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NONLINEARSYSTEMSCONTROLUSING

MSEVAPPROACH
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Abstract

A class of modified state-space self-tuning controllers of the MSEV

(minimum state error variance) type is has been considered in this

article. A suitable chosen structure for the proposed controller

provides for tracking the time-varying reference input, and makes

it possible to apply this solution to nonlinear and nonstationary

plants. Starting from the changes of innovations sequence statistics,

an efficient load disturbance detector is also constructed, and the

estimated disturbance amplitude is used to correct the control signal,

in order to eliminate the influence of disturbances. The advantage

in using the proposed algorithm for nonlinear systems control, in

the presence of load disturbances and stochastic disturbances of

unknown statistics, is demonstrated through simulation results.
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1. Introduction

Two groups of optimization-based adaptive controllers
have drawn wide attention in recent years, and have been
widely studied in the literature. The first makes use of the
state-space representation of a system, coupled with the
linear quadratic Gaussian (LQG) optimal control theory
and a sequential parameter estimation technique, in order
to obtain an adaptive filtered state feedback controller [1
– 3]. The optimal adaptive control algorithms so obtained
have the advantage of being globally stable, of being appli-
cable to any finite-dimensional controllable and observable
system, and of providing effective control of the errors in
the state trajectories. These are, however, achieved at the
cost of rather large computational burden, which makes
it difficult to implement these algorithms in real time for
some practical systems. The second group makes use of
the input-output representation of a system, coupled with
the minimization of a generalized output error variance
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[4–6]. The main advantage of such controllers, named
self-tuning controllers, is the relative simplicity of their
derivation and implementation. However, the performance
index selected for this approach does not minimize the
errors in the state trajectories, as may be required in some
applications. Also, the global stability of the controlled
system requires the inverse system to be stable, which may
exclude some nonminimum-phase systems [5]. A class of
state-space self-tuning controllers, named minimum state
error variance (MSEV) algorithm, that represents a com-
bination of the mentioned approaches was presented in [7].
The MSEV controller is analogous to the form to the LQG
optimal adaptive controller, but it achieved a considerable
reduction of the computational requirement, at the cost of
some performance loss.

Extensions of this approach to the control of nonlinear
and nonstationary plants are proposed in this article. In
contrast to the original MSEV approach, these extensions
provide for tracking a prespecified nominal state-space tra-
jectory in the presence of load disturbance and stochastic
disturbances with unknown statistics.

2. Problem Formulation

Let us consider the system:

x(k + 1) = Φx(k) + Ψu(k) + Γw(k) (1a)

y(k) = Hx(k) + v(k) (1b)

where x(k) ∈ Rn is the state, u(k) ∈ Rm is the input, and
y(k) ∈ Rp is the output of the system; {w(k)} and {v(k)}
represent the zero-mean disturbance terms with covariance
matrices Q and R, respectively; and Φ,Ψ,Γ, and H are the
known system matrices.

Let us introduce the single stage performance index
[7]:

J(u) = E{L[x(k + 1), u(k)]} (2a)

L[x(k + 1), u(k)] =
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where W and S are constant, bounded, and non-negative
definite weighting matrices (W ≥ 0), (S ≥ 0), and U is a
constant, bounded and positive-definite weighting matrix
(U > 0). The control obtained by minimizing (2) will be
referred to as the minimum state error variance control,
and is given by [1, 3, 4]:

u(k) = Mx̂(k); x̂(k) = E{x(k)|Y (k − 1)}, (3a)

M = −(ΨTWΨ+ U + 2ΨTS)−1(ΨWΦ+ STΦ) (3b)

where Y (k − 1) = {y(0), y(1), . . . , y(k − 1)}. Here, x̂(k)
represents the minimum variance one-step-ahead predic-
tion of the state x(k), and may be generated by using the
well-known Kalman predictor [1, 8]

x̂(k + 1) = Φx̂(k) + Ψu(k) + ΦK(k)(y(k)−Hx̂(k)) (4)

which requires the noise statistics Q and R to be known.
The Kalman gain matrix may be computed from the rela-
tion:

K(k) = P (k)HT (HP (k)HT +R)−1 (5)

Here R = cov{v(k)} and the error is x̃(k) = x(k) −
x̂(k), while P = cov{x̃(k)} may be obtained by solving
the Riccati equation [1, 8]. Thus, the Riccati equation
is required to be solved for calculating the optimal state
prediction (4) and the MSEV control signal (3). However,
in the next section we will show that in the case of an
unknown system, an asymptotic state prediction may be
achieved after a direct estimation of the parameters of the
steady-state prediction model in observer canonical form,
the so-called innovation model [4, 8, 9], without requiring
explicit knowledge of the noise covariances Q and R.

3. Adaptive MSEV Controller

Let us consider now the case where all the system parame-
ters of the model (1) are unknown and need to be estimated
recursively before the control algorithm may be imple-
mented. To ensure identifiability, we replace the model (1)
by the steady state innovations model in observer canonical
form [4, 8, 10]:

x(k+1) = Φx(k)+Ψu(k)+Γe(k); y(k) = Hx(k)+e(k) (6)

where the matrices are assumed to have the following form:

Φ =
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(7)

The problem of parameter estimation of the observer
state-space form (6) may be solved by taking advantage of
the fact that the model (6) may be equivalently expressed
in the form of an n-dimensional autoregressive moving av-
erage model with exogenous input, the so-called ARMAX
model, given below [4, 8, 10]:

A(q−1)y(k) = B(q−1)u(k) +D(q−1)e(k) (8)

where q−1 is the unit delay operator. The polynomials A,
B, and D have the following forms:

A(q−1) = 1 +
n
∑

i=1

aiq
−1; B(q−1)

=
n
∑

i=1

biq
−1; D(q−1) = 1 +

n
∑

i=1

diq
−1 (9)

The coefficients ai, bi, and di, i = 1, . . . , n are easily
obtained from the elements of the matrices Ψ and Γ; that
is [9]:

ψi = bi; γi = di − ai; i = 1, . . . , n (10)

Moreover, it is possible to express the ARMAX form (9) in
the following linear regression form:

y(k) = ZT (k)Θ(k − 1) + e(k) (11)

where Θ is the vector of unknown parameters given as:

Θ(k − 1) = [a1, . . . , an, b1, . . . , bn, γ1, . . . , γn]
T (12)

and Z(k) is the regression vector containing appropriate
set of past outputs, inputs, and innovations:

Z(k) = [−y(k − 1), . . . ,−y(k − n), u(k − 1), . . . ,

u(k − n), e(k − 1), . . . , e(k − n)]T (13)

Once the regression model (11) is obtained, a recursive
estimation of the parameter vector Θ may be achieved
using a number of alternative algorithms [4, 10, 11]. Here,
we have made use of the pseudo-linear regression algorithm:

Θ̂(k) = Θ̂(k − 1) +G(k)ε(k) (14a)

ε(k) = y(k)− ZT (k)Θ̂(k − 1) (14b)

G(k) = T (k − 1)Z(k)
[

1 + ZT (k)T (k − 1)Z(k)
]−1

(14c)

T (k) = T (k − 1)− T (k − 1)Z(k)ZT (k)T (k − 1)

[

1 + ZT (k)T (k − 1)Z(k)
]−1

(14d)
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These equations are initialized with an assumed ini-
tial estimate Θ̂(0) and initial covariance T (−1) and may
be expected to converge to the correct parameter values
under certain conditions [4, 10]. In this way, the adaptive
MSEV controller is obtained easily from (3) using the state
prediction from (6), where the unknown system matrices
are replaced by their estimates [7]. These estimates may
be obtained from (7) and (10), when the unknown param-
eters in (9) are replaced by their estimates in (14a). It
must be pointed out that the innovations sequence e(k)
in (13) is usually unmeasurable and consequently must be
replaced by its estimate ε(k) in (14b). Thus, the proposed
MSEV controller is analogous in form to the LQG theory-
based optimal adaptive controller, but an asymptotic state
prediction x̂(k) is achieved after direct estimation of the
parameters of the innovations model (6), without requiring
explicit knowledge of the noise covariance. On the other
hand, the classical LQG approach requires the Riccati
equation to be solved for the prediction error covariance
P (k), in order to calculate the Kalman gain in (5). This
results in a considerable reduction of the computational
requirement for the MSEV controller, at the cost of some
performance loss, as a single-stage quadratic performance
index (2) has been minimized. The major computational
requirements of the MSEV controller arise from the pa-
rameter estimation algorithm (14), which is central to the
implementation of any form of adaptive controller. It is
possible to show that the MSEV controller for a known
system will be globally asymptotically stable provided the
triple (Φ,Ψ, H) is completely controllable and observable,
as well as that the weighting matrices W , S, and U are
bounded, constant, and satisfy the following conditions:
W ≥ 0, S ≥ 0, W − SU−1ST ≥ 0, andΨTS ≥ 0 [7].

4. Modified Adaptive MSEV Controller

The MSEV method discussed above may be extended so to
design an estimated state feedback controller for nonlinear
and nonstationary systems with a time-varying reference
signal, in the presence of load disturbances and stochastic
disturbances with unknown statistics. The scheme for such
implementation of the MSEV controller, named modified
MSEV controller, is shown in Fig. 1. Here, uref (k) and
yref (k) represent a given time-varying deterministic refer-
ence, or nominal trajectory; and u(k) and y(k) are devia-
tions, or misalignments, from the nominal signals uref (k)
and yref (k), respectively. Additionally, em(k) is the mea-
surement noise, d is the load disturbance, and pe(k) is an
augmented pseudo-random binary sequence, which has to
ensure the convergence of parameter estimation procedure
(14). In this way, the signal generated by the controller
represents a correction around the nominal, or reference,
control signal. So the adopted structure of the control
system enables one to track the reference trajectory of a
desired form. Furthermore, because the MSEV approach
uses an on-line identification of linear system (this system
describes a plant in the vicinity of an operating point on
the nominal trajectory), it can be also applied to nonlinear
systems. This requires the linearization of the nonlinear
system model around the properly chosen operating points.

The choice of operating points should be done in such a way
as to cover characteristic nonlinear regimes of the system
concerned. In this way, various linear models will describe
behaviour of the system in the vicinity of the operating
points. Finally, starting from the fact that linearized model
parameter estimation is performed on-line, this approach
is also appropriate for control of nonstationary systems,
provided that the dynamics of these nonstationarities is
negligible compared to the system dynamics.

In practice, reference trajectory is usually obtained
either by developing a complex nonlinear model of the
system in question or by simulation under some reasonable
operating conditions. Here, we shall adopt a numerical
approach, based on the strategy of predictive control and
optimization under cconstraints (i.e., umin ≤ uref ≤ umax,
where bounds umin and umax have to be determined on
the basis of known process properties).

Let ynomref represent the desired nominal trajectory;
then the nominal or reference control signal uref , at stage
k, can be calculated so as to minimize the deflection from
the desired nominal trajectory, that is, by solving the
minimization problem:

min
uref

(

yref{(k +N)T} − ynomref {(k +N)T}
)2

(15)

where yref{(k+N)T} denotes the value of yref–coordinate
at the instant (k + N)T . The sequence yref{(k + N)T}
is obtained by solving the corresponding nonlinear state-
space model of the system concerned under the condition
that the control signal uref (t) is constant over N consecu-
tive sampling periods k, k+1, . . . , k+N − 1, respectively.
Prediction horizon N represents a free parameter, which
has to be adopted in advance. The choice of N represents
a compromise between two opposite requirements concern-
ing the allowable values and dynamics of the reference
control input uref and the corresponding admissible errors
in tracking the prespecified reference trajectory. A smaller
value of N will result in the control signal uref being
very close to the prespecified bounds umin and umax, as
a consequence of the effort to minimize as fast as possible
the deflections from the nominal trajectory (the so-called
bang-bang control). On the other hand, higher values of
N will result in a control signal uref with smaller dynam-
ics, which is not influenced too much by the given control
bounds. However, this will yield rather large deflections of
yref from the given nominal trajectory ynomref .

The influence of load disturbance must be also incor-
porated into the controller design, in order to avoid system
performance degradation and bad parameters estimation.
The disturbance detection can be based on the changes
of innovation sequence statistics. The detector has to be
designed so as to prevent its frequent activation under the
influence of high-intensity measurement noise realizations
em. However, most industrial and scientific data contain
unavoidable large noise realizations, named outliers, owing
to meter and communication errors, incomplete measure-
ments, errors in mathematical models, and the like [9].
Therefore, it is important to design the detector in a ro-
bust manner in the sense of its insensitivity to outliers.
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This task can be accomplished by extending the adopted
ARMAX model in (8) as:

A(q−1)y(k) = B(q−1)u(k) +D(q−1)e(k) + d (16)

where d denotes the true unknown value of load distur-
bance. In order to estimate the value of load disturbance
and to suppress its influence, the relations (12) and (13)
have to be modified in the following manner:

Θ(k − 1) = [a1, . . . , an, b1, . . . , bn, γ1, . . . , γn, 1]
T (17)

Z(k) = [−y(k − 1), . . . ,−y(k − n),

u(k − 1), . . . , u(k − n), e(k − 1), . . . , e(k − n), d̂(k)]T

(18)
and the reference control signal uref has to be corrected as
(see Fig. 1):

u∗
ref (k) = uref (k) + ∆u(k) (19)

The control signal correction ∆u(k) has to be related to
the estimated load disturbance and the model parameters
as:

∆u(k) = −d̂(k − 1)/B̂(1) (20)

where the sign ˆ denotes the estimated quantities. Such
control signal correction eliminates the influence of dis-
turbance on the steady-state process output (eq. (16)).
Additionally, load disturbance estimation can be based on
this correction as:

d̂(k) = ϕ

(

E

{

y(k)−Hx̂(k)−∆u(k)
B̂(1)

Â(1)

}

Â(1)

)

(21)
Similarly to (20), the relation (21) is derived from (16)

when the average noise e is taken to be zero and the control
signal u is replaced by u+∆u. Here, ϕ(.) is taken to be a
dead-zone type nonlinearity with the width Bϕ:

ϕ(x) =







0 ; |x| ≤ Bϕ

x ; |x| > Bϕ

(22)

Finally, as the innovations statistics are not known in
practice, the expectation E{.} in (21) can be approximated
by the arithmetic mean, calculated within the sliding frame
of appropriate size I:

d̂(k) = ϕ

(

1

I

{

I
∑

i=0

y(k − i)−Hx̂(k − i)−∆u(k)
B̂(1)

Â(1)

}

Â(1)

)

(23)
In general, the window size I has to be large enough to

reduce the influence of measurement noise, but not so large
as to obscure the nonstationarity of the data. Moreover, the
detector parameter Bϕ has to be chosen in accordance with
the a priori knowledge on the load disturbance intensity

and outliers variance. The relations (3), (6), (7), (14), and
(16)–(23) define the modified MSEV controller. It should
be noted that the large signals uref and yref cover the
nonlinear process properties, and the small signals u and y
represent the deviation from the reference trajectory; the
latter are obtained by minimizing the criterion (2). Finally,
it should be noted that the signal pe(k) (Fig. 1) has to
be chosen according to the process dynamics, in order to
provide identifiability condition [4, 10].

5. Experimental Results

The feasibility of the proposed approach has been demon-
strated through simulations. The algorithm has been ap-
plied to the second-order nonlinear system:

ẋ1(t) = −x1(t)sin(x1(t))− 2.5x2(t)x1(t) + ũ(t) (24)

ẋ2(t) = x1(t)− 4x2(t)cos{x1(t)(x2(t)− 1)}+ d (25)

where the system output ỹ(t) is equal to x2(t). Here d
and ũ(t) represent the load disturbance and the system
input, respectively (see Fig. 1). The reference control
signal (Fig. 2) is obtained by minimizing the criterion (15)
under constraints umin ≤ uref ≤ umax (umin = 0.5 and
umax = 6.5), with prediction horizon N = 3 and sampling
period T = 0.1s, where the nominal trajectory is defined
as:

ynomref {kT} =



















0.50 ; 0 ≤ k ≤ 250

0.25 ; 250 ≤ k ≤ 400

0.75 ; 400 ≤ k ≤ 500.

(26)

The corresponding reference output signal yref in (15)
(Fig. 3) is computed as the response of the nonlinear system
(24) and (25) using Runge-Kutta method of the fifth order,
with initial conditions x0 = [0.5 1]T . The prediction
horizon N is chosen in accordance to the system dynamics
and the nature of nominal trajectory, thus resulting in small
deviations between desired ynomref and obtained reference
trajectory yref . Simulation of the closed-loop system in
the presence of additive measurement noise em and load
disturbance d is performed, where the state weighting
matrix W in (2) is adopted as null, and the cross-weighting
matrix S in (2) and the input weighting matrix U in (2) has
been chosen to be [0.2 − 0.1]T and 0.5, respectively. The
measurement noise is generated as zero-mean, stationary,
white Gaussian sequence with variance chosen so as to
provide the signal to noise ratio SNR = 5dB.

The order n of the linearized system model (16) repre-
sents a free parameter that has to be adopted in advance.
In general, the choice of n is a nontrivial problem that
requires a trade-off between good description of the data
and model complexity. The basic approach is to compare
the performance of models of different orders and to test
whether the higher order model is worthwhile. Figs. 4–12
illustrate the MSEV control system performance for differ-
ent values of n. It should be noted that the true order of the
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system (24) and (25) is two. Obviously, there is a penalty
for going beyond the true order (see Figs. 4–6). Specifi-
cally, in the case of n = 1 the unmodelled dynamics may
result in an inadequate estimation of the load disturbance
in (23) (Fig. 6), which in turn will produce a correspond-
ing control signal correction (20), such that the tracking
of nominal trajectory (26) will be unsatisfactory (Fig. 5).
It can be seen from Fig. 5 that the load disturbance was
detected and eliminated properly during the first period of
its duration (time index k ∈ (100, 200)), whereas during
the second period of its existence (k ∈ (270, 350)) it was
detected but its magnitude was estimated wrongly. One
can also conclude from Fig. 5 that the process output will
be very close to the desired one when there is no influence
of load disturbance, even though the order of the system
model used in the algorithm is less than the true one.
This can be explained by the fact that the proposed al-
gorithm estimates the steady-state gain efficiently, as well
as that the desired output is a piece-wise linear function.
When the model order n is chosen properly, the control
system performs quite well (Figs. 7–9), and the sensitivity
of the algorithm to the load disturbance is decreased sig-
nificantly: the influence of load disturbance exists only at
the begining and the end of the interval of its duration.
Furthermore, the time needed for the load disturbance
detection can be shortened by tuning the window size I
in (23). owever,too small a value of I could make the
algorithm rather sensitive to the measurement noise. This
will be also the case when the model order underestimates
the true one (Figs. 10–12). In the last case, the estimated
coefficients (14) of the linearized model (16) will result in
the pole-zero cancellations within the corresponding trans-
fer function, and consequently the system dynamics will
be approximated adequately. Moreover, we note that the
most significant deviations from the reference trajectory
are related to the initial phase, that is, during the presence
of persistent excitation signal (see Fig. 1).

The control system performance in the presence of
outliers contaminating the normal observations is depicted
in Figs. 13–15. Such a measurement sequence is gen-
erated from the heavy-tailed distribution 0.9N(0, r1) +
0.1N(0, r2), where N(0, r1) is the zero-mean normal distri-
bution with the variance r1 chosen as before, and r2 = 10r1.
With respect to the simulation results, it can be concluded
that the detector performs well in the presence of outliers
if the detector parameter Bϕ is adjusted properly. Sim-
ulations have found that the sliding frames I = 7 and
detector parameter Bϕ = 0.004 give satisfactory results for
the problem concerned. The robustness property of the
proposed algorithm can be explained by the fact that (22)
and (23) define some kind of robust influence function that
reduces the influence of spiky noise realizations, that is,
outliers [9]. It should be noted that such a type of influ-
ence function cannot be used efficiently in the presence of
patchy outliers in the measurement data. In the last case,
we need to modify the form of the influence function using
the robust estimation theory [9].

6. Conclusion

A form of self-tuning controller, the modified minimum
state error variance controller, has been proposed. In con-
trast to the MSEV approach known from the literature, the
proposed modifications enable tracking of a time-varying
reference trajectory, as well as the load disturbance rejec-
tion. A way of generating the reference trajectory by using
numerical optimization has also been proposed. Further-
more, a special type of nonlinear detector, which provides
for load disturbance detection and estimation, together
with the reduction of outliers influence, has been derived.
Once the disturbance detection and its magnitude estima-
tion are finished, the control signal correction is performed
in order to eliminate the disturbance influence on the con-
trol system performances. The possibility of applying the
modified MSEV approach for nonlinear and nonstation-
ary plants control is also analyzed. The feasibility of the
proposed approach for such applications is demonstrated
through simulations. Special emphasis is devoted to the
choice of the linearized order model and the disturbance
detector parameters, in order to suppress the influence of
unmodelled dynamics and outliers contaminating the mea-
surement data. The obtained results have shown that the
proposed controller may be an efficient tool for tracking
a prespecified reference trajectory in the case of nonlinear
and nonstationary system dynamics, as well as in the pres-
ence of load disturbance and stochastic disturbances with
unknown statistics.
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Figure 1. The modified adaptive MSEV controller for
non-zero reference in the presence of load d and stochastic
disturbances em.
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Figure 2. Reference control signal uref generated by
numerical optimization (15).

Figure 3. Reference trajectory yref corresponding to uref

and the nominal reference trajectory (26).

Figure 4. Control signal u for adopted first-order model
(16).

Figure 5. Process output y for adopted first-order model
(16).

Figure 6. Load disturbance d and its estimate d̂ for adopted
first-order model (16).

Figure 7. Control signal u for adopted second-order model
(16).

Figure 8. Process output y for adopted second-order model
(16).

Figure 9. Load disturbance d and its estimate d̂ for adopted
second-order model (16).

Figure 10. Control signal u for adopted third-order model
(16).

Figure 11. Process output y for adopted third-order model
(16).

Figure 12. Load disturbance d and its estimate d̂ for
adopted third-order model (16).

Figure 13. Control signal u in the presence of outliers for
adopted second-order model (16).

Figure 14. Process output y in the presence of outliers for
adopted second-order model (16).

Figure 15. Load disturbance d and its estimate d̂ in the
presence of outliers for adopted second-order model (16).
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