiding collisions with other flock mateggl ocity Matching,
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matching velocity with nearby flock mates; alRlibck Centering, trying to stay close
to neighboring flock mates.

There are many applications in which robot formations cay gin important
role and be an advantage as compared to a single robot. Fandes formations of
robots organized in a lattice can act as sensor arrays,iaficivem to collect rich
spatial information about their environment. Thus, foriorzg can be very useful
in search tasks, especially those in which the spatial patibthe source can be
complex as in the case of sound [17] or odor [8]. They can aésquite useful in
mapping tasks (see multi-robot mapping in [9]). Redundandhe measurements
of both the environment and the relative positions amongdhets might allow
them to build more accurate maps than those generated usivglually operating
robots.

Robot formations in which only relative positions of nearbigots are known are
classified by [2] into two groupd:eader-referenced andNeighbor-referenced. The
first corresponds to those formations in which there exis¢sder followed by one
or more robots that may also act as leaders for further robdite formation [6, 11,
14, 4]. Follower robots try to maintain a certain distancd angle to their leaders.
The main disadvantage of this type of architecture is thdddés not scale well with
an increasing number of robots since the position error ggapes cumulatively
from leader to follower.

In the second type of formation, robots react to the positmfrtheir neighboring
robots, creating among the robots a regular pattern madé sguares, rectangles
or triangles [3, 7, 12, 20, 21, 22]. No leaders are designated in principle the
global shape of the formation is not pre-specified, and isrd@hed solely by local
interactions.

Although a lot of effort has been recently dedicated to $itgtof formations
(see for instance [23, 5]), we do not consider stability gsialin this work and
instead focus on the experimental validation of a fully mistted algorithm using
real robots.

Some desirable characteristics that a formation may haveealability in the
number of robots, the ability to create different shaped,aiding obstacles at the
group level. In order to have scalability in the number ofatsh local sensing and
communications and a decentralized controller are negefk®.

The related work to the new algorithm presented in this pé&pexplained in
Section 2. The newly developed algorithm is described irti@e8. A description
of the set of experiments performed is given in Section 4 theil results are shown
in Section 5. Finally the conclusions and future work candaefl in Section 6.

2 The Physicomimetics Framewor k

The developed algorithm is based on tRBysicomimetics Framework (PF) by
Spears [20, 21, 22], that allows for the creation of a sajfaized formation by
using control laws inspired by physics. The controller ibyfdecentralized; each
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Fig. 1 (a) Triangular lattice
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robot perceives the relative positions of its neighbors r@adts to attractive or re-
pulsive virtual forces given by these positions, makingdfxgtem scalable with the
number of members. Using these forces, robots can postiemgelves to form
triangular lattices.

The bulk of the work in PF has been done in simulation, trgatobots as vol-
umeless particles responding to the dynarkies ma. Each of them is defined by a
positionx, a velocityv and a massn. Time is divided into time stepdt. At each
time step, every particle is driven by a perturbatitix given by the current veloc-
ity, AX = vAt. Velocity is also modified at each time step by the fdfceaat acts on
every particleAv = FAt/m, depending on the relative positions of nearby robots.
Only distance and bearing to neighbors is required.

In order to create a lattice distan& an attractive force is applied when the
inter-particle distance is greater thRnand a repulsive force when it is smaller than
R. Force is given byr; = rﬁp with Fj < Fnax, WhereF; is the force between two
particlesi and j with inter-particle distance, andK and p are control parameters.
Each robot is driven by the sum of all the forces of the neigimgarobots that are at
a distance < 1.5R. This value is chosen since in a perfect triangular lattiseadce
R, nearest neighbors that are not part of the same triangl¢/3Reaway. Thus, by
applying the sum of the neighboring robot forces to eaclialparticle, a triangular
formation such as that seen in Fig. 1la arises from randoringgositions of the
robots. The resulting lattice formation created is not @etrfholes may appear in
the lattice, not all the triangles are equilateral, anddestwith different orientations
may be produced.

One problem with the formation created is that, in some itsta, particles are
too close to each other. This clustering phenomenon oc&gause one particle is
stuck in a local minimum with respect to the forces from néifing robots; at the
same time, the particle’s influence on its neighbors is nfficéent to force them to
move and escape this deadlock situation. In Fig. 1b a schenepresentation of
the phenomenon is depicted. In real robot applicationstefing could be a major
problem since robots could collide.

By just reacting to the neighboring robots, the formed dattivill remain sta-
tionary. In order to produce motion, PF adds a force towardsmramon goal that
makes every robot move in the same direction. This violdieddcal property of
the control law, since the goal can be distant, and possititlg@&en by every robot.
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desiredDist - e < dist_ij
AND
number of neighbors <=2 dist_ij < desiredDist + |heading_i - averageHeading| < e2

(7o) (o

clustering is detected desiredDist - e > dist_ij |heading_i - averageHeading| > e2
OR
dist_ij > desiredDist + e

desiredDist - e > dist_ij OR dist_ij > desiredDist + e

Fig. 2 FSM representation of the proposed algorithm.

In PF, robots are considered to be holonomic vehicles. I [R1s explained
that PF is used with nonholonomic robots, by taking a laAg€in their case 22
s) and performing a rotational movement followed by a tratishal within a large
time window, robots are able to achieve positions specified high-level control
law assuming holonomicity. However, such a workaround waowlt be practical for
most of the potential real-world applications.

3 Algorithm

As previously mentioned, PF is taken as a basis for the predgeigorithm. The
two major limitations of a PF-based algorithm are concefmigld the assumption of
robot holonomicity and lack of recipes for potential clustg phenomena. The new
control algorithm solves both problems while simultandptsmoving the need for
a global goal in order to make the formation move.

The proposed algorithm must be able to function with nonhaioic robots; this
means that once robots are in the proper positions, they atigst themselves so
that the formation can move as a whole in the same directioas,Tthe algorithm is
implemented as a Finite State Machine (FSM) with the follapiour statesPosi-
tioning, Alignment, Moving, andDispersion. States are innate to individual robots,
so different robots may be in different states at the same. tirhePositioning state
works in a similar way to the PF, resulting in a triangulatita. Once each robot
considers itself well-positioned with respect to neighibgrobots, it enters into the
Alignment state and aligns its heading with its neighbors. When it isdwseved
proper alignment it can enter into tidoving state that moves the group in a com-
mon direction. While in thePositioning state, each robot continuously evaluates
whether it is stuck in a cluster. If this is the case, the rabuers into théisper-
sion state that allows it to get out from this deadlock situatibhe FSM and its
state-to-state transitions are shown in Fig. 2.
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3.1 Positioning State

Robots in this state react to attractive or repulsive fogmserated by their neigh-
bors which eventually result into a virtual velocity. Theacton force to each one
of the neighboring robots is given by:

K

Fij = distance? il @
whereK is a parametedistance is the distance between rokodnd its neighbor
j, andu;j is the unitary vector pointing from one robot to the othere TarceF;;
is attractive ifdistance;; > desiredDistance, wheredesiredDistance is the distance
between two well-positioned robots forming a triangul#tide. Otherwise the force
is repulsive. Only nearby robots atléstance;j < 1.3+ desiredDistance are consid-
ered neighbors. The resulting force is given by the sum athaliforces from the
neighboring robots:

Fi= z Fij (2
]
At each cycle, the application of this virtual forEemodifies the virtual velocity:
Fi
vi(t+At) = vi(t) + aAt (3)

which is translated by thiew-level controller to set the motor speeds of the robot.

3.2 Alignment State

In this state the robot aligns with neighboring robots inesrtb get a common
heading within the group. Robots reach thiégnment state when the following
conditions have been fulfilled:

e For every neighboring robot (robots witlistance j < 1.3 x desiredDistance)
desiredDistance— e < distance; < desiredDistance+ e 4)

wheree is the tolerance error in the positioning. Once a robot hashed the
Alignment state, a larger value @fis used.

e A given robot must have at least two neighbors in order torehteAlignment
state.

The Alignment algorithm works as follows. Each robot calculates the ayera
heading of its neighboring robots that are already inAlignment or Moving states.
Those in thePositioning state might be turning to position themselves, so their
heading is not considered. A proportional controller udimg difference between
personal headinghéading;) and the average headinavérageH eading) is applied:
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Vangular; = K3 * (averageH eading — heading; ) (5)

The linear velocity is set to O.
Viinear; = 0 (6)

All robots in theAlignment state apply the same controller, so by simply match-
ing the heading locally a global common heading eventuailyea at the group
level.

In principle robots might detect the distance and directmtheir neighbors us-
ing an on-board relative positioning system as describdd5h While it is more
difficult to determine the heading of their neighbors, rebedn couple relative po-
sitioning with communication in order to get this infornati[16]. Communication
is also necessary to know the state of the neighboring robots

Once robots med®ositioning state andAlignment state conditions, they enter
into theMoving state. The alignment condition is that the error in the hegdiith
respect to the average heading of its neighbors must be ancertain level &):
|heading; — averageH eading| < ;.

3.3 Moving State

In this state robots should share a common heading. Thuspplyiag a virtual
force in the forward direction, they will move together. lddition, drift within the
formation could result in some positioning error with rese the neighbors so the
sum of the force&:;j used in thePositioning state is also applied:

Fi =Ka ) Fij + KsFrorwar ()
]

whereK, andKs are two constants. As in tHeositioning state, a local control law
(see Section 3.5) translates tiisforce into motor speeds. In this manner, local
rules applied by every robot result in a common, global mamnof the complete
formation. The group velocity is determined KyFrorwarg; -

3.4 Dispersion State

Clustering phenomena occur when robots are stuck in thelenafdhe lattice and
have insufficient force to push the other robots around tHErs phenomenon is
due to local minima of the inter-robot forces and can be sbbyeadding stochastic
noise to the controllers, as in [1]. It can be minimized bytisgtthe appropriate
values in the control parameters, but it is not guaranteatlithvill never happen.
Experimentally it was observed that depending on the indimfiguration of the
robots, this phenomenon was more or less likely to take plaitke higher chances
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for larger formations. It also appears when a robot is intoedl into the middle of
an already formed lattice, since the force that it createissameighboring robots is
not sufficient to modify the created structure, and the rdéibds itself in a deadlock.

In order to overcome the clustering phenomenon, a solut@as ehosen which
first identifies and then solves the problem. Each of the sobwtintains a variable
that represents an estimation of the probability of being aluster. When a robot
identifies itself as being part of a cluster it enters intoBigpersion state, leaving
the formation; this is accomplished by navigating to thedeoof the formation and
not allowing the other robots to react to its position. Asitgshe cluster disappears
and the robot rejoins the formation at the border, enteritgthePositioning state.

The probability of being part of a cluster is increased if #verage distance to
the closest neighbor is below a certain threshold and keepedsing over succes-
sive time steps, otherwise this probability is decreasgdryEstep the robot verifies
whether it is in a cluster by randomly choosing a value betw@eand 1 and com-
paring this value with the probability of being in a clustBnis randomized process
represents a noisy perturbation on the controller as pempis[1].

The process of detecting the clustering randomly reducegrbbability of two
nearby robots detecting the clustering at the same time emdng the cluster si-
multaneously, which results in a hole in the formation.

3.5 Low-Level Controller

A given virtual velocity, generated by both tResitioning andMoving algorithms,
must be translated into wheel movements. Tdve-level controller is designed for
mobile robots with differential drive configuration.

The controller is inspired by a similar one described by Hsl],[but augmented
to allow backwards movement. The ang)(@nd magnitude|(|) of the virtual
velocity are the inputs for getting these two velocities:

Viinear; = K1 [Vi|  cos(6}) (8)

Ko(G+m), if 6<—m/2
Vangular; = § K26, if m/2>6 >-m/2 (9)
Ko(6 —m), if 6 >my/2

The sum of the linear and angular velocities is translateddtor speeds taking
into account the kinematics of differential drive robot aidws:

Smotor —right; = Viinear; + B * Vangular; (10)

Smotor—left; = Viinear; — B* Vangular; (11)

whereB is half the distance between the two wheslg;or_righ; IS the speed of the
right motor, antsmotor—left; IS the speed of the left motor.



8 Ifaki Navarro, Jim Pugh, Alcherio Martinoli, and Fernando fdat

Any other controller based on the inverted kinematic modala be used instead
of the proposed one.

4 Experiments

In order to test the algorithm up to seven Khepera Il robasamsed. These robots
have an on-board Linux system with wireless LAN communarsj 2 motors in
differential drive configuration, a ring of 9 infrared serscand 5 ultrasound sen-
sors. The size of these robots is 12 cm in diameter.

Experiments were first done using the Webots simulator [W&} a realistic
model of the robots. This allowed us to perform the experisiém a fast way,
tuning the different parameters easily. Experiments inution were performed
working with formations of 40 robots.

The simulator has a built-in relative positioning systerattbives information
about the distance and direction to neighboring robotsiwiihe-of-sight. It also
allows the exchange of information between them. This siegl an omnidirec-
tional infrared relative positioning system, such as the resented in [15], which
allows for the simultaneous exchange of messages and awsdgssf range and
bearing information.

In our real robot experiments, in order to detect the passtiaf nearby robots and
exchange information between them, an overhead camekartgesystem was used
to emulate on-board relative positioning. A camera was eoted to the ceiling
looking down at the arena and linked to a computer. The coenuged a tracking
tool which sent the information on the positions of the rabaa UDP packages
using the wireless LAN system. This system has an error obupdm in position
and 1 degree in angle. Robots received these packages authted the relative
positions to their neighbors taking into account occlusiand maximum commu-
nication range. In addition Gaussian noise was added to amrerately emulate
a real on-board relative positioning system. The valuesHernoise were chosen
according to the previous characterization of a relativetming system in [15],
using a standard deviation of 0.1 radians for the bearindl@fl of the distance for
the range. This emulated system could be replaced with attgckeveloped system
which offers comparable performance. The positioning rimfation was updated
approximately every 300 ms (a delay due to the image acouisind processing).
This value is quite high and according to [16] it might remsthe bottleneck of
the system, since robots cannot move very quickly withalkt of oscillation.

We ran 30 simulated experiments and 20 real robot expersneitlh an inter-
robot desired distance of 60 cm. The 20 real-world expertsamre carried out
using seven Khepera lll robots that were placed in a smadtetuAnother set of 20
experiments were done in Webots simulation with a model @khepera IIl robot
and the same starting poses as the real-robot experimdradast 10 experiments
correspond to simulations with 40 robots with initial pasis in a square lattice
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Fig. 3 Two formations: (a) seven Khepera lll robots, (b) forty Khepdrraobots in simulation.

Table 1 Results on average for the different type of experiments

Mean Mean  Group Time Time Time
Position Error Angle Error Speed Positioning Alignment Moving
(m) (rad) (m/s)
7 Real Robots 0.052 0.283 0.011 36.8% 279% 35.3%
7 Simulated Robots 0.043 0.123 0.018 26.5% 55.3% 18.2%
40 Simulated Robots 0.056 0.488 0.009 51.2% 282% 20.6%

and random headings. An image of seven real Khepera Ill mtion can be seen
in Fig. 3a, while in Fig. 3b, a larger simulated formationh®wn.

5 Resaults

The 50 experiments we ran worked quite well, since robot&weentually able to
create a triangular lattice formation that was able to mav&wahole in an emergent
direction decided upon by all robots.

For each of the experiments, four metrics were analyzednrpeasition error
(averaged over the different robots), mean heading ervaergged over the differ-
ent robots), speed of the center of mass of the formationufgepeed) and the
internal state of the roboPgsitioning, Alignment or Moving). Dispersion state was
not differentiated and considered Bssitioning state. The averages over multiple
runs of the first three values as well as the percentage ofitiraach internal state
are given in Table 1 for the different experiments. They a&tenined by taking the
values after some initial starting time, once the formai®already created. This
time was set manually to 40 s in the case of experiments wirsmbots, and 100
s for experiments with 40 robots.

As can be seen, the average values do not change much betwenbots and
simulation in the case of 7 robots. Both mean position eand group speed are
quite similar. Group speed has a value of around 1 cm/s, wtéging into account
that the maximum enforced speed for a robot is 3 cm/s) is a gemudt. The mean
position error is about 5 cm, 8% of the desired distance of 60 cm, which is fairly
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Fig. 4 Evolution of mean position error, mean heading error and groepdin an experiment
using seven real robots.

impressive considering the dynamic nature of the systenttand 0% range error
from relative positioning. The percent of time that on ageraobots stay in each
internal state shows differences between reality and sitioul. \We suspect this may
be due to imperfections in the simulation model. The comication between real
robots is asynchronous, with delays and lost packets, wbilemunication in the

simulator is synchronous and with no delays or losses. Aebettmmunication

model would likely give closer results.

Experiments with 40 robots have similar results to thosé yust seven. Mean
position error, internal state and (more importantly) grepeed are quite similar,
demonstrating empirically that the algorithm can scald wih increasing num-
bers of robots, thanks to their control laws that are distdd and local. The mean
angle error is larger in the case of 40 robots, as well as the ith thePositioning
state; the reason for this might be that, because of projagat error in bearing
measurements and the high convergence time, all the rotmtwoaheading in the
exact same direction. However this does not seem to be a pr@blem since the
formation does not split.

The workings of the algorithm can be understood better bgirsg the graphs
of Fig. 4 that show the average values of the mean positiar,emean heading
error, and group speed over time for an experiment with sesahrobots. In the
initial phase of the experiment, the mean position error ane@n heading error
are quite big and most of the robots are in Bositioning state. After some time
(around 15 seconds) the mean position error decrease$icagtly, but the mean
heading error remains quite large. The explanation foriththat most robots are
already well placed but still need to align themselves. A&mund 40 seconds,
the mean heading error also decreases, indicating thabtizasr are aligned and
beginning to move, as can be seen in the group speed graple. Obots start
moving the group speed and mean heading error have osmikatrhis is due to
heading errors gradually increasing while moving, requirthe formation to peri-
odically stop and re-align. When it is properly aligned, &rst moving again. This
pattern can be seen in all of the experiments done, both inlatron and with
real robots. Some videos of real world and simulation expenits can be found at
http://138.100.76.231/inaki/dars08/index.html
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6 Conclusionsand Future Work

The algorithm for the control of robot formations presenbede appears to work
reasonably well according to our experimental results. rinfation with an internal
triangular lattice structure is created, with an exterhalg which is not predefined.
Working with seven real robots, we observed that a formagioerges, just using
local rules, local sensing and minimal communication, &ad the formation is able
to agree on a common direction of movement with no globalrmfdion. Experi-
ments in simulation with 40 robots show the scalability wigspect to the number
of robots in the formation. There is no evidence that therélgm will not work for
larger groups of robots although its performances mightraeejully decreasing
with large swarms. Both group speed and mean error in poditave reasonable
values in simulation and real experiments.

Scalability can be an interesting property in certain aggtions such as dis-
tributed search and mapping. In addition, the absence ofleader and the use
of many robots make the formation tolerant to individualobfailures.

The controllers could be improved using fuzzy controls tmilate the discrete
changes in behavior produced when jumping from one statedthar in the FSM.
Stability properties of the formation should be analyzedother possible improve-
ment would be deciding the direction of movement not by al thembers of the
formation, but by those that have more relevant informatian instance, robots on
the periphery of the formation could have more informatibowt the environment
and could lead the rest in the right direction, without angdh&r communication
just by making the others copy their headings. In this wagtatie avoidance at the
group level could be implemented.
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