
Power Estimation Approach of Dynamic Data Storage
on a Hardware Software Boundary Level�

Marc Leeman1, David Atienza2,3, Francky Catthoor3, V. De Florio1, G. Deconinck1,
J.M. Mendias2, and R. Lauwereins3

1 ESAT/K.U.LEUVEN, Kasteelpark Arenberg 10, 3001 – Leuven, Belgium;
2 DACYA/U.C.M., Avenida Complutense s/n, 28040 – Madrid, Spain;

3 IMEC vzw, Kapeldreef 75, 3000 Leuven, Belgium.

Abstract. In current multimedia applications like 3D graphical processing or
games, the run-time memory management support has to allow real-time mem-
ory de/allocation, retrieving and data processing. The implementations of these
algorithms for embedded platforms require high speed, low power and large data
storage capacity. Due to the large hardware/software co-design space, high-level
implementation cost estimates are required to avoid expensive design modifica-
tions late in the implementation. In this paper, we present an approach designed
to do that. Based on memory accesses, normalised memory usage1 and power
estimates, the algorithm code is refined. Furthermore, optimal implementations
for the dynamic data types involved can be selected with a considerable power
contribution reduction.

1 Introduction

The fast growth in the variety, complexity and functionality of multimedia applications
and platforms impose a high demand of memory and performance. This results in high
cost and power consumption systems while current markets demand low power con-
sumption ones. In addition, most of the new multimedia algorithms rely heavily on the
use of dynamic memory due to the unpredictability of the input data at compile-time.
This, combined with the memory hungry nature of certain parts of the algorithms, makes
the dynamic memory subsystem one of the main sources of power consumption.

With the aforementioned characteristics, classical hardware (HW) design improve-
ments, like voltage or technology scaling can only partially compensate for the growing
HW/software (SW) gap [10]. In the last years, the boundary of what is considered to be
critical design improvements for very large scale integration systems has been shifting
consistently towards the SW side.

Even though a lot of current SW dominated transformations [3] result in platform
independent improvements, they are critical for embedded devices due to the more con-
strained HW specification and especially of the memory hierarchy. Next to performance
� This work is partially supported by the Spanish Government Research Grant TIC2002/0750,

the Fund for Scientific Research - Flanders (Belgium, F.W.O.) through project G.0036.99 and
a Postdoctoral Fellowship for Geert Deconinck.

1 The sum of the memory used at a time slice, multiplied by the time. This amount is then divided
by one run of the algorithm

J.J. Chico and E. Macii (Eds.): PATMOS 2003, LNCS 2799, pp. 289–298, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [594.962 841.96] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 24000 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 10.0
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

290 M. Leeman et al.

related techniques, power consumption is of paramount importance for hand-held de-
vices. Even in devices that are not dependent on batteries, energy has become an issue
due to the circuit reliability and packaging costs [15]. As a result, optimisation for em-
bedded systems has three optimisation goals that cannot be seen independently from
each other: memory usage, power consumptions and performance.

In order to optimise embedded system designs, detailed power consumption profil-
ing must be available at an early stage of the design flow. Unfortunately, they do not
exist presently at this level for the dynamically (de)allocated data type (further called
Dynamic Data Type or DDT) implementations. In order to evaluate this accurately to-
day, simulations would be necessary at a much closer level to the final implementation
on a certain platform, e.g. at instruction (ISA) or cycle accurate HW level. Since each
implementation of a DDT defines how the memory is accessed and allocated, they form
an important factor for power consumption.

In this paper we explain how a high-level (i.e. from C++ code) profiling approach is
able to analyse and extract the necessary information for a power-aware refinement of the
DDT implementations involved in multimedia applications at run-time. To this end, the
three important factors that influence the power consumption and overall performance of
the memory subsystem are studied, i.e. the memory usage pattern over time, the amount
of memory accesses and the data access mechanisms. This power analysis approach is
a crucial enabling step to allow subsequent optimisations and refinements. In the latter
stages, the DDT implementations can be optimised based on relative power contribution
estimates early on during system integration, enabling large savings in the design-time
of the system.

The remainder of this paper is organised as follows. In Section 2, we describe some
related work. In Section 3, we explain the high-level profiling phase and further refine-
ments that it allows. In Section 4, we describe our drivers and present the experimental
results. Finally, in Section 5, we state our conclusions.

2 Related Work

A large body of SW power estimation techniques have been proposed at lower abstrac-
tion levels, starting from code that is already executable on the final platform. One of
the first papers is [14] and many contributions have added to that. But none of these
has explicitly modelled the contribution of the dynamically allocated data types in the
memory hierarchy of the platform. Work to obtain accurate figures on a higher level is
more recent (e.g. [2,15]).

Although the level of such estimations has been extended to the assembly code and
also C code, they are based on an analysis and design space without run-time analysis.
This is not sufficient to deal with dynamic memory applications. In fact, in algorithms
governed by dynamic memory accesses and storage (such as multimedia applications)
the control flow and accesses to the DDTs are unknown at compile-time, and the afore-
mentioned run-time analysis becomes necessary.

Most of the power estimation systems focus on obtaining accurate absolute values
for HW-SW systems. In the framework of DDT optimisations and refinements, this is an

Power Estimation Approach of Dynamic Data Storage 291

overkill and we are mainly interested in the power contribution of the dynamic memory
sub-system. As such, accurate relative figures are more important.

Several analytical and abstract power estimation models at the architecture-level
have received more attention recently [4] since they are needed for high-level power
analysis in very large scale integration systems. However, they do not focus on the
dynamic memory hierarchy of the systems and they are not able to analyse the power
consumption from the DDTs at the SW level for dynamic data-dominated applications
like multimedia applications.

To solve this gap in the power analysis context with respect to global dynamic
memory profiling, the approach we propose is inspired partially from [17], but it is clearly
different in a number of important parts. Basically, this reference handles applications
from the network routing domain, where only one simple DDT is used and the main
focus is in the multiple tasks running on the system. In fact, once the system has been
initialised, the usage of the DDTs in that application domain does not vary much and
averages around the same values. A snapshot of the memory footprint at any time during
execution gives a reasonably good image of the memory behaviour. Therefore, in [17],
a detailed profiling is not performed at run-time for DDTs and the memory footprint is
used to determine the memory contribution in the power estimations.

In addition, according to the characteristics of certain parts of multimedia applica-
tions, several transformations for DDTs [16] and design methodologies [3] have made
significant headway for static data profiling and optimisations taking into account static
memory access patterns to physical memories. Also, the access to the data at a SW
level has to take power consumption into account and research has been started to pro-
pose suitable power-aware data structure transformations at this level for embedded
systems [5].

3 Description of the Approach

3.1 General Framework

The main objective of our high-level profiling is to provide the necessary run-time
information of the DDTs used by an algorithm in a very early stage of the development
flow. To do this, the algorithm that needs to be ported and optimised must go through
a number of phases. First of all, the source code is analysed (including its structure in
classes) and the profiling code to extract accurate information of the DDTs at run-time
is inserted. Secondly, it is executed and the profiling information is stored. Finally, this
information is processed to get the necessary power estimations and memory accesses
reports in a post-processing phase.

After the analysis, the detailed power and timing representation of the DDTs is used
to analyse and optimise their interactions in the global source code flow (i.e. interme-
diate variable elimination transformation [9]). Finally, the refinement of the DDTs can
be performed with an exploration that uses the same profiling framework to evaluate
possible trade-offs between power consumption, memory footprint and performance.
Figure 1 gives an schematic overview of the overall optimisation approach that we pro-
pose, which is not the topic of this paper but it is summarised here to show the context
of our power analysis approach. For a more in-depth discussion, see [8].

292 M. Leeman et al.

Intermediate Variable
Elimination (Transformation)

(1)

(2)

(3)

DDT Library High Level Exploration Source to Source

Exploration (Refinement)

Algorithm

Power
Analysis

Fig. 1. Overview of the used system-level refinement approach

One of the most important characteristics of this approach is that it is based on a
phase-wise exploration and refinement. Every phase is ideally self-contained and once
an algorithm is optimised at that level, it can be handed down to the next phase in the
design flow, i.e. a more HW oriented optimisation. As a result, the development team
still has sufficient freedom to make (significant) changes without expensive re-iterations
through the entire development flow.

The main features of our power analysis approach to support the optimisation and
refinement steps are outlined in the following:
multiple and complex dynamic data types:All the considered multimedia applications
employ a number of complex dynamic data types with very different behaviour.
automatic instrumentation and insertion of profile objects: Instead of tedious manual
code transformations, an automatic tool has been developed to support our approach. It
analyses the dynamic memory accesses in the application and modify the custom DDTs
sources from developers to include all the information required for profiling.
structured reports generation: In applications which multiple DDTs, an analysis of the
hierarchy of classes and structure of the source code must be done. Therefore, a profile
framework has been developed to collect run-time profile information analysing where
memory is used in the different parts of the DDTs, i.e. allocations blocks, intermediate
layers, etc.
detailed power and timing information acquisition: In multimedia applications, dur-
ing an algorithm run, data sets can be dominant and non-existent in other parts. As such,
memory can be re-used and dynamic memory usage can vary a lot. Normalised mem-
ory usage is used to give a better representation of a DDTs impact. Profile runs gather
detailed memory access patterns and memory usage for power consumption estimates.
layered DDT library: The implementation of complex DDTs can be considered as lay-
ered implementations of basic DDTs2 [13]. A library provides standardised interfaces
to the most commonly used N -layered implementations.
source to source transformations are possible: Using structured profiling reports, a
global source code optimisation is able to eliminate temporary buffers that introduce
memory movements between intra-algorithmic phases without any useful processing of
data [9].

2 All DDTs are a combination of a list, array and tree

Power Estimation Approach of Dynamic Data Storage 293

3.2 Profiling Phase

As pointed out previously, it is mandatory to obtain run-time information about the DDTs
to optimise the system. The developer has several choices to modify and explore the DDT
search space. When the developer wants to evaluate the internal data structures provided
with the algorithm or has his own library in C++. In that case, the automatic insertion of
profile collectors modifies and instruments the sources including the profile framework.
A second option is linking the algorithm sources with the provided library of multi-
layered DDTs. The library provides standardised interfaces that need to be integrated in
the algorithm sources. Finally, a third option is to explore DDTs not yet included in his
custom sources or in the DDT library implementations. In that case, a modular approach
for composing multi-layered DDTs is provided, based on mixins [12].

The search space for DDTs is then explored with an heuristic or exhaustive fashion,
depending on the complexity of the program. The profile runs enable the framework
to extract detailed run-time information. Finally, an automated post processing extracts
timing information and power estimates of each DDT combination used in the explo-
ration run. In Figure 2, the timing visualisation obtained for the multimedia drivers are
shown.

0 20 40 60 80 100
0

2000

4000

6000

8000

10000

12000

14000
Original Implementation

Percent of Execution

M
em

or
y

(b
yt

es
)

ImageMatches
BestMatches
MultiMatches

0 20 40 60 80 100
0

1

2

3

4

5

6
x 10

5

CandidateMatches
CMCopyStatic

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000
Original Implementation

Percent of Execution

M
em

or
y

(b
yt

es
)

0 20 40 60 80 100
0

2000

4000

6000

8000

10000

12000

Fig. 2. On the left, memory behaviour of the matching algorithm between 2 frames (only Candi-
dateMatches and CMCopyStatic plotted on the right axis). On the right, a similar plot for processing
6 frames in the game engine. The dashed line should be plotted on the right axis.

3.3 Memory Power Models

As it has been explained, for the profiling phase a realistic model for the dynamic
memory subsystem is necessary. We have used initially the CACTI model [7], which is
a complete energy/delay/area model for embedded SRAMs. It has two main advantages.
First, a clear hierarchy in the modelling of the different memory components at four
different levels. The first level includes modelling of transistors and interconnect wires.
The second level is where these devices are combined to form the memory circuits, i.e.
address decoder, SRAM cell, etc. For the delay, the Horowitz approximation [6] is used,

294 M. Leeman et al.

while the energy consumption depends only on the equivalent circuit capacitance, supply
voltage and swing voltage. The last level consists of an exploration phase that returns
(among other results) the least power consumption values for an optimal partitioning
scheme for the specific memory. The second main advantage of CACTI is the fact that
it is scalable to different technology nodes.

With the aforementioned model, we have represented the different sizes of memo-
ries required and compared with real data-sheet values from Trimedia for the on-chip
memories caches with a size of 32 KB and an SRAM of 1 MB at 166 MHz with .18 µm
technology. We also compared to a very recent model for large SRAMS [1].

From this, it became clear that the main drawbacks of this CACTI model are the
outdated circuits and the old technology parameters to scale under .18 µm technology. It
was built originally developed considering the .8 µm technology node. Consequently, we
are also using a variation of it where we try to make more accurate the energy and delay
contribution of the sense amplifiers and the address decoder using a certain percentage
of the total sub-bank energy and delay (instead of a constant as in the original CACTI
model). Therefore, the sense amplifiers contribute 20% in memory and the address
decoder contributes 30% in memory energy consumption and 20% in delay. This way
the results are more accurate since the delay and energy of these components depend on
the memory size.

3.4 Global Source Code Transformations Phase

When the timing information has been produced in the profiling phase, global source
code transformations taking into account the DDTs interactions are viable. This will be
illustrated based on an application demonstrator. The details of the optimisation approach
itself are given in [9]. It allows to analyse the behaviour of the DDTs of the application, as
Figure 2 shows. In it, the small vertical lines in the lower part represent small temporary
buffers used to evaluate the DDT ImageMatches (IMatches) and generate the DDT
CandidateMatches (CMatches) in a first step. Later, it is used to build the fast DDT
CMCopyStatic (CMCStatic). In a final step, it allows the creation of BestMatches
(BMatches) and MultiMatches (MMatches).

In fact, most of the multimedia applications are written in this previously explained
data production and consumption fashion. The algorithm can be subdivided in smaller
components (often functions or method calls) with internal and specifically designed
DDTs, which receive an input buffer, do some processing and produce the output.

As such, the dynamic data structures passed between functionality components be-
come critical bottlenecks (comparable to physical memory bandwidth congestions).
When these intermediate DDTs are not used for any other purpose and there is an in-
jective relation in the data-flow, they can be removed [9]. Figure 3 shows the results
obtained after these transformations for our multimedia drivers.

3.5 Dynamic Data Type Refinement Using High-Level Profiling

In the final phase of the approach proposed, alternative complex DDT implementations
from our library are evaluated to refine the original implementations of the DDTs. For
each implementation in the library, the same high-level profile framework explained in

Power Estimation Approach of Dynamic Data Storage 295

0 20 40 60 80 100
0

2000

4000

6000

8000

10000

12000

14000
With Global Transformations

Percent of Execution

M
em

or
y

(b
yt

es
)

BestMatches
MultiMatches

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000
With Global Transformations

Percent of Execution

M
em

or
y

(b
yt

es
)

0 20 40 60 80 100
0

2000

4000

6000

8000

10000

12000

Fig. 3. Global source code transformations allowed the removal of 3 DDTs in the matching algo-
rithm (left) and 2 DDTs in the game engine (right), saving memory footprint and power. The final
code runs up to 10× faster.

Section 3.2 is employed. In this refinement, optimal solutions are determined by a com-
bination of the objectives pursued (i.e. power, memory accesses and normalised memory
usage). As a result, a number of Pareto optimal 3 points, which represent different DDT
implementations, are obtained. Then, the developer decides according to his constraints
and requirements. An example of the Pareto points with the power models used for one
of our multimedia drivers is shown in Figure 4.

200
400

600
800

1.5

2

2.5

3

x 10
7

4

5

6

7

8

Normalised Memory

Access/Memory/Power

Accesses

P
ow

er

300 400 500 600 700 800
4

4.5

5

5.5

6

6.5

7

7.5
Memory/Power

Normalised Memory

P
ow

er

Fig. 4. The left figure shows the combination of pareto optimal solutions in the 3D game. The
global pareto points are projected in the Memory/Accesses plain. They form a pareto curve. The
left shows a projection of this 3D space in the Power/Memory plane. These figures are obtained
with a Cacti based model for .18 µm technology.

3 A point is called Pareto optimal, when it is impossible to improve one objective without wors-
ening any other objective.

296 M. Leeman et al.

4 Multimedia Drivers and Results

To illustrate the approach presented in this paper, we have applied it to two applications.
They represent two different multimedia application domains: the first application is part
of a new image processing system, while the second one has been developed as a game
technology demo.

The first application forms one of the corner-stones of a 3D reconstruction algo-
rithm [11] and works like 3D perception in living beings, where the relative displace-
ment between several 2D projections is used to reconstruct the 3rd dimension. The global
algorithm is subdivided in smaller building blocks (sub-algorithms).

The sub-algorithm under study forms the bridge between images or related frames
and the mathematical abstraction that is used in subsequent phases. This implementation
matches corners [11] detected in 2 subsequent frames (images) and the operations on
images are particularly memory intensive (a 640 × 480 image consumes over 1 MB).
This algorithm uses internally several DDTs that, due to the partial image-dependency
related data, do not fit in internal memory of current embedded processors. The size of
these DDTs is fixed by a number of factors (e.g. structure and textures in the images)
determined outside the algorithm and are uncertain at compile-time. In this phase, the
accesses to the images are randomised and classic image access optimisations like row
dominated accesses versus column wise accesses are not relevant.

The second application where the methodology has been applied is a 3D simulation
game driven by a frame grabbing device. In a frame, obstacles are detected in the scene.
In the free-space area, balls are rendered. These balls can move according to 3 degrees
of freedom (up/down, left/right, front/back). When the ball reaches a wall, it either
bounces off the obstacle or gets stuck to the obstacle. In this case study, the uncertainty
that determines the dynamic memory are the position of the obstacles in the input frames
and the position, speed and direction of the generated balls.

Following the approach as sketched in Section 3, the source to source tool is used to
add the detailed instrumentation and profile framework to the source code of the DDTs in
both applications. One of the results of this initial profiling is detailed timing information
as shown in Figure 2, there it can be seen that intra-algorithm data dependencies with
small but extremely accessed buffers exist in both cases. Next, this information is used to
apply global transformations [9]. This results in the removal of 3 DDTs in the matching
algorithm and 2 DDTs in the game engine, as Table 1 and Figure 3 show.

On these refined versions of the algorithms, DDTs exploration is performed on
representative input. For these results, the effect of 5 runs is considered to avoid random
operating system behaviour4. For the explored DDT combinations, figures are obtained
for memory usage, accesses and power. Figure 4 shows a subset of the obtained figures.
From a designers point of view, only the pareto optimal points are interesting (circled).
For both applications, the results for the least power consumption are shown in Table 1.

Even though the figures of the memory model change, the relative values are similar
and let us select the same "optimal" DDTs. For BMatches and for MMatches, the final
DDT implementation consist of a 2-layered array structure, with an external dynamic
array of 10 positions, then each position consist of another array of 146 basic positions

4 The results of the profiling runs was very similar, only minor variations were observed

Power Estimation Approach of Dynamic Data Storage 297

of 3 floats each. For the game engine also the DDTs are 2-layered array structures, the
DDTs that contain the walls are now implemented as a dynamic array in the first level of
10 positions. Then, another one of 56 basic elements for the vertical walls and 26 for the
horizontal ones. In both cases, the basic elements consist of 6 floats. Finally, the highly
accessed balls are implemented as a first dynamic array of 10 positions where dynamic
arrays of 179 basic elements of 1 float each are stored.

In the end, as Table 1 shows, an improvement of normalised memory footprint up to
99.97% and power consumption up to 99.99% compared to the original implementation
of the corner matching algorithm. Similarly, 26.6% and 45.5% (or 79.9% depending on
the technology used) for the 3D simulation game. In addition, there was a final speedup
(when the DDTs were refined in the last phase of the approach proposed) of almost 2
orders of magnitude for the matching algorithm and 1 order of magnitude for the 3D
simulation game.

Table 1. Refinement results of the DDTs for both driver applications. Between parenthesis the
percentage saved in power consumption and memory footprint (fprint) are given. The initial DDTs
removed in the final version are marked as RM.

DDTs orig. mem. orig. power orig. power final mem. final power final power
fprint (B) .18µm (µJ) .13µm (µJ) fprint (B) .18µm (µJ) .13µm (µJ)

IMatches 5.14×102 0.30×103 0.18×103 RM RM RM
CMatches 2.75×105 3.03×103 3.03×103 RM RM RM
CMCStatic 1.08×105 3.92×105 4.48×104 RM RM RM
MMatches 3.62×102 0.03×102 0.02×101 3.81×103 0.02×102 0.02×101

BMatches 3.07×102 0.04×102 0.02×101 3.81×103 0.03×102 0.02×101

Total: 3.85×105 3.95×105 4.80×104 7.63×103 0.05×102 0.04×101

matching (99.97%) (99.99%) (99.99%)

VerWalls 1.72×103 2.96×103 2.94×103 8.30×102 2.01×103 1.52×102

VWallsBump 5.53×101 0.16×103 0.04×102 RM RM RM
HorWalls 1.64×103 0.15×103 0.28×103 6.99×102 1.77×103 1.28×102

HWallsBump 6.23×101 1.82×103 0.04×102 RM RM RM
Balls 8.42×103 9.33×103 1.91×103 7.20×103 4.18×103 7.54×102

Total: 1.19×104 1.46×104 5.14×103 8.73×103 7.96×103 1.03×103

3D game (26.6%) (45.5%) (79.9%)

5 Conclusions

Power and energy estimations at an early phase of system implementation has become an
increasingly important concern. Power and timing estimations at a very high-level, i.e.
SW level, early in the system design process for the DDTs present in modern multimedia
applications are not available yet.At the same time, accurate estimations from lower-level
models, e.g. RTL-level or gate-level, suffer from unacceptable long computing times and
capture information that is not (yet) relevant. Moreover, they come too late in the global
design flow of the final system, which implies a very costly set of iterations through

298 M. Leeman et al.

the design flow for any change in the first phases. In this paper, a fast and consistent
system-level profiling approach that can be used to overcome the previous limitations
is presented. It allows the designers to profile, analyse and refine the implementations
and effects of the dynamic data types from their applications in a very early stage of the
design flow taking into account power consumption, memory footprint and performance.
Its effectiveness is illustrated using two different and complex multimedia examples.
Finally, we have also explained how different power models can be used to obtain
accurate results for a specific final platform if it is needed.

References

1. B. S. Amrutur et al. Speed and Power Scaling of SRAM’s. IEEE Trans. on Solid-State
Circuits, 35(2) (2000)

2. L. Benin et al. A power modeling and estimation framework for vliw-based embedded
systems. In Proc. of PATMOS , Yverdon Les Bains, Switzerland (2001) 2.1.1–2.1.10

3. F. Catthoor et al. Custom Memory Management Methodology – Exploration of Memory Or-
ganisation for Embedded Multimedia System Design. Kluwer Academic Publishers, Boston,
USA (1998)

4. R. Y. Chen et al. Speed and Power Scaling of SRAM’s. ACM Trans. on Design Automation
of Electronic Systems, 6(1) (2001)

5. E. G. Daylight et al. Incorporating energy efficient data structures into modular software
implementations for internet-based embedded systems. In Proc. of wrkshp on Software Per-
formance (2002)

6. M. A. Horowitz. Timing models for mos circuits. Technical report, Technical Report SEL83-
003, Integrated Circuits Lab. Stanford Univ. (1983)

7. N. Jouppi. Western research laboratory, cacti, (2002)
http://research.compaq.com/wrl/people/jouppi/CACTI.html.

8. M. Leeman et al. Methodology for refinement and optimisation of DM management for
embedded systems in multimedia applications. In Proc. of SiPS, Seoul, Korea (2003)

9. M. Leeman et al. Intermediate variable elimination in a global context for a 3d multimedia
application. In Proc. of ICME , Baltimore, MD (2003)

10. T. Mudge. Power: A first class architectural design constraint. IEEE Computer, 34(4):52–58,
(2001)

11. M. Pollefeys et al. Metric 3D surface reconstruction from uncalibrated image sequences. In
Lecture Notes in Computer Science, volume 1506, Proc. SMILE Wrkshp (post-ECCV’98),
Springer-Verlag (1998) 139–153.

12. Y. Smaragdakis et al. Implementing layered designs with mixin layers. Lecture Notes in
Computer Science, 1445:550 (1998)

13. B. Stroustrup. The C++ Programming Language. Addison-Wesley Publishing Company,
Inc., Harlow, England (1997)

14. V. Tiwari et al. Power analysis of embedded software: A first step towards software power
minimization. In Proc. of ICCAD, San Jose, California, USA (1994)

15. N. Vijaykrishnan et al. Evaluating integrated hardware-software optimizations using a unified
energy estimation framework. IEEE Transactions on Computers (2003) 52(1):59–75

16. S. Wuytack et al. Global communication and memory optimizing transformations for low
power systems. In IEEE Intnl. wrkshp on Low Power Design, Napa CA, (1994) 203–208.

17. C.Ykman et al. Dynamic Memory Management MethodologyApplied to Embedded Telecom
Network Systems. IEEE Transactions on VLSI Systems (2002)

http://research.compaq.com/wrl/people/jouppi/CACTI.html

	Introduction
	Related Work
	Description of the Approach
	General Framework
	Profiling Phase
	Memory Power Models
	Global Source Code Transformations Phase
	Dynamic Data Type Refinement Using High-Level Profiling

	Multimedia Drivers and Results
	Conclusions

