METHODOLOGY FOR REFINEMENT AND OPTIMIZATION OF DYNAMIC MEMORY
MANAGEMENT FOR EMBEDDED SYSTEMS IN MULTIMEDIA APPLICATIONS

Marc Leeman®
Geert Deconinck, Vincenzo De Flovio

KULeuven ESAT
Kasteelpark Arenberg 10
B3001 Leuven, Belgium

ABSTRACT
In multimedia applications, run-time memory management

support has to allow real-time memory de/allocation, re-
trieving and processing of data. Thus, its implementation
must be designed to combine high speed, low power, large
data storage capacity and a high memory bandwidth. In this
paper, we assess the performance of our new system-level
exploration methodology to optimize the memory manage-
ment of typical multimedia applications in an extensively
used 3D reconstruction image system [1, 2]. This mecthod-
ology is based on an analysis of the number of memory ac-
cesses, normalized memory use ! and energy estimations for
the system studied. This results in an improvement of nor-
malized memory footprint up to 44.2% and the estimated
energy dissipation up to 22.6% over conventional static mem-
ory implementations in an optimized version of the driver
application. Finally, our final version is able to scale per-
fectly the memory consumed in the system for a wide range
of input parameters whereas the statically optimized version
is unable to do this.

1. INFRODUCTION

The fast growth in the variety and complexity of multime-
dia applications and platforms has created the need for op-
timal algorithms on one hand, and the development of high
storage capacity and efficient memory systems on the other
hand. Good examples where they become necessary are
archacological site recording and reconstruction, architec-
tural planning, augmented reality and film industry {2, 3,
4]. These systems depend upon dynamic data management,
which constitutes one of the most difficult design challenges
when mapping them on low-power and high-speed proces-
sors that are often not equipped with extensive hardware

*This work is partiatty suppotted by the Fund for Scientific Research -
Flanders (Belgium, F.W.0.) through project G.0036.99 and a Postdoctoral
Fellowshtp for Geert Deconinck

This wark is pantially supported by the Spanish Goverment Research
Grant TIC2002/0750.

!'The sum of the memory used at a time slice, multiplied by the time.
This amount is then divided over one tun of the algorithm

0-7803-7795-8/03/ $17.00© 2003 IEEE

David Atienzat
Jose M. Mendias

DACYA/UCM

Avda. Complutense s/n
28040, Madrid, Spain

369

Chanial Ykman, Francky Catthoor,
Rudy Lauwereins

IMEC
Kapeldreef 75
3001 Heverlee, Belgium

and system support for dynamic memory (DM). This dy-
namic memory management (DMM) must provide an effi-
cient memory de/allocation, retrieving and processing of the
data involved in the multimedia algorithms by combining
speed, low power, large data storage and an optimal man-
agement of multiple Dynamic Data Types (DDTs). It has
to take into account the fact that these DDTs have a limited
lifetime and a variable behavior while the application i$ run-
ning. As a consequence, three factors influence the overall
performance of the memory system: (1) the access pattern
over time of the algorithm implemented, (2} the amount of
memory accesses and (3) the mechanisms to access the data
(as defined by the data structures of the system). Taking all
these into account, it is clear that a systematic exploration
at the systern-level of the possible choices for memory man-
agement in multimedia applications is a necessity.

In this paper, we demonstrate the efficiency of our new
system-level exploration methodology, which optimizes the
DMM for typical 3D multimedia applications with the afore-
mentioned behavior [1]. After applying the methodoiogy,
the results improve to a great extent the memory footprint,
memory accesses and estimated energy dissipation compared
to manually optitnized implementations.

The remainder of this paper is organized as follows. In
Section 2, the foundations of the methodology and design
features of DMM for multimedia systems are presented. In
Section 3, the specification of the 3D multimedia applica-
tion used to apply our methodology is illustrated. In Sec-
tion 4, we characterize the behavior of the relevant DDTs of
the system. After that, in Section 5, we explain all the differ-
ent steps to optimize the DMM of the system. In Section 6,
the experimental results are presented. Finally, in Section 7,
we draw our conclusions and present future extensions.

2. RELATED WORK

Conceptually, the basis of a good DMM is already well es-
tablished for general-purpose systems [5]. Also, several im-
piementations for DM managers exist in a general-purpose
context to allow large data storage, real-time de/allocation

and frequent updates of the data structures [5, 6].

Due to the behavior of multimedia applications {with a
high demand of data retrieval and storage), the access to the
data must be highly optimized. Presently, research has been
started to propose suitable access methads to DDT imple-
mentations {7].

For manual and automatic memory management in em-
bedded systems, research is performed [8, 9]. In manual
memory management work, DM is partitioned into blocks
and tracked by single linked lists [9]. For general purpose
manual memory managers, [6] describes a fast C++ tem-
plate infrastructure to build custom memory allocators.

In a different field, telecom network applications, an ap-
proach that performs an exploration methodology driven by
the number of memory accesses has been outlined in [10].
These applications have very specific behavior dominated
by key accesses and lookups. Furthermore, they use one or
few independent DDTs. These and other characteristics re-
strict the work to the tetecom domain (see [10] for details).

System-leve] optimizations and techniques for general-
purpose design to reduce power consumption are explained
in [11]. However, optimizing the memory management at
the system-level in multimedia applications with complex
dynamic behavior has not been given much attention.

In this paper, we propose to use a fast, stepwise, cost-
driven exploration and refinement for the DDTs in multi-
media applications at the system-level, where the impact on
memory performance is the most important part.

3. DEMONSTRATOR

The 3D image reconstruction algorithm used as case study
in this paper is heavily characterized by intensive internal
DM use. This metric 3D-reconstruction from video algo-
rithin [1] allows the reconstruction of 3D scenes from im-
ages and requires ne other information apart from multiple
frames. This makes the code especially useful for sitnations
where extensive 3D setup with sensitive equipment is ex-
tremely difficult, e.g. crowded streets or remote locaticns,
or impossible as when the scene is no longer available [2, 3].

/\f INTI

Data Consurptim

(DMA)

INTO !

Data Avquistion BOFTK

(DMA)

Fig. 1. Overview of the system design in the optimizations.

For quick on-site visualization and processing of more
frames for a more detailed reconstruction, speeding up the
application is necessary and demands extensive code trans-

formations and optimizations. Moreover, energy consump-
tion is paramount for hand-held visualization devices.

Within the application framework of our methodology,
we depict a typical dedicated system for intensive numeric
processing (see Figure 1). An instance of this can be a rep-
resentative example of the platforms used for multimedia
applications, where the data is immediately transferred inte
memory via DMA and the execution is triggered by a soft-
ware interrupt. When processing is finished, another soft-
ware interrupt is fired to handle the processed data.

The software module used as our driver application is
one of the basic building blocks in many current 3D vision
algorithms: feature selection and maiching. The algorithm
selects and matches features (corners) on different images
and the relative offsets of these features define their spa-
tial location. The number of generated candidate matches is
highly dependent on a number of factors. Firstly, the image
properties affect the generation of the matching candidates.
Images with highly irregular or repetitive areas will generate
a large number of localized candidates, while a low number
will be detected in other parts of the image. Secondly, the
corner detection parameters have a profound influence on
the results (and, consequently, on the input to the subse-
quent matching algorithm) because they affect the sensitiv-
ity of the algorithm used to identify the interesting features
in the images/frames [12]. Finally, the corner matching pa-
rameters that determine the matching phase have a profound
influence and are changed at runtime (e.g. the acceptance
and rejection criterion changes over time as more 3D infor-
mation is retrieved from the scene).

Taking all the previous factors into account, the possible
combinations of parameters in the system make an accurate
estimation of the memory cost, memoty accesses and en-
ergy dissipation at compile time very hard or nearly impos-
sible. This unpredictable memory behavior can be observed
in many state-of-the-art 3D vision algorithms {13 and mul-
timedia algorithms because they use some sort of candidate
selection followed by a criterion evaluation.

4. MEMORY PERFORMANCE

In this paper, we will not focus on the static data (images
and detected points), but on the intemal DDTs of the al-
gorithm. The optimization of the transfers and accesses to
the static data can be done by other techniques [14, 15].
The memoery performance and behavior of the 3D module is
characterized by the following DDTs: (1) ImageMatches
(IMatches) is the list of pairs where, for every pomnt in
the first image, {new) matches on a second image are con-
sidered based on neighborhood or epipolar distance [1]. (2)
CandidateMatches (CMatches) is the list of candi-
dates that needs evaluation, e.g. normalized cross correla-

tion of a a window around the points [13]. (3)MultiMatches

(MMatches) Is the list that stores the match pairs that pass

370

epipolar(} {F—1 53qeifs() @
ac

Fig. 2. The interaction of the dynamic variables

LnageMatches

the evaluation criterion. In this list, one point can have still
multiple counterparts on the other image. (4) BestMatches
(BMatches) is a subset of MMat cheg and retains only the
best match for a point, according to the criterion already
mentioned (if the evaluation is satisfied).

All these DDTs were originally implemented using a
double linked list and exhibit typical data consumption and
generation behavior. Figure 2 shows the interaction of the
DDTs in the algorithm code. From the images, corners
are selected. On each comer of one image, a neighbor-
hood search is done and the pairs that pass a threshold are
stored in IMatches. Based on information of previous
frames, these are accepted into CMatches. Every pair in
CMatches is checked by a normalized cross correlation
and stored in MMatches and BMatches. These results
are passed to the next software module involved in the 3D
reconstruction algorithm. [t is important to mention that, al-
though in this phase of the algorithm the image is still being
accessed, these accesses are randomized. As such, classic
optimizations like row dominated accesses versus column
wise accesses and other image access optimizations are not
relevant. Furthermore, this algorithm variant uses the vari-
ant that re-uses the intermediate data in later steps.

5. MEMORY MANAGEMENT

In order to optimize the DM performance, our methodology
uses a layered approach. It starts from a high level speci-
fication and adds more system-specific information in each
step. This new information is used to refine previously made
estimations. This approach allows to obtain an early idea of
representative implementation costs and requirements with-
out going through the entire expensive design process.
Figure | shows the three most important steps to opti-
mize the aforementioned DM in the methodology. Firstly,
the approach starts with the premise that the algorithm in-
teracts directly with the memory, this is the Dynamic Data
Type Transformation and Refinement step (DDTTR). Sec-
ondly, memory allocators that handle and optimize the DM
de/allocations are added to the design space evaluation in

the Dynamic Memory Management Refinement step (DMMR).

Finaily, a physical memory manager layer is added to opti-
mize further, e.g. solve bank conflicts and introduce pag-
ing; this is the Physical Memory Management step (PMM).

Fig. 3. Example of layered DDT

Because the last step tackles specific system and hardware
information with all their complexities, it falls outside the
scope of this paper.

5.1. Dynamic Data Type Transformation and Refinement
DDTs define the way in which the memory is allocated, ac-
cessed and free. Initially, simple DDTs are modeled by Data
Types (DTs), e.g. lists, arrays or graphs, in combination
with operations like add, remove and get. Then, these
simple DDTs can be combined in layered structures that of-
fer a compromise between flexibility, memory use and ac-
cess time. For instance, a linked list solution is very flex-
ible, but slow in access, while an array offers fast access,
but it is hard to maintain and rigid in size. Highly opti-
mized programs combine these simple data types in some
sort, but these decisions are rarely taken in a methodologi-
cal way and are left to the experienrce and inspiration of the
programmer. Our methodology makes these decisions in a
systematic way. In order to do this and identify the optimal
DDT implementation for each variable, relatively detailed
information of the DM behavior at run-time is required.

The DDTs are modeled in "low level” C++, which pro-
vides some Object Oriented (0.0.) conceptual benefits, while
the code is still easy to convert to C (the code size overhead
we have obtained due to our "low level” C++ compared to
C is really negligible), the target language of many SoC in-
tegration flows. The choice also allows minimal changes in
the C algorithm code to integrate the DDTs.

The tool developed to support this step has two main
building blocks. First, prafile objects are added and sup-
ported by an O.0. profiling framework. This way, the use
of combined layered DDTs is made transparent to the algo-
rithm since all memory behavior (allocations, accesses,...)
is contributed to the complex DDT, and not to the compos-
ing simple DDTs. For example, one possible realistic DDT
implementation for CMatches can be seen in Figure 3, It
is an array to do the first lookup. Then, each position in the
array points to a tree, which peints to an array that finally
stores the data (pairs of related points in the frames). When
the memory behavior of a DDT is evaluated, the developer
is not only interested in the contribution of the array type in
the DDT, but rather what the combined cost of this complex
structure is. Finally, this profile framework, together with
all the required code transformations and instrumentation
are added automatically to the code.

371

The combination of multiple DTs in multiple layers and
the use of multiple DDTs in an application results in an ex-
ponential search space. Currently, some simple heuristics
are employed to automatically explore the search space, us-
ing a representative input data set. As a result of the explo-
ration process, Pareto optimal solutions? are located, based
on normalized memory use, memory accesses and energy
estimates and the final solution depends on the restrictions
of the designer and system. By medifying the heuristics,
more details about (sub-optimal) DDTs can be obtained, at
the cost of an increased exploration time.

5.2. Dynamic Memory Management Refinement
The purpose of DMMR is an efficient use of the the DM
available in the system for certain constraints. An inatten-
tive management of the DDTs of the application can lessen
severely the performance of the whole system and increase
the memory accesses and the energy dissipation. Therefore,
a well-adjusted dynamic manager has to be selected for the
multimedia application under study.

in order to select efficiently the DM manager, we take
into consideration high-level strategic issues [5] as well as
a full analysis of the DM behavior of the application. The
DM manager has to maximize the performance of the ap-
plication taking into account memory consumption and size
among other constraints. The profiling information obtained
in the previous steps of the methodology is used to char-
acterize the evolution in time of the DDTs involved in the
application (see Figure 5).

template «<class SHeap»> class LogLayer:\
public SHeap, public profilef

public:

inline void* malloc(zize_t sz){

EPRINT (" (%d} malloc %d bytes\n", id, sz);

return SupHeap::malloc(sz); |}

inline void free (void» ptr}{

EPRINT (" (%) free %d bytes\n",id,SHeap::getSizel(ptxr));

SuperHeap: :free(ptr); } }:

class Kingsley KingsleyNC«<SbrkHeap>{}:
class KingsleyLogged KingsleyNC<LoglLayer<SbrkHeaps »{};

Fig. 4. Definition and use of a LogLayer

The information about the DDTs is characterized in a
search space defined to this end. It ts based on a taxenomy
of orthogonal decisions that tackles the different parts of
any possible allocator [5] for manual memory management.
The choices from our taxonomy are combined to eventually
canstitute global DM managers according to the constraints
of the system. .

After that, we explore the different memory managers
defined by our search space using a fast infrastructure of
C++ mixin layers [6], which allows to compose and cre-
ate these managers with very complex defallocation strate-
gies. For example, first fit with address ordered for the free

A point is said to be Pareto optimal, if it is not longer possible to
improve upon one cost factor without worsening any other.

Table 1. DM use from DDTs in the original implementation

Variable metnory memory energy

accesses footprint (B) (nl)
IMatches 1201 x10% 0.340x10° 2.162x10%
CMatches | 8.442x10% 2.486x10° 3.039x10°
CMCStatic | 9.140x107 6.247x10* 1.695x107
MMatches 1.849x10% 0.678x10°% 3.328x10%
BMatches 1.664x10* 0.623x10° 2.996x10%
Total 9348x107 3.127x10° 1.728x107

blocks and deferred coalescing allowed [5]. This allows fast
changes in the features of DM managers (e.g. replacement
policies or sizes of the pools). Due te mixin based tem-
plate instantiation, localized changes for detailed profiling
can be made by inserting additional layers. An example
is shown in Figure 4, where a simplified definition of our
Loglayer is added to the Kingsley allocator [6] to obtain in-
formation of what memory is requested from the system and
recycled (fragmentation). The infrastructure of Jayers and
profiling objects is used to heuristically explore the values
in many characteristics of the DM managers designed with
our search space and select the 1deal for the application.

6. RESULTS

As we have already explained, optimizing the memery man-
agement at system-level in multimedia applications with com-
plex dynamic behavior has not been given much attention.
Therefore, our methodology will be used to refine the 3D
image reconstruction system used as our case study.

In the first step, DDTTR, the representation of the four
main DDTs described in Section 4 is optimized. After run-
ning the tool to get the profiling information from the origi-
nal code, a memory use graph is generated (see left chart in
Figure 5). In order to account for the varying memory use
during the program run, normalized memory is used to get
an estimation of the overall contribution of each DDT to the
energy dissipation {sece Table 1). This attributes more ac-
curate contributions to energy cost estimates and avoid that
e.g. DDTs with very short and high memory usage distort
and hide the memory contribution from other DDTs. The
model used in the results to obtain energy estimations is de-
scribed in [16] for large SRAMs with .25 pum technology.
This model depends on memory footprint factors (i.e. mem-
ory size, internal structure of banks and sub-banks, memory
leaks, working time of the memory and technology) and en-
ergy consumption factors created by memory accesses (i.e.
number of memory accesses, energy consumption in active
mode, size of the memory and technology). In the tools, the
memory model can be replaced by others in a modular way.

A first analysis of the run-time profiling information of
Figure 1 shows the existence of a dynamic array copy of
CMatches in the original code to optimize the accesses to

372

Original implementation - DDT Cptimal Without ChiGogyStaiic :
[% o, o
: —
. imaguidatcr ec.' [-m-g-mmn.ﬂ
. BastMaches Basikatchas
i Muiaicres | A oo o b |
H Cagoziemaccres] " B o
o OComStane | A = 3
F E
H . 5 3
3 .
fo .
2 - 2
o> . %0 -
. ! - !
ol a0 .-
0 03 \ ' 7 D T T R TR I TRt TS T R T I S R SR TR
e o T Ve T e

Fig. 5. Memory footprint over time. All plots mapped on the left axis, except CandidateMatches and CMCopyStatic
(right one). Left oniginal implementation, center Pareto implementation with CMCopyStat ic and right after removing it.

o onginal
W

DDT Cptional

DDT Opthmad without CMCopyStatc

Azrasees alociivas]

SR |

o

EERENE
Ascaeen B

Accaryeg (hocrirme)
|3 3]

Waw W v 2314

Wy
Alocyeon gin

Fig. 6. The use of different block-size allocation for the original algorithm, left. Center, algorithm with optimized DDTs, but
without removing CMCopyStatic. Right, with the removal of CMCopyStatic. Note the changes on the Y-axes values.

Table 2. DM use from relevant DDTs after DDTTR

Variable memory memory energy

accesses footprint (B) {nl)
IMatches | 4.020x 107 0.624x10° 7243x107
CMatches | 3.898x10% 1.174x10° 7.017x10%
MMatches | 7.684x10% 1.391x10% 1.383x10%
BMatches | 7.161x10% 1.368%x10% 1.289x10°
Total 8.066x107 1.208x10° 1.452x10°

more details, see [17]). After this, the figures in Table 2
and the right plot in Figure 5 are generated. They show that
the accesses t0 IMatches are less than half of the orig-
inal ones and the normalized memory use of CMatches
is 43.9% less. The removal of CMCStatic influences the
normalized memory footprint (and removed the short mem-
ory peak used while copying), but has little effect on the
performance (speed) of the overall program. This shows the
importance of DDTTR to speed up the application compar-
ing the values of the X-axes from Figure 5 to match two im-

this DDT. This copy is the DDT CMCopyStatic (CMCStatigkes (fime values of x 107 microseconds in the first plot, in
Also three dynamic sets form clear bottlenecks. First, CMat chesthe refined ones with our methodology only x 10° microsec-

is the largest dynamic data structure in the application. Sec-
ondly, IMatches has a low normalized memory use, but
it is accessed extensively. Finally, the CMCStatic speed
optimization dynamic array accounts for the most impor-
tant part of the memory accesses and consumes most of the
energy in the application.

Afier the subsequent exploration step, our tool suggested
an ideal solution for the different DDTs according to the
constraints entered. We used minimal energy dissipation
and two layered DDT structures (pointer-arrays to arrays)
with array sizes of 756, 1024 and 16384 Bytes (B) were
selected. As the second plot in Figure 5 depicts, the DDT
refinernent alrecady attains a significant influence on perfor-
mance and DM footprint.

Finally, becausc of the optimized DDTs found in the ex-
ploration, it is possible to remove CMCStatic and refine
even more the algorithm combining it with CMatches (for

373

onds). Furthermore, DDTTR reduces memory footprint and
power of the DDTs, and allow further global refinements.

In the next DMMR phase, an optimized DM manager
is selected. After the exploration has been performed using
the profiling information from the previous steps and our
search space, the DM manager selected discerns the differ-
ent behaviors of the DDTs in the case study, which are just a
few as Figure 6 shows. [t partitions the DM of the system in
three different regions or pools with different sizes that suit
the DDTs in the application. Inside every block allocated,
the object size is recorded and, for every region, a double
linked list is used to lessen the time required to traverse and
access the data. Furthermore, the blocks are stored inside
each sublist of sizes using a LIFO order. When a block is
freed, the manager returns the deallocated memory to the
appropriate region and it becomes available for block re-

Table 3. DM uysc from DDTs in the manually opt. version

Variable memory memory energy
. accesses footprint (B) (nJ)
IMatches | 4.020x10° 0.857x10° 7.243%10%
CMatches | 3.151x10% 2.021x10" 1.134x10°
MMatches | 5.856x10% 6.876x10% 1.054x10%
BMatches | 4913x10% 6.876x10° 0.884x10%
Total 7282x10° 2167x10° 1.878x10°

quests inside the specific range of sizes allowed in this pool.
It provides an excellent performance and fragmentation is
minimized. It only adds approximately a 10% overhead in
normalized memory use and 18% in energy consumption
compared to the results of the bare DDTs shown in Table 2
due to internal management and fragmentation.

Finally, in addition to the original implementation with
DM, we have created a manually optimized version of the
algorithm. We consider that the designer, after manually
profiling and extracting the necessary information from the
original code {for the full code of the entire 3D algorithm
with 1.75 million lines of high level C++, see [13]), was
able to select an optimal static DT representation of the rel-
evant DDTs. This static version achieves very good per-
formance and the energy consumed is much lower than the
original version, as Table 3 shows. However, since it is re-
ally optimized for a specific configuration of parameters, it
does not scale for larger resolutions, different parameters or
abnormal images features.

After both steps (DDTTR and DMMR), the total mem-
ory used in the application is greatly improved compared
to the manually optimized version and the original one, as
shown i Table 2. The DDTs require less DM than the erig-
inal version {see Table 1 and Figure 5} and the manually
optimized version (see Table 3). The energy consumed is
also reduced significantly comparing with the best version,
Le. the manually optimized version (see Table 2 and Ta-
ble 3). Finally, compared to the original version the mem-
ory accesses are reduced enormously, as Table 1 and Table 2
show. Summing up, with the whole methodology applied,
compared to the manually optimized version, the memory
footprint improves up to 44.2% and estimated energy dis-
sipation up to 22.6%. In addition, the system can scale
with extreme-cases of input parameters whereas the man-
ually optimized version cannot do it

7. CONCLUSIONS

One of the crucial and most difficult parts in multimedia ap-
plications is DMM. In this paper, we prove the effectiveness
of a new system-level exploration methodology to optimize
the aforementioned DMM for typical multimedia applica-
tions applying it to a relatively new 3D reconstruction algo-
rithm. This methodology allows a structured analysis of the

memory access patterns hidden in algorithms with complex
DM use and can also help to solve fundamental algorithmic
problems. It allows the system integrator to obtain a de-
tailed and clear view of the DM behavior and optimize it.
In a first phase, the way in which the data is stored for the
algorithm studied is optimized. By doing this, the access
patterns to memory are transformed and optimized, reduc-
ing power consumption and memory footprint. Since most
embedded systems do not have complex memory manage-
ment provided by a combination of hardware and system
software, an approach is proposed to compose efficient spe-
cific memory managers in a modular way, using high-level
C++ code. Even though this paper only presents one driver
application, similar results have been obtained in game en-
gine algorithms [18].

8. REFERENCES

Marc Pollefeys et al, “Metric 3D surface recons. from uncalibrated
images,” in Lect. Notes in Comp. Science, Springer-Verlag, 1998,

[2] John Cosmas et al, “3D murale,” 2002, http://www.brunel.
ac.uk/project /murale/home.html.

“Eyetronics 3d scanning,” http: //www.eyetronics.com

=

[4] Robin Rowe, “Industrial light and magic,” Linux Journai, 2002.

[5} Paul R. Wilson et al, “Dynamic storage allocation, a survey and crit-
ical review,” in /nt. Workshop on Mem. Management, UK, 1995,

[6] Emery D Berger et al, “Composing high-performance memory allo-
cators,” in Proc. of PLDI, USA, 2001,

[7

s}

E.G. Daylight et al, “Analyzing energy friendly steady phases of dyn.
apps. in terms of sparse data structs,” in Proc. of ISLPED, USA, 2002.

[8] Roger Henriksson, Scheduling Garbage Collection in Embedded Sys-
tems, Ph.D. thesis, Lund Institute of Tech., 1998.

[9] N. Murphy, “Safe mem. usage with DM allocation,” Embedded Sys-
tems, 49 — 57, 2000

[10] Sven Wuytack et al, “Mem. manag. for embedded network apps.,”
{EEFE Trans. on Computer-Aided Design, 18(5):533-3544, 1999,

{i1] L. Benini et al, “System level power optimization techniques and
tools,” in ACM Trans. TODAES, 2000.

[12] C.J. Harris et al, “A combined corner and edge detector,” in 4tk Alvey
Vision Conf., 147-151, 1998,

[13] “Targetjr,” 2002, http: //www. targetjr.orqg.

[14] T. M. Chilimbi et al, “Cache-conscious structure layout,” in SIG-
PLAN Conf on PLDI, 1-12, 1999,

[15] P.Ranjan Panda et al, “Mem. organization for improved data cache
performance in embedded processors.” in Proc. of ISSS, 90-95, 1996,

[16] B. S. Amrutur et al, “Speed and Power Scaling of SRAM’s,” [EEE
Trans. on Solid-State Circuits, 35(2), 2000.

[17] Marc Leeman et al, “Intermediate var, elimination in a global context
for a 3d multimedia application,” in Proc. of ICME, USA, 2003,

[18] Marc Leeman et al, “Power estimation approach of dynamic data
storage on a hw sw boundary level,” in Proc. of PATMOS, ltaly, 2003.

374

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

