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INTERMEDIATE VARIABLE ELIMINATION IN A GLOBAL CONTEXT
FOR A 3D MULTIMEDIA APPLICATION
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ABSTRACT

The 3D multimedia applications have been experiencing re-
cently a tremendous growth in number and complexity. Such
applications mainly consist of complex algorithms that pro-
cess extensive amounts of data to create 3D images and re-
sults. For quick access, data need to be stored in small and
expensive memories near the processor. Due to the increas-
ing memory-processor gap in speed and the characteristics
of multimedia applications (with highly power- and space-
consuming data sets), software transformations are required
to decrease memory requirements. In this paper, we pro-
pose a method to reduce the indirections of data types in real
3D multimedia applications. It is based on software trans-
formations of:the original algorithm to minimize the inter-
mediate assignments and, as such, the required data types.
To assess the performance of our method, we apply it to a
relatively new 3D image reconstruction application. As a
result, for this multimedia application, our method reduces
50x the amount of memory accesses, 30X the normalized
memory footprint and 67x the energy consumption com-
pared to a manually well-optimized version of the algorithm.
Finally, compared to the original application, the overall per-
formance improves by 40% on a PC.

1. INTRODUCTION

The complexity of 3D multimedia appiications and plat-
forms has enormously increased in the last years. These
applications currently process large amounts of data and re-
quire a good level of performance. Representative exam-
ples where they are used can be archaeological site recording
and reconstruction, architectural planning, augmented real-
ity and film industry [5, 11, 9]. In all these examples, this
kind of applications has to be ported to handheld visualiza-
tion devices to achieve quick on-site visualization and pro-
cessing. Consequently, they need optimal algorithms and
efficient techniques to access and place the data in fast regis-
ters or memories. However, an important part of the data will
rernain in main memory and it is very well known that the
gap between the speeds of this main memory and the proces-
sor is growing. Therefore, a combined hardware-software
solution is required, i.e. fast processing and storage compo-
nents and optimal transformations in the source code. This
should allow to conveniently use dynamic data structures
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and minimize the intermediate variable assignments. These
code transformations should be done in a systematic way to
enable their application in the development of any multime-
dia application.

In this paper, we assess in a relatively new 3D image re-
construction algorithm [8], the performance of our approach
to minimize intermediate assignments and the dynamic data
memory used. The results demonstrate a huge improvement
in memory footprint, memory accesses, estimated energy
dissipation and global performance compared to manually
optimized implementations. We have verified that our ap-
proach is also applicable to other multimedia applications.

2. RELATED WORK

Recently research has started to address optimal organiza-
tions of dynamic DTs and techniques 1o access them [14].
New system-level approaches for general-purpose design
that reduce the power consumption are explained in [3]. Fi-
nally, a lot of research has been developed to achieve an op-
timal dynamic memory management in a general way [13).

In addition, several kinds of transformations to simplify
local loops in imperative programs have been considered im-
portant techniques in compilers for a long time [7]. How-
ever,they often limit themselves to simple Data Types (DTs).
An extension 1o arrays is presented in [7] and a number of
dependence tests for array accesses is given in {7]. More-
over, an additional extension to analyze constant dependen-
cies with conditional! branches is explained in [12]). Never-
theless, none of these techniques are suitable for the complex
dynamic data structures used in multimedia applications be-
cause they handle only simple DTs. They are nol able to ana-
lyze dependencies between loops inside complex data fiows
as in typical multimedia applications, with many different
functions and dynamic DTs involved.

3. APPLICATION DESCRIPTION

Modeling of 3D ohjects from image sequences is one of the
challenging problems in computer vision and has been a re-
search topic for many years. The 3D image reconstruction
algorithm where we have applied this method is a recent ap-
proach that extracts complex 3D scene models from images.
It combines state-of-the-art algorithms for uncalibrated pro-
jective reconstruction, self-calibration and dense correspon-
dence matching [8]. Furthermore, it is heavily characterized
by intensive internal dynamic memory use to process the dif-
ferent inpul images.

Apart from multiple frames, this algorithm requires no
other information to create a 3D scene. This makes the code
especially useful for situations where exiensive 3D setup
with sensitive equipment is difficult (e.g. crowded streets or
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Fig. 1. Dataflow in the corner matching algorithm with the
dynamic data types involved

remote locations) or impossible (e.g. the scene is no longer
available). Current examples include photo-realistic mea-
surement and reconstruction of ancient lost worlds [5] or
3D modeling of architectural heritage [11]. In these exam-
ples, for quick on-site visualization and real-time processing
of more frames (for a more detailed reconstruction), speed-
ing up the application is very important and demands exten-
sive code transformations and optimizations. Moreover, for
handheld visualization devices, energy consumption is very
relevant.

The software module used in the projective reconstruction
of this aigorithm is one of the basic building blocks in many
current 3D vision algorithms: feature selection and match-
ing. Since films or pictures are a projection from 3D o 2D,
without considerable assumptions on the scene, it is impos-
sible to regenerate the lost information with a single image.
With multiple images, the relation between two or more can
be used to reconstruct the 3™ dimension.

In this algorithim, the reconstruction is done in a step-
wise process, where information is gradually retrieved, eval-
uated and refined. 1In a first phase, corners are detected
and related between different images. Next, information
about the position of the camera is reconstructed and used
to find more matching corners. Finally, the marches are
vsed to regenerate a 3D scene. In Figure 1, this corner
matching process is depicted for one iteration. In the first
iteration, two new input frames are sequentially processed
and their corners are detected [6]. Points in each others’
neighbourhood or along each others” epipolar line [8] are
stored in ImageCandidates and become candidates for
the following steps of the algorithm, After another epipolar
check [8], they are added to CandidateMatches. Then,
the sum of square differences in the regions (ssgdifs ()
in Figure 1} around the poims are checked [8) and if they are
under a certain threshold, they are stored in the data struc-
tures MultiMatches and BestMat.ches. In the next it-
eration, a new image is processed and compared with the
most recent one from the previous iteration, which is now
the previous image in Figure 1. This iterative behavior with
more new images can be applied as long as necessary to re-
fine the current result.

The further the reconstruction progresses, the smaller the
amount of data used by the operations is, and consequently
data can be stored in fast memories. This is not possible
in the initial phases, especially the comer matching module
demands extensive dynamic memory allocation because the
amount of candidates for each input varies enormously based
on the image properties and the corner delection step pa-
rameters. Therefore, an accurate estimation of the memory
usage at compile time is nearly impossible and intermedi-
ate dynamic DTs are used for every logical step. These first
steps are the most critical ones in terms of memory access
optimisation. In fact, many state-of-the-art 3D vision algo-
rithms include this behavior, using some sort of candidate

selection followed by a criterion evaluation in a sequence of
logical steps [1].

4. METHOD DESCRIPTION

In many 3D multimedia algorithms, the processing steps are
mostly driven by regular iterative operations, i.e. the input
data is accessed in loops and inside them a sequence of inde-
pendent steps or functions are applied. The data is traversed
and processed in several places in the code. As a result, pro-
filing information showed that dynamic short-lived interme-
diate data sets create an additional dynamic memory foot-
print overhead of 30% 10 40% of the total amount of memory
needed in the application. The sizes vary from 0.5 to 600 KB
and the accesses to the data must use large memories, which
are slow and highly power-consuming, especially if they are
off-chip.

To solve this, since compilers and hardware are not able to
figure out the complex dependencies of multimedia applica-
tions on code yet, source code transformations are required.
One of the promising techniques to reduce memory access
overhead is copy propagation {4]. In a very simple way, the
basic idea is that, after an assignment, e.3. g = f£{x),if
it is possible to use £ (x} instead of g, the assignment of
the intermediate variable can be removed. Another relevant
technique to increase performance is the selection of an op-
timal number of loops and their order of execution. In this
case, transformations like loop in-lining, loop distribution,
loop interchange or loop merging should be considered, as
they are currently used to increase temporal and spatial data
cache lopcality [10].

These aforementioned techniques are complementary and
should be applied, where they are most effective, at a very
high-level of the optimizations in multimedia applications,
before any kind of refinement in the memory management.
Moreover, for the best results with a global view of the al-
gorithra, these opiimizations must be done over function
boundaries and across different condition and loop scopes.
To this end, in our method selective in-lining is used.

In order to improve the dynamic behavior in the auto-
mated 3D reconstruction example, several steps were nec-
essary. The following code fragment (in Figure 2) illustrates
how the combination of these techniques is used on a cross
function boundary level. functionl processes all data in
a and stores it in b. The subsequent function processes this
b again and adds the evaluated data in ¢. Since all data gen-
erated by functionl needs to be processed and evaluated
in function2, they can be combined when no global data-
dependency requites all data in b {e.g. random sample gen-
eration).

functionaia,c))
foreach x in a
if {conditioni{f{x}))
if (condition2{g(fix)))
c->add{g(£(x}));

functionl{a,b)
foreach x in a
if (conditionl{f(x)})
b-raddtf(x));

functien2 (b, c}
foreach v in b
if{condition2 {giy)))
c-»addi{giv});

Fig. 2. Very simple example of transformations

However, global code transformations yield an addi-
tional complexity of references and overhead in code size.
Hence, clear guidelines must be followed before applying
thern. First, operations should be moved outside loops (up
in the code) as much as possible, without breaking data-
dependency consiraints. Second, in order to inline a func-
tion in a loop, the number of times the function gets exe-

-74



Version Memory mMEmOory energy

access  footprnt (B) (ph
Original 93,489,433 312,713 17,480,062
Staric 728,289 216,748 187,813
Optimized 15,486 7,201 2,787

Table 1. Dynamic memory use

Data Types Original Opiml  Optim2  Final |
Originat DTs 20533 1256.14 99.06 9790
Optim. dyn. DTs | 180.85 98.48 9725 98.58

Table 2. Running time for 100 image pairs and the stepwise
process to optimize the DTs (in secs)

cuted (vses loop informnation) must be sufficiently high, we
have estimated with analytical measures that at least 60% of
the overall amount of processing time of the loop (e.g. func-
tions wsing only one or two elements identified by a loop
index should net be inlined). Third, the index function of
the control flow (in our example, exhaustive traversal) must
be simple. 1t should not involve complex index compaosition
transformations. Finally, output data can be written unam-
biguously in function of the input data, i.e. the input data can
be traced back knowing the output (injective relationship).

5. METHOD APPLICATION AND RESULTS

In this section, our method is applied to a representation of
the core code of the corner matching algorithm (note that
these are only relevant pieces to show the applied transfor-
mation. For the full code of the entire 3D algorithm, which
contains 1.75 miltion lines of high level C++, see [1]).

The matching phase can be subdivided in logical sub-
steps processed as a pipeline with intermediate variables as
buffers. Each of them evaluates input data and saves results.

According to the algorithm, in the original code sam-
ple in Figure 3, all the index pairs of points that are in
a search region (in a window along the epipolar line [8])
are generated and returned by Get InSearchRegion().
Next, the initialization of a section threshold is done fol-
lowed by a loop over the cornersl elements. For each
of these elements, the corresponding ones are fetched from
the CandidateMatches by searching in corners2. Fi-
nally, a sum of squared differences criterion is used to com-
pare neighboring comer candidates and determine if they
match [8].

While analyzing this code sample, a number of prob-
lems are observed. First, a loop over cornersl is present
twice in the overall code and at the same “depth” (depth
increases by entering loop or conditional bodies), Sec-
ond, in several places, a function returns a list of meta
data: the elements are not returned, but their location in a
list. Then, this meta data is used again to do an expen-
sive lookup for the values required to construct it previ-
ously (GetInSearchRegion{), GetSubList () and
PointsInRegion()).

The first thing to do is moving non-loop and condi-
tional code upward (as early as possible) without break-
ing data-dependencies to remove code redundancy and sim-
plify the control-flow. In the code extract, this is the ini-
tialization code that does not use loop indices. It is not
directly used by code dependent on loop indices and it is
not changed within the loops by variabies dependent on
loop indices. Consequently, the inifialization of thresh
is moved 1o the beginning. In addition, best is reset and

CandidateMatches = \
GetInSearchRegion (framel, frame2, cornersl, corners2) ;
thresh=InitThreshold()
for(cornerl;corneri<cornersl->dimx:cornerl++}{ // (1}
best=bestinit;
L2=GetSubList {CandidateMatches, 0, cornerl) ;
for (corner2=0;L2->dimx; corner2++) { /7 12)
C2=GetElement (L2, corner2};
if (curtresh=Goodstrength(C2, thresh} {
MultiMatches->add( [cornerl, corner2]);
if (curtresh<best){
bhest=corner2;

/¢ (a)

}J oy}
if{beat){
LocalMatches->add ( [cornerl, best]):
1}

TL GetInSearchRegion{imagel, image2,pointl,point2){
for(i=0;i<peintl->dime; i++}{ /7 {3}
Cornerl=G&tElement (pointl,i);
ImageMatches = \
PaintsInRegion{Cornerl ,Window,points2};
for{j=0;j<ImageMatches->dimx;j++){ /7 o(4)
Corner2=GetElement {ImageMatches,j);
ifi{epipolar{Corner2)}{ /f (b}
result->add({i,j1}:
1y
return resultl;

TL PointsInRegion{Point, Window, List){
for{i=0;i<List->dimx:i++){ /7 (5}
Point2=GerElement {List,i);
if (IsInWindow{Window, Point2)}{ oo
List->add (Point2);
1)
return List;

TL GetSubList(List,n,eval){
for(i=0;i<List->dimx;i++){ /418)
Match=GetElement (List,i) ;
if (Match[n] == eval}{ /4 (ay
RList->add (Match);
3

return RList;

Fig. 3. Code sample from the comer matching step

used by loop dependent data and cannot be moved out-
side the loop. Secondly, GetSearchRegion{} is in-
lined and since no data-dependency problems exist, loops
labeled as 1 and 3 in Figure 3 are merged. Moreover, since
PointsInRegion () accesses a lot of elements, it is in-
lined as well. The result of PointsInRegion (), the data
structure ImageMatches, is used again to do additional
epipolar checks, labeled as (b} in Figure 3. However, the
data in the evaluation does not require order or other prop-
erties and this check is more efficiently done after creating
the elememnis for ImageMatches or the condition {c) in
Figure 3.

In addition, ITmageMatches is no longer used and
can be eliminated by advanced signal substitution [4).
At this point, a data bottleneck between the loops 5
and 2 exists: if GetSubList requires all the data of
CandidateMatches, no further elimination can be done.
GetSubList returns sybsets of CandidateMatches,
those jnvolving the cornerl in the merged loop 1 and 3,
Then, loop 2 is a subset of joop 5. Also, the sum of loop 2
iterations match those of loop 5. As a result, GetSubList
refurns all the elements in CandidateMatches with-
out overlapping. Likewise, this process is done for
CandidateMatches and GetInSearchRegion(},
and CandidateMatches is removed.

Finally, the code in Figure 5 is obtained. Only 2 loops
over the main corner lists and the conditions are retained.
Note that not all the code is inlined at this level. The
three function calls that implement the conditions remain un-
changed (they operate only on a couple of index dependent
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Fig. 4. Memory footprint over time. All plots are mapped on the left axis, but CandidateMatches and CMCopyStatic
(right axis). Left, the original implementation, center, optimal implementation with dynamic memory without applying our

method, right after it.

elements) and the code size is not unnecessarily increased.
On the contrary, the overall size improves due to intermedi-
ate variable elimination by 10%.

thresh=InitThreshold();

forl{i=0;i<cormersl->dimx;i++) { JZAR Y]
best=bestinit;
Cornerl=GetCorner {pointsl,i);
for(j=0;j<corners2->dimx; j++) { o1z
CornerZ=GetCorner {pointsz, j);
if (IsInWindow{window,Corner2}){ /1 ()
if (epipolar [Corner2) { /1 (b)

if {curthresh = \
GoodStrength{Cornerl, Corner2){ // (a})
MultiMatches->add([cornerl.corner2]);
if (curtresh<best) {
best=corner2;
Y1}
if (best] {
LocalMatches->add{{cornerl,best]);
P Y r}

Fig. 5. Final code sample for the corner matching step

The overall effects on memory usage and accesses to
the intermediate dynamic data are shown in Table 1. The
static solution numbers are obtained by replacing all the dy-
narnic DTs with static arrays, and only substituting the costly
GetSubList (). Though the improvement is significant, a
quick comparison shows that a global optimization with our
method achieves much better results. It improves the figures
by almost 50x for memory accesses, 30x for normalized
memory footprint and 67x the energy consumption (using
the model [2]) compared to an optimized static version.

Also, the runtime to process 100 images ' is shown in Ta-
ble 2. It shows a stepwise application of our approach. The
first row uses the original DTs, double linked lists, while
the second one uses optimized dynamic ones {14]. Although
the final figures converge, Table 2 shows that a partial appli-
cation of our method can have negative performance {cycle
count) results sometimes. It should be extensively applied to
obtain the full gain. Note also that the runtime for the op-
limized static solution (not shown in the figure) is slightly
better (95.42 s). However, the flexibility to process the input
images is removed by fixing the possible memory use and
the program will fail with extreme values of the parameters
of the system and cause deadline misses.

After the transformations, automatically generated profil-
ing information was obtained for relevant versions of our ex-
ample and they are shown in Fagure 4. As we show in the
code, first ImageMatches and CandidateMatches
are created. These are followed by CMCopyStatic and fi-

IThe results were all obtained with -02, gec 3.2.2 on an
AMDG650 with 512 MB SDRAM and running GNU/Linux 2.4.20

nally Multimatches and BestMatches. Asitis shown
in Figure 4 and Table 1, our final optimized version reduces
30x the dynamic memory footprint, 67 the estimated con-
sumed energy and 50 the memory accesses.

6. CONCLUSIONS

The complexity of the 3D multimedia applications has enor-
mously increased and they process extensive data to cre-
ate 3D images and results. Therefore, they need complex
DTs and software transformations to minimize their indirec-
tions. In this paper, we have demonstrated on a relatively
new automatic 3D image reconstruction algorithm the effi-
ciency and necessity to perform profound global transfor-
mations, i.e. Joop transformations, selective inlining and ad-
vanced signal substitution. In fact, where dynamic memory
is used for temporary intermediate values, these techniques
are able to reduce or remove intermediate assignments and
data buffers. Compared to conventionally optimized ver-
sions, a global program acceleration is accomplished and
significant improvements in memory footprint, estimated en-
ergy dissipation and global performance for typical multime-
dia applications as well. Moreover, we have characterized
our code transformations to show its applicability to other
3D multimedia applications.
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