Garbage Collector Refinement for New Dynamic Multimedia Applications on
Embedded Systems

Jose M. Velasco*, David Atienza*, Francky Catthoor?,
Francisco Tirado*, Katzalin Olcoz*, Jose M. Mendias**
*DACYA/UCM, Avda. Complutense s/n, 28040 Madrid, Spain. Email: mvelascc @fis.ucm.es,
{datienza, ptirado, katzalin, mendias } @dacya.ucm.es
HMEC vzw, Kapeldreef 75, 3001 Heverlee, Belgium.
Email: {Francky.Catthoor} @imec.be

Abstract

New consumer embedded devices must execute concur-
rently multiple services (e.g. multimedia applications) that
are dynamically triggered by the user. For these new em-
bedded multimedia applications, the dynamic memory sub-
system is currently one of the main sources of power con-
sumption and its inattentive management can severely affect
the performance and power consumption of the whole sys-
tem. Therefore, the use of suitable automatic mechanisms to
reuse the dynamic computer storage (i.e. garbage collector
mechanisms) taking into account the underlying embedded
devices would allow the designers to more efficiently design
these systems. However, methodologies to explore and im-
plement convenient garbage collector mechanisms for em-
bedded devices have not been developed yet. In this paper
we propose a new system-level method to define and explore
the vast design space of possible garbage collector mech-
anisms, which enables to define custom garbage collector
implementations for the final embedded devices.

1 Introduction

Currently, with the increasing importance of new embed-
ded and portable applications, new design methods are re-
quired. The increasing need for efficient systems has moti-
vated a large body of research on low power memory op-
timizations and performance improvement techniques for
static data in embedded systems [14, 3]. However, the
new application domains of these embedded systems in-
clude mobile terminals (e.g. for multimedia applications),
automotive, game processors, etc. [13]. These domains cur-
rently include two sources of dynamism that have to be

*This work is partially supported by the Spanish Government Research
Grant TIC2002/0750.

Proceedings of the Eighth Workshop on Interaction between Compilers and Computer Architectures (INTERACT’04)

0-7695-2061-8/04 $20.00 © 2004 IEEE

taken into account when they are designed.

First, new dynamic applications (e.g. MPEG21) are in-
ternally dynamic, which means that they heavily depend on
Dynamically allocated Memory (DM from now on) due to
the inherent unpredictability of the input data and their re-
spective behaviour (e.g. the data and calculations of a mo-
tion estimation vector vary greatly depending on how the
user moves the camera). Designing the final embedded sys-
tems for the (static) worst case memory footprint of these
new applications would lead to a too high overhead in mem-
ory footprint and power consumption for them. Even if av-
erage values of possible memory footprint estimations are
used, these static solutions will result in higher memory
footprint figures (i.e. 22% more) than DM solutions [10].
Moreover, these intermediate static solutions will not work
in extreme cases of input data, whereas solutions using dy-
namic allocation can do it. Thus, DM management mech-
anisms must be used in embedded realisations of these de-
signs.

Second, new portable consumer devices include another
degree of dynamism, what we can call external dynamism,
because the code (and eventually the number of different
applications) to be executed on these platforms is user de-
pendent. The user behaviour determines the number of ap-
plications and which ones to run. Clearly, these two key
factors make it very hard to appropriately handle the use of
DM in new consumer embedded devices. Therefore, effi-
cient automatic DM reclamation mechanisms to decide the
DM still in use at run-time (i.e. garbage collectors) are in
great need. However, current embedded devices are not pre-
pared to support general-purpose Garbage Collector (GC
from now on) mechanisms due to their limited resources
(e.g. power, memories, etc.). Thus, new methods to design
custom GCs for embedded systems must be developed.

In this paper we propose a new method that allows the
design of custom GCs for new dynamic applications (e.g.

nn

COMPUTER
SOCIETY

multimedia) taking into account the constraints (e.g. per-
formance, power consumption, etc.) of the final embedded
devices where these applications must be executed. The re-
mainder of this paper is organized in the following way. In
Section 2 we describe some related work. In Section 3 we
present the proposed method to define the design space of
GC mechanisms and we outline a main order to traverse
it. In Section 4, we show how state-of-the-art and classical
GCs can be characterized within our GC design space. In
Section 5, we briefly introduce our benchmark applications
and present the experimental results obtained. Finally, in
Section 6 we draw our conclusions.

2 Related Work

Nowadays a very wide variety of well-known techniques
for uniprocessor GCs (e.g. reference counting, mark-
sweep collection, copying garbage collector) are available
in a general-purpose context within the software commu-
nity [18]. Also, recent research on GC policies show im-
portant gains for performance in general-purpose systems
using generational GCs [9]. Moreover, further improve-
ments in performance are achieved by real implementations
of GCs including application-specific behaviour in their de-
signs [17, 18].

Regarding methods to refine the structure of GCs for spe-
cific scenarios, usually designers use simulation and life-
time predictors to analyze an extensive amount of traces of
objects allocations and their run-time behaviours [9]. How-
ever, this is prohibitively expensive in time both for data ac-
quisition and profiling analysis. Thus, new methods include
algorithms to generate typical and representative traces of
the application under analysis, which allows to prune the ex-
ploration design space [18]. In both cases, the exploration is
limited by the number of GC candidates available in the li-
brary used and the time to implement them and profile them
at run-time. Moreover, these GCs have to be defined by
the designers based on their own experience since the de-
sign space of possible decisions for GC mechanisms is not
defined.

Finally, in memory management for highly-constrained
embedded systems, the DM is usually partitioned into fixed
blocks to store the dynamic data and these free blocks are
placed in a single linked list [11]. Also, in recent real-
time operating system synthesis approach for embedded
systems, dynamic allocation is supported with custom DM
managers based on region allocators [19] for the specific
platform features. However, all these systems do not in-
clude GCs and only rely on manual DM management.

Finally, a large body of research on memory optimiza-
tions and techniques exists for static data in embedded sys-
tems (see e.g. [14, 3] for good tutorial overviews). All these
techniques are complementary to our work and are appli-
cable in the part of the code that accesses static data in the

Proceedings of the Eighth Workshop on Interaction between Compilers and Computer Architectures (INTERACT’04)
0-7695-2061-8/04 $20.00 © 2004 IEEE

dynamic applications under study. Furthermore, they are
useful as back-end for our approach, once the amount of
DM used by the system is limited and the data are allocated
into memory pools that can be statically declared and opti-
mized.

3 Garbage Collectors Design Space

3.1 Design Space of Orthogonal Decisions for
Garbage Collectors

In manual memory management, the programmer has
full control of the DM subsystem of the system. Thus,
he must explicitly deallocate the objects that are no longer
used. However, in complex dynamic applications (e.g. mul-
timedia), this full control is very difficult to be properly ap-
plied. As a result, very frequently, memory problems must
be debugged in the design process due to inappropriate free
function calls because the object should still be available or
the DM is not freed at the right moment but later. Within
this context, the GC replaces the programmer in this task.
To do so, the GC must perform two phases. First, during the
tracing phase it has to be able to detect the dead objects in
the application running presently at a certain moment of the
execution time. Secondly, during the reclaiming phase the
GC has to recycle these dead objects and free the DM for
future program requests. Usually, in the literature we can
observe that to accomplish the previous two phases, GCs
can be categorized regarding the way they work:

e Stop-the-world GC. The running application is paused
during the two phases of the GC to avoid inconsisten-
cies in the references to DM in the system. This pause
is the main obstacle for applications using GCs to be
executed with real-time requirements.

e Incremental GC. We can diminish the pause by divid-
ing the tracing phase, the reclaiming phase or both
in smaller subphases (named “increments”) that check
subparts of the heap. In this case, the problem appears
on the complexity of the GC design to define the ap-
propriate moments to stop temporarily the application.
The fact is that since the GC will not have time to fin-
ish its garbage collection fully in one increment and it
is unknown which parts of the memory are going to be
modified next by the application, severe inconsisten-
cies may appear in the DM of the system.

e Concurrent versus Parallel. The meaning of these
terms is rather ambiguously defined across the liter-
ature. Here we use the term concurrent when a GC
thread is running concurrently with the rest of the pro-
gram threads. In addition, we reserve the term paral-
lel when two or more GC threads are running concur-
rently [5]. Hence, in a concurrent GC, the application

nn

COMPUTER
SOCIETY

A. Creating Block Structures
'ng\v

1 Block Structure 2 Block Size 3 Block 4 Block Info 5 Flexible Block

B. Pool Division based on Criterion C. Allocating Blocks

1. Size 2. Pool Structure Exact First Next Best Worst

Fit Fit Fit Fit Fit

F. Distinguishing Garbage Phase
1. How

/raci{ Refery C&

All Space Increments Always Deferred

2. Execution Mode

Stop-the-World Concurrent Concurrent
Sometimes

G. Reclaiming Garbage Phase

1. Moving Objects 2.How Much Space 3. Execution Mode

/ \ Stop-the-World Concurrent Concurrent
Never Sometimes Always All Space Increments sometimes
H. Heap Organization
1. Number of Heaps
One subHeap Multiple SubHeaps
2 Scavenging Frequency 3 Segregation Policy 4 Subheap Size Behaviour
Age Size Type Connectivity . g .
Same Different Statvlcally Flexible Dynamlcal]y
Fixed Readjusted
1. Barriers
1 Type 2 How 3 What
Not Read Write Reference Snapshot Incremental ~ Remembered Sets Card Marking
Needed Barriers Barriers Count beginning Update
Slot Object

Figure 1. GC design space of orthogonal de-
cisions

running presently is not explicitly paused, but the over-
head of the GC thread can hamper meeting the neces-
sary real-time requirements.

As we have just explained, an extensive amount of pos-
sible GC strategies (and implementations for them) exists.
Therefore, all these options have to be enumerated to cover
exhaustively the GC design space. In our method, we have
classified all the relevant decisions that can compose the de-
sign space of GC mechanisms in different orthogonal de-
cision trees (see Figure 1). Orthogonal means here that
any decision in any tree can be combined with any deci-
sion in another tree, and the result should be a potentially
valid combination (which does not necessarily mean that it
meets all timing and cost constraints). In addition, all pos-
sible solutions in the design space should be spanned by a
combination of leaves in the orthogonal trees, just like any
point in a geometrical space can be represented in a set of
orthogonal axes. Moreover, the decisions in the different
orthogonal trees can be ordered in such a way that travers-
ing the trees can be done without decision iterations, as long

as the appropriate constraints are propagated from one de-
cision level to all subsequent levels. Basically, when one
decision has been taken in every tree, one custom GC is de-
fined (in our notation, atomic GC mechanism) for a specific
DM behaviour pattern. Note that in Figure 1, categories A,
B and C are not only related to GCs, but also relevant in
the design space of DM managers [2]. In the following we
focus on the four main categories for GCs mechanisms of
Figure 1 (i.e. categories F, G, H and I) and the important
decision trees inside them for the creation of custom GCs.
In the original description [2] this has not been described at
all. Therefore, it forms the main contribution of the paper:

FE. Distinguishing Garbage Phase relies on determining
which objects are not pointed to by any living program ob-
ject. Two strategies exist within this context, as tree F1
in Figure 1 shows, which give name to different families
of GCs, i.e. Tracing garbage collectors and Reference-
Counting collectors:

e A Tracing collector traverses the graph of references
of the program to find the objects that can be reached
at each moment of the execution. Then, the unreach-
able objects at a certain moment are garbage. In order
to avoid the overhead, as we have mentioned before,
instead of tracing the graph across the whole heap, we
can focus in smaller parts (i.e. increments).

o A Reference-Counting collector acts in a way much
closer to explicit deallocation. Each object has a
header field with a reference counter. Whenever a
pointer is assigned/unassigned, the counter is incre-
mented/decremented. If the count becomes zero, we
can recycle the object. A Deferred reference count
(tree F1)is a mixed technique with tracing collection.
The cost of reference counting can be very high de-
pending on the work done by the application running,
so a hardware-assisted solution [20] can benefit this
policy. This is perfectly possible in our design space,
the only variation then would be to include two differ-
ent cost functions (i.e. cost of the hardware solution
and cost of the software solution) for that leave of the
GC design space when the custom GC solution is de-
termined. Finally, our last tree in this category (F2)
is used to decide the way the GC runs in the system
(e.g. concurrently, alone). It allows to avoid long time
pauses in certain DM behaviours of the applications
by creating concurrent GCs (or mostly concurrent with
the application).

G. Reclaiming Garbage Phase. Once we have differenti-
ated the dead objects from the alive ones in the Distinguish-
ing phase, three options exist in the reclaiming phase (rep-
resented by tree G1 in Figure 1) . First, the use of the DM
used by the ”garbage objects” as available memory for sub-
sequent memory requests of the application, thus the mem-

nn

COMPUTER
SOCIETY

Proceedings of the Eighth Workshop on Interaction between Compilers and Computer Architectures (INTERACT’04)
0-7695-2061-8/04 $20.00 © 2004 IEEE

ory can be reused. Second, moving and compacting living
objects, reducing this way the total DM fragmentation [19].
If the GC never moves data, we have the classical Mark&
Sweep GC [18]. In case the GC always moves objects, we
have the classical GC Copying policy [18]. Finally, a trade-
off between both is the Mark&Sweep with a compacting
phase when necessary [9], which is the leaf SOMETIMES in
tree G1. In this case, this general option must be particular-
ized with several thresholds to determine when compacting
the DM. Then, tree G2 defines how these previous mecha-
nisms for the reclaiming phase are applied to the heap, i.e.
in the whole space at once or in increments. Finally, as in
category F, we include in our GC design space the options
to decide the way the GC runs in the system (e.g. serialized,
concurrently, etc.).

H. Heap Organization. To improve global performance
and to avoid long pauses, GC designers have devised differ-
ent new strategies that basically rely on dividing the heap
in regions or subHeaps [9] (tree H1, Figure 1). The main
policies for segregating the data into these regions are as
Figure 1, tree H2 depicts: the size, the age, the type or the
connectivity of the objects (minimization of traversing be-
tween regions). Then, the GC can manage all the subheaps
with the same policy or assign different strategies to each of
them. This way and by combination, the powerful option to
use separate hybrid GCs arises, as our GC design space al-
lows (see Section 5 for real examples of these hybrid GCs).
Moreover, the GC can apply different scavenging frequen-
cies to each region (tree H3 in Figure 1), which is the main
point in the Generational collection strategy [9]. Typically
for this case, the borders of each subheap are statically fixed
and no variations in the size of each subheap are allowed at
run-time (tree H4 in Figure 1). Alternatively, in our GC
design space (see Figure 1) it is possible to have a more
flexible policy, which assigns space as it is available, like in
the Appel Collector [1]. Furthermore, using our GC design
space, it is possible to use an adaptive strategy that dynam-
ically readjusts the regions size. In this case, the GC must
take this kind of decisions based on dynamic feedback gath-
ered at run time (see Section 5 for its application in GCs for
real examples). The required maintenance data structures to
gather this information need to be supported by the general
DM manager of the system [2], thus we include in our GC
design space (Figure 1) categories A and B.

L. Barriers. We need barriers in two different scenarios.
As we mentioned earlier, some implementations of the GC
can scan only part of the heap (i.e. increments) and not the
whole heap. In this case, every time the GC searches for live
objects within a ”subheap” it needs to know the references
that point into the present subheap and have their sources in
the rest of the heap. Furthermore, if the GC runs concur-
rently with the application, it has to take into account that
the relationship graph of data structures can change while

Distinguishing Garbage Reclaiming Garbage
Phase Phase

How

Moving objects

Execution Mode How much space

PY, S Execution mode

(Heap organization
Barriers
Number of heaps
- g Type
Scavenging frequency 5 b
Segregation policy] ;______-l How
Subheap size behaviour | b
N~ 7 Lo What
\.
N

Figure 2. Interdependencies between orthog-
onal trees in the GC design space

it is traversed. Therefore, the GC must know when the
application is referencing data that has not traced yet. To
achieve safe concurrent cooperation between the applica-
tion and the GC, the Tri-Color marking algorithm [18] was
introduced in GCs. This algorithm deals with the distin-
guishing garbage phase in Tracing GC [18]. It requires both
read and write barriers, thus these two different uses of bar-
riers are included in our GC design space, tree I1, Figure 1.
Furthermore, our GC design space allows to use these bar-
riers to create an incremental GC copying algorithm [18],
which has been proposed as an alternative GC useful for
certain DM behaviours [6]. Thus, we include in trees 12 and
13 all types and ways to implement such write/read barriers
(e.g. snapshot at the beginning, card marking, etc.). How-
ever, the cost of the barriers is very high and they should be
used only in particular DM behaviours of the applications
under study (see Section 5 for more details). Therefore,
they must be combined with other GC mechanisms to im-
prove the overall results (e.g. performance) of these GCs,
as we show in Section 5 for our case studies.

3.2 Interdependencies within the Garbage Collec-
tors Design Space

Although the decision categories and trees presented in
Subsection 3.1 are orthogonal, certain leaves in some trees
strongly affect the coherent decisions in other trees. Thus,
they include interdependencies to take into account when a
GC is designed. The whole set of interdependencies for our
design space is shown in Figure 2. They can be classified in
two main groups. The interdependencies caused by leaves
that can disable the use of other trees or categories and those
affecting other trees or categories due to their linked pur-
poses (full and dotted arrows respectively, in Figure 2). An
example of these interdependencies is shown in Figure 3,
where we can see that the use of the Reference count strat-
egy (tree F1) requires to use of Write barriers (tree I1).

Proceedings of the Eighth Workshop on Interaction between Compilers and Computer Architectures (INTERACT’04) .».;@

COMPUTER
0-7695-2061-8/04 $20.00 © 2004 IEEE SOCIETY

These options in F1-Always/Delerred
oblige to use I1-Writes

1. Barriers
1. Uses of barriers

F. Distinguishing Garbage

1. How I

YN

Figure 3. Example of interdependencies
within the GC design space

4 Garbage Collectors Characterization and
Evaluation

In this section, we show how our design space can be
used to characterize the most representative state-of-the-
art and classical GCs found in the literature. First, we
show which leaves must be selected in our GC orthogo-
nal design trees of Figure 1 also respecting the interde-
pendencies of Figure 2 to define two well-known classical
policies, namely Reference Counting and non-concurrent
Mark&Sweep [18]:

o Reference Counting: FI1-Reference Count-Always;
F2-Concurrently always; Gl-Never; G2-All space;
G3-Concurrently always; H1-One subheap; 11-Read
barriers; 12-Reference count.

o Mark&Sweep: F1-Tracing-All space; F2-Stop-the-
world; G1-Never; G2-All space; G3-stop-the-world;
H1-One subheap; I1-Not needed.

Also, more complex GC can be univocally defined using
our GC design space, which allows to more easily cover and
explore all the possible GC candidates. For example, the
Copying policy [18] has a traditional improvement that can
be easily characterized within our GC design space: since
the cost of moving large objects is very high, we can reserve
a special subheap for these objects with a non-moving strat-
egy. This subheap is called the Large Object Space (LOS) in
the literature [18]. In this case, using our GC design space
both options of the Copying policy can be easily defined in
the following way:

e Copying with LOS (Mark&Sweep) Space: F1-Tracing-
All space; F2-Stop-the-world; H1-One subheap; H2-
Same; H3-size; H4-Statically fixed; I1-Not needed

e Copying Space: G1-Always; G2-All space; G3-Stop-
the-world. And then, the LOS space: G1-Never; G2-
All space; G3-Stop-the-world.

Proceedings of the Eighth Workshop on Interaction between Compilers and Computer Architectures (INTERACT’04)

0-7695-2061-8/04 $20.00 © 2004 IEEE

In the Copying policy [18], the immortal or the long life
data are copied repeatedly during the execution. This pro-
duces a useless overhead. To avoid this problem, the Gener-
ational strategy divides the Heap in areas according to data
age [9]. Therefore, when an object is created, it is assigned
to the youngest generation, the nursery space. As objects
survive different executions of the GC, they get a more “ma-
ture” state and are copied into older generations (different
areas). The frequency with which the GC runs is smaller in
older generations. In the following we show how a GC with
two generations spaces (i.e. nursery space for young objects
and mature space for older ones) can be easily defined with
our GC design space. It uses copying policy in the nursery
and Mark&Sweep in the mature. The subheaps are stati-
cally bounded. We can find a real example with such GC
structure in the IBM Jikes RVM [7]:

e Generational Collection (genMS): Fl-Tracing-
increments; F2-stop-the-world; HI1-Multiple sub-
heaps; H2-Different; H3-Age; H4-Statically fixed;
I1-Write barriers; [2-Incremental Update; 13-
Remembered sets-Slot. Then, for the Nursery Space:
Gl-Always; G2-All space; G3-Stop-the-world. Fi-
nally, the Mature space: Gl-Never; G2-All space;
G3-Stop-the-world.

In addition, Appel [1] has proposed a variation of this
scheme. His GC assigns all free space to the nursery space.
When the nursery space is full, it copies surviving objects
to the mature space, and then reduces the nursery size by
that volume. The GC repeats this process until the nursery
space falls down a certain threshold, then it performs a full
heap collection. This GC can be expressed within our GC
design space as follows:

e Generational Collection (genMS,Appel): F1-Tracing-
Increments; F2-stop-the-world; H1-Multiple sub-
heaps; H2-Different; H3-Age; H4-Flexible; 11-Write
barriers; I12-Incremental Update; [3-Remembered sets-
slot. Then, the Nursery space is defined in the fol-
lowing way: Gl-Always; G2-All space; G3-Stop-the-
world. Finally, the Mature space: G1-Never; G2-All
space; G3-Stop-the-world.

A new and interesting generational GC is the one pro-
posed by S. Blackburn and McKinley [4]. It has two gener-
ations for the objects (i.e. nursery space and mature space),
copying policy in the nursery space and Reference count in
the mature space. This GC can be defined in our GC design
space in the following way:

e Ulterior Reference Counting: H1-Multiple subheaps;
H2-Different; H3-Age; H4- Statically fixed. Then,
the Nursery space is defined like this: F1-Tracing-All
space; F2-stop-the-world; Gl-always; G2-All space;

nn

COMPUTER
SOCIETY

G3-stop-the-world; 11-Write barriers; 12-Incremental
Update; I3-Remembered sets-slot. Finally, the Ma-
ture space is defined as follows: F1-Refence Count-
deferred; F2-stop-the-world; G1-Never; G2-All space;
G3-Stop-the-world; 11-Write barriers; I2-Reference
count.

Stefanovic has developed an incremental variation of the
Copying GC strategy [17]. In this case the heap is divided
in increments (called ”"windows” in [17]). Then, the GC
collects the window with the oldest allocated objects. This
strategy can be an alternative to Generational collection [9]
or they can be used together as we can see in Beltway [4].
Here, we describe the simplest non-generational Older-first
strategy [17]:

e Older-first: F1-Tracing-increments; F2-Stop-the-
world; Gl-Always; G2-Increments; G3-Stop-the-
world; HI1-Multiple subheaps; H2-Same; H3-age; H4-
Statically fixed; I1-Write barriers; I2-Incremental up-
date; I3-Remembered sets-Slot.

Finally, we show how very complex GCs with several
strategies can be also defined with our GC design space (we
show the practical use and benefits of these custom GCs
in Section 5 with our case studies). In this case we de-
fine a GC that uses a fine-grained increment Mark&Sweep
scheme, intended for Real-Time systems [5]. If memory
fragmentation increases, this GC compacts the pools with
high fragmentation into new pools. The incremental tracing
and reclaiming phase is achieved thanks to a read barrier
and a Snapshot beginning write barrier:

e Real-Time Garbage Collector (Mark&Sweep):
F1-Tracing-increments; F2-stop-the-world; G1-
Sometimes; G2-Increments; G3-Stop-the-world;
H1-One subheap; I1-Read and write barriers; I12-

Snapshot beginning.

S Case Studies and Experimental Results

We have applied the proposed GC design space analy-
sis and exploration method to the most representive bench-
marks regarding DM behaviour and dynamic data allocation
included in the suite SPECjvm98 [16]. They are the follow-
ing:

e _2(05_Raytrace: it is an engine to raytrace a scene into
a memory buffer that is then displayed on the screen.

e 202 Jess: it is the Java version of NASA CLIPS [12],
the tool to construct rule and object based expert sys-
tems. It is an application that shows a very significant
use of DM and a very variable DM behaviour, like new
dynamic multimedia applications.

Proceedings of the Eighth Workshop on Interaction between Compilers and Computer Architectures (INTERACT’04)

0-7695-2061-8/04 $20.00 © 2004 IEEE

e 228 Jack: it is a parser based on the Purdue Com-
piler Construction Tool Set [15]. A parser determines
the syntactic structure of a chain of symbols received
from the exit of the lexical analyzer. As the previous
benchmark (i.e. Jess) , Jack shows a very variable DM
behaviour that is interesting to study since it resem-
blances the typical DM behaviour of multimedia ap-
plications.

The results shown in this section are average values af-
ter 10 simulations for each GC, where all the final values
were very similar (variations of less than 7%). These re-
sults have been obtained after modifying significantly the
code of Jikes RVM (Research Virtual Machine) from the
Watson Research Center of IBM [7]. Jikes RVM is a Java
virtual machine designed for research. It is written in Java
and the components of the virtual machine are Java ob-
jects [8], which are designed as a modular system that en-
ables the possibility of modifying extensively the source
code to implement different GC strategies and custom GCs.
We have used version 2.2.0 along with the recently devel-
oped memory manager JMTk (Java Memory management
Toolkit) [7]. The simulations were performed on a Pentium
IIT processor at 866 Mhz with 1024 MBytes SDRAM and
running GNU/Linux 2.4.

In all the following experiments we have composed cus-
tom GCs for the previously explained benchmarks using our
GC design space and taking into account the DM behaviour
of each benchmark. As we show, the most suitable GC
strategies for each benchmark vary enormously according
to the system requirements (e.g. performance) and the avail-
able resources for the heap (e.g. memory footprint). We
have experimented with a range of possible heap sizes vary-
ing from the minimum needed (i.e. no fragmentation in the
GCs) to 7 times this value. Then, we have built custom GCs
using our GC design space to refine state-of-the-art general-
purpose GCs [9, 18] according to our benchmarks specific
dynamic behaviours. As a result, the lifetime data behaviour
of the benchmarks used in our experiments have led us to
define custom GCs with three different strategies and heap
organizations (so the global custom GC is the inclusion of
these three atomic GC strategies in one if the DM available
in the system varies at run time in the range explored for the
heap). Our final custom GCs for the benchmarks studied
have major changes between these three zones and minor
refinements inside each zone for each benchmark (accord-
ing to the final suitable implementation for each benchmark,
e.g. thresholds, etc.). These regions are depicted in Figure 4
and are the following:

1. A-Zone: This zone starts with the minimum heap size
needed for executing each benchmark until 2.5 or 3.5
times this value, depending on the specific benchmark.
In this case we have observed that the best results

nn

COMPUTER
SOCIETY

HEAP
A-zone Nursery ‘ Mature ‘ LOS
B-zone ‘ Copying ‘ Mark &Sweep | LOS |
C-zone ‘ Copying ‘ LOS ‘

Figure 4. Aspect of the heap used with the
different zones distinguished by our custom
GCs

CustomGC SpeedUp relative to gen10%

[

mirt

L]

Jess

Jack

kR 2

115 2 25 3 35 4 45 5 55 6 65 7
Heap Size

percentage
=)
[
|
[
[
[
[
|
[
I

Figure 5. Speedups in total execution time of
our custom GC compared to a state-of-the-art
Generational GC

are obtained using a Generational Copying collector
(with two generations: nursery and mature space)
and a bounded Large Object Space (i.e. LOS) [18].
Then, the nursery space is managed with a semispace
Copying policy [18] and both mature and LOS with a
Mark&Sweep strategy [18]. The border between the
nursery and the mature space is not flexible, but we
adjust it for each benchmark and the total heap size as
well. The LOS size remains constant and the same oc-
curs with the object size threshold that indicates when
an object has to be considered a Large Object and thus
allocated in the LOS space.

2. B-Zone: This zone starts from the A-zone’s maximum
size (2.5 or 3.5) to 4.5 or 5 times the minimum heap
size needed to run the appplication. In this zone we
have observed that the best results are obtained using
a Non-Generational GC [18] and defining 3 regions as
in the A-zone. First, a LOS region with Mark&Sweep
policy [18]. Then, another region with Copying pol-
icy [18]. Finally, a region that is filled with the sur-
vivors from the first region and that is managed also in
a Mark&Sweep style [18]. Inside this B-zone, we de-
sign our custom GCs by readjusting the three regions
sizes and the object size threshold to be included in
LOS for each benchmark.

Proceedings of the Eighth Workshop on Interaction between Compilers and Computer Architectures (INTERACT’04)

0-7695-2061-8/04 $20.00 © 2004 IEEE

Raytrace

average

CustomGC SpeedUp relative to ssCopy

30

25 T mtrt
%20 - Raytrace
245] (]
g 1 Jess
fai)
a1 t_ Jack

5 [1l

4 average
5 1l

1 15 2 25 % 35 4 45 5 55 6 65 7
Heap Size

Figure 6. Speedups in total execution time
of our custom GC compared to an optimized
Semispace Copying Collector

3. C-Zone: This zone starts from the B-zone’s limit size
(4.5 or 5) until the end of our experimental heap size
range, i.e. 7 times the minimum heap size. Going
further in the maximum heap size allowed does not
seem to vary the design of the custom GC, which
means that this part of the GC design space would
yield in this C-Zone GC implementation. In this
zone we have observed the best results using a simple
Non-Generational SemiSpace Copying collector with
a Mark&Sweep Large Object Space [9]. Thus, we use
two regions, and again we fix the size for them accord-
ing to the DM behaviour of each benchmark and heap
size. Furthermore, we need to adjust the object size
threshold used for allocating data in LOS to get the
best results.

We have compared our custom GCs with two completely
different and representative general-purpose GCs (see Fig-
ure 5, Figure 6 and Figure 7). First, ssCopy is the classical
Semispace Copying Collector with a Large Object Space
(LOP) of a 4K threshold for the objects sizes [9, 7]. In ad-
dition, we have compared our custom GC with a state-of-
the-art Generational Copying collector using a fixed nurs-
ery size of 10% of the heap size, i.e. genl0%. We have
used this value because Blackburn [4] reports that the best
range for fixed generational collectors is between 5% and
15%. Thus, we have chosen this intermediate value of 10%
to measure our custom GC against.

The results obtained in the benchmarks comparing our
custom GCs with these previous reference GCs show that
our custom GCs reduces significantly their execution times.
This speedup depends on the amount of memory available
for the GC (see Figure 5 and Figure 6) and when more mem-
ory is available, more gains are achieved. As we explained
in Subsection 3.1, it is possible in our GC design space to
create a global GC as combination of several policies, which
allows to reduce the weaknesses of each GC policy and ef-

nn

COMPUTER
SOCIETY

Raytrace. Execution Time

750
700
650
1 ssCopy
§ 600 i \\-\‘ —~
3 550 - T gen10%

\\“v—#*—ﬂq—v—h_,_

500

450 1 \K‘\Q\ - -

400

1152 25 3 35 4 45 5 55 6 65 7
Heap Size

Figure 7. Execution time comparisons results

for the Raytrace benchmark application

ficiently use the total DM available in the system. This
is depicted in Figure 7, which shows the execution time
results for the Raytrace benchmark application. Our cus-
tom GC accomplishes always the best results by combining
application-specific versions of both state-of-the-art strate-
gies in the same global GC and applying each strategy when
they accomplish the best DM management of the system.
At last, to evaluate the complexity of the design process
with our method, we want to remark that the design and
implementation of the final custom GC managers for each
case study presented took us only one week. These custom
GCs are mainly optimized for execution time. However,
trade-offs between the relevant design factors (e.g. reduc-
ing power consumption by increasing slightly the execution
time) are possible using our method if the designer needs it.

6 Conclusions

New embedded devices can execute presently complex
and dynamic applications (e.g. multimedia). These new ap-
plications include intensive dynamic memory requirements
that must be heavily optimized (i.e. memory footprint,
power and performance) for an efficient mapping on cur-
rent consumer embedded devices. System-level exploration
and refinement methodologies have started to be proposed
to consistently perform these optimizations. Within them,
the creation of convenient custom GC designs for these new
multimedia applications is one of the most time-consuming
and programming intensive parts. In this paper we have
presented a new system-level method to design custom GC
mechanisms. This method largely simplifies the complex
engineering process of analyzing and designing suitable
custom GCs for embedded devices, allowing the developers
to cover a vast part of the GC design space (e.g. different
garbage distinguishing mechanisms, incremental strategies,
barriers to use, etc.) with a limited designing effort. In our

customGC

future work we plan to investigate the ways to automate and
formalize the trade-off exploration within our custom GCs
(e.g. power consumption, performace, etc.) and the possi-
ble benefits of a mixed hardware-software implementation
solution for them.

References

[1] A. Appel. Simple generational garbage collection and fast
allocation. SW Practice and Experience, 1989.

[2] D. Atienza, S. Mamagkakis, et al. DM manag. design
methodology for reduced mem. footprint in multim. and
wireless network apps. Accepted for Proc. of DATE ’04,
2004.

[3] L. Benini and G. De Micheli. System level power optimiza-
tion techniques and tools. In ACM TODAES, April 2000.

[4] S. M. Blackburn et al. Ulterior reference counting: Fast GC
without a long wait. In Proc. ACM OOPSLA, USA, 2003.

[5] P. C. David, E. Bacon et al. A real-time GC with low over-
head and consistent utilization. In Proc. ACM POPL, 2003,

[6] J. Henry G. Baker. The treadmill: Real-time GC without
motion sickness. ACM SIGPLAN Notices, 1992.

[7] IBM. Jikes’ research virtual machine 2.2.0., 2003. http:
//oss.software.ibm.com/developerworks/
oss/jikesrvm/.

[8] The source for java technology, 2003. http://java.
sun.com.

[9] R. Jones. Garbage Collection: Algorithms for Automatic
DM Management. John Wiley and Sons, July 2000.

[10] M. Leeman, D. Atienza, et al. Methodology for refinement
and optim. of DM manag. for embedded syst. in multimedia
apps. In Proc. of SiPS, 2003.

[11] N. Murphy. Safe memory usage with DM allocation. Em-
bedded Systems, May 2000.

[12] NASA. Clips: A tool for building expert systems, 2003.
http://www.ghg.net/clips/CLIPS.html.

[13] Oka and Suzuoki. Designing and programming the emotion
engine. /[EEE Micro, 1999.

[14] P. R. Panda, F. Catthoor, et al. Data and memory optimiza-
tions for embedded systems. ACM TODAES, April 2001.

[15] T. Parr. Purdue compiler construction tool set, 1992. http:
//www.ece.purdue.edu/ “hankd/PCCTS/.

[16] SPEC. Specjvm98 documentation, March 1999. http://
www . specbench.org/osg/jvm9s/.

[17] D. Stefanovic, M. Hertz, et al. Older-first GC in practice:
Evaluation in a java virtual machine. In Proc. Workshop
MSP, 2002.

[18] P.R. Wilson. Uniprocessor garbage collection techniques. In
Proc. of Int. Workshop on Mem. Management, 1992.

[19] P.R. Wilson, M. S. Johnstone, et al. Dynamic storage alloca-
tion, a survey and critical review. In Int. Workshop on Mem.
Management, UK, 1995.

[20] D.S. Wise, et al. Research demonstration of a HW reference
counting heap. Tech. report, Indiana Univ., 1997.

Proceedings of the Eighth Workshop on Interaction between Compilers and Computer Architectures (INTERACT’04) nn

COMPUTER
0-7695-2061-8/04 $20.00 © 2004 IEEE SOCIETY

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

