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Abstract—In silico modeling of Gene Regulatory Networks
(GRN) has recently aroused a lot of interest in the biological
community for modeling and understanding complex pathways.
Boolean Networks (BN) are a common modeling tool for in
silico dynamic analysis of such pathways. Although they are
known to have effectively modeled many real and complex
regulatory networks, they are deterministic in nature and have
shortcomings in modeling non-determinism that is inherent in
biological systems. Probabilistic Boolean Networks (PBN) have
been proposed to counter these shortcomings. The capabilities
of PBNs have been so far under-utilised because of the lack
of an efficient PBN toolbox. This work addresses some issues
associated with traditional methods of PBN representation and
proposes efficient algorithms to model gene regulatory networks
using PBNs.

I. INTRODUCTION

There has been a renewed interest in modeling gene
regulatory networks as Boolean networks because of their
capability to efficiently model complex networks in the
absence of knowledge on the expression dynamics of the
genes involved. Although Boolean Networks have been
used successfully in the past to model various real gene
regulatory networks [4, 9, 10], their inherent deterministic
nature and Boolean logic have been a central issue of
criticism. Non-determinism in gene regulatory networks may
exist for various reasons. For instance, a protein may not
bind to its operation site (leading to loss of functionality
represented by the GRN) or, multiple functions may exist
to explain the behaviour of a gene in similar circumstances.
Such non-deterministic behaviour is difficult to accommodate
in Boolean Networks. This prompted researchers in [12]
to propose a probabilistic extension of Boolean networks
termed as Probabilistic Boolean Networks.
In a PBN, behaviour of a gene can be described with

multiple Boolean functions. Each function has a probability
associated with it and there is at least one function corre-
sponding to each gene that can predict its expression as a
function of the expressions of the input genes. If all the
genes have only one function then a PBN is similar to a BN.
Alternatively, a PBN can be seen as a set of BNs. In that
case each BN has a probability equal to the product of the
probabilities associated with the Boolean functions of which
it is composed. Although most analyses on PBNs are done
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by looking at the latter description of a PBN, in this paper
we look at the equivalent former decription and propose a
more suitable mathematical model for efficient analyses of
probabilistic gene regulatory networks.
In this paper, we present algorithms for efficient im-

plicit representation of PBNs which enable analyses of
large GRNs that were not feasible earlier due to the cor-
reponding computational complexity. The new algorithms
are available in genYsis-P (an extended version of our
genYsis [8]) toolbox. The software binaries are available
on http://si2.epfl.ch/∼garg/genysisP.html.

II. PROBABILISTIC BOOLEAN NETWORKS

A probabilistic Boolean network (PBN) is defined by
the triplet (V, F,C), where V = {v1, v2, ..., vn} is the set
of variables in the network. Each variable vi is described
by a set of Boolean functions, Fi = {f (i)

1 , f
(i)
2 , ..., f

(i)
li

}.
Each function f

(j)
i has a probability (or chance of selection)

associated with it, which is given by the real number c
(j)
i .

Using this terminology, F = {F1, F2, ..., Fn} and C =
{C1, C2, ..., Cn}, where Ci = {c(i)

1 , c
(i)
2 , ..., c

(i)
li
} such that

∑j=1
li

c
(i)
j = 1. A sample PBN is shown in Figure 1(a). In

this figure, each variable can be described by two functions.
When PBNs are used as a representation for gene reg-

ulatory networks, variables vi correspond to the genes in
the regulatory network. For each vi, the corresponding set
of Boolean functions Fi represent the Boolean relationships
between vi and the genes that can have an influence on this
gene. And the probability values c

(j)
i represent the confidence

on using the function f
(j)
i to explain the dynamics of vj .

PBN of Figure 1(a) correspond to a gene regulatory network
of Figure 2.
A particular realization of the PBN is given by the vector

f = {f (1), f (2), ..., f (n)} taking values in F1×F2×.....×Fn.
By this definition, the number of all possible realizations (N)
of a PBN is given by Equation 1 :

N =
n

∏

i=1

li (1)

where li = |Fi| for i = 1, 2, ..., n

Two of the four possible realizations of the PBN in
Figure 1(a) are as shown in Figures 1(b) and 1(c). These
two realizations correspond to f = {f (a)

1 , f
(b)
1 } and f =

{f (a)
1 , f

(b)
2 } respectively. Each realization of a PBN repre-

sents a Boolean network. All possible realizations of a PBN
can be represented by using an N × n matrix K where the
row elements kij {∀j = 1, 2, ..., n} represent the network



(a) Probabilistic Boolean Network (b) Boolean Network 1 (c) Boolean Network 2

Fig. 1. (a) A sample PBN. There are two variables a and b and four functions f
(a)
1 = a ∧ b, f

(a)
2 = ¬a ∧ ¬b, f

(b)
1 = a ∧ ¬b and f

(b)
2 = ¬a ∧ b.

Arrow headed edges represent activation and circle headed edges represent inhibition. (b) A Boolean network formed by selecting only f
(a)
1 and f

(b)
1 . (b)

A Boolean network formed by selecting only f
(a)
1 and f

(b)
2 .

Fig. 2. A Gene Regulatory Network corresponding to PBN in Figure 1(a).

Fig. 3. State Transition Diagram corresponding to Figure 1(a). States 00,01
and 10 form an attractor. Labels on the edges represent the probability of
transition

realization i {∀i = 1, 2, ..., N} given by a vector f. Then
the probability Pi that a network realization i is selected is
given by Equation 2, where c

(j)
Kij

defines the probability of
choosing the function defined by kij for the gene vj .

Pi =
n

∏

j=1

c
(j)
kij

(2)

Let us define a Boolean vector xt of size n, that represents
the state of the network at time t. Gene vi is ON or active
at time t if xt

i = 1 and the gene vi is OFF or inactive if
xt

i = 0. The probability of making a transition from a state
xt to state xt+1 can be computed by using Equation 3 [12].

P (xt,xt+1) =
∑

i:f(1)
Ki1

=xt+1
1 ,...,f

(n)
Kin

=xt+1
n

Pi (3)

The computational complexity of Equation 3 is O(N),
where N is the number of possible PBN realizations. If each
of the n genes in the network has two possible functions,
then Equation 1 implies N = 2n . This in turn implies that
Equation 3 can not be used for networks that have a very
large number of genes ( i.e. n) even if the number of alternate
functions for each gene is as small as 2. The state transition
diagram corresponding to Figure 1(a) is as shown in Figure 3.

The values on the edges in Figure 3 represent the probability
of transition computed using Equation 3.

III. BIOLOGICAL MOTIVATION

Dynamic analysis of gene regulatory networks (GRN) can
be a powerful tool in understanding a cell differentiation
process or the progression of a disease. One of the central
features in such analyses is the identification of steady states
(or the attractors) of the GRN. If a given GRN represents the
interactions between the genes/proteins participating in a cell
differentiation process, then steady states may correspond to
the cell states. Each cell state has a gene expression profile
(i.e. a set of uniquely activated genes) that distinguishes it
from other cell states. Cell states may correspond to differ-
ent functions of the cell such as proliferation, metabolism,
apoptopsis, etc. If a given GRN represents the pathways
responsible for some diseases like cancer, then the cell states
may even correspond to tumors.
Based on the glioma gene expression data set of [5], a

small PBN of 14 genes was proposed in [13]. The 14 genes
selected in the Glioma Network play a very important role in
the formation of blood vessels. Presence or absence of some
of them can be used to differentiate between a healthy cell
and a tumor cell. For example, Tyrosine Kinase receptors
(Tie-2) along with angiopoietins plays an important role in
vasculogenesis (formation of blood vessels), the excision
repair cross-complementing (ERCC1) gene helps in DNA
damage repair, while Nuclear Factor-Kappa B (NFkB) has
been linked to the presence of tumors. On modeling this
network, we find a single attractor consisting of 4450 states.
However, when the gene NFkB is knocked-out (i.e. NFkB is
always inactive) two small attractors are found (Table I). This
behaviour could be biologically interesting as blocking NF-
kB has been known to cause tumor cells to stop proliferating,
to die, or to become more sensitive to the action of anti-
tumor agents. For these reasons NF-kB is the subject of much
active research among pharmaceutical companies as a target
for anti-cancer therapy[3].
We envision to use PBNs for more advanced applications

like experimental data analysis and on-demand drug thera-
pies. For example, given a PBN that is known to represent a
biological phenomenon and an experimental dataset emerg-
ing from a new experiment on the same biological system, it



would be interesting to associate a confidence measure with
the data. This would be particularly interesting if their is time
series data as the dynamics of PBN can then be matched with
the dynamics of the genes in the dataset.
Alternatively, given a PBN with unknown probabilities on

the Boolean functions, one could learn the probabilities from
the experimental data. This could be useful in highlighting
the gene functions that are active in a given cell. Such
analysis could be helpful for on-demand drug therapies
where treatment can be personalised to the patient under
study.
Central to all these analyses is: computation of steady

states, computation of the probability of a path from one state
of the network to another state and identification of key genes
that should be perturbed to have a desired impact on the
system. All these computational tasks have been addressed
in the literature [12, 13, 15]. However, current tools for
PBNs use an explicit representation and computation of the
networks, restricting their application to networks having
less than ten genes. Even for small networks, these explicit
techniques can not detect the presence of multiple attractors.
For instance for the glioma network, the existing PBN
toolbox could detect only one attractor on knocking the
NFkB gene [15].

IV. PBN FUNCTIONALITIES
In this section we describe some of the functionalities of

PBNs. To efficiently perform these functionalities, we pro-
vide implicit representation and traversal techniques based
on Reduced Ordered Binary Decision Diagrams (ROBDDs
or in short BDDs)[2] and Algebraic Decision Diagrams
(ADDs)[1]. For readers not familiar with BDDs and ADDs, a
small introduction is available on the software webpage. Any
Boolean function can be represented as BDDs. Henceforth,
we will describe all the algorithms in terms of Boolean
functions, although they are implemented using BDDs in
practice. ADDs are an extension of BDDs for arbitrary finite
domain values for terminal nodes and are very efficient for
matrix representation and manipulation.

A. Steady State Distribution
The state transition diagram of PBNs can be modeled as

Markov Chains consisting of 2n states and the corresponding
state transition matrix A is given by Equation 4 [12].

A(xt,xt+1) = P (xt,xt+1) (4)

Using the transition matrix A, the Power method can be used
to compute the steady state probability distribution. In this
method, given an initial probability distribution vector y(0),
Equation 5 is iterated until the condition in Equation 6 is
satisfied for some tolerance ε.

y(k) = Ay(k−1) (5)

‖y(k) − y(k−1)‖∞ < ε (6)

This method has been observed to converge in a few
iterations [15], once the matrix A has already been con-
structed. In the Boolean domain, construction of the state

transition matrix as defined by [12] has the computational
complexity of O(N · 2n · 2n). Under synchronous transition
assumption the matrix A may have at most N · 2n non-
zero entries [13]. An improved algorithm was proposed in
[15] that computes only those transitions that have non-
zero probabilities and hence reduces the complexity of the
construction of the matrix A to O(N · 2n). Even with this
reduced complexity, the factor N can still be very large for
even simple networks as we described in Section II. Even if
N is small, an explicit construction of the transition diagram
still has an exponential complexity. We will see later in this
section, how we counter this problem by using the implicit
representation and traversal techniques based on BDDs and
ADDs.
Computing a steady state distribution using Equa-

tions 5 and 6 depends upon the starting distribution y(0).
In the case of multiple attractors, different steady state
probability distributions may be found depending upon the
chosen y(0). It is not possible to make a claim on the number
of attractors for a given network using this method. Since it
is often interesting to study gene regulatory networks with
multiple steady states (or cell states), the current methodol-
ogy prevents the user from exploiting the full functionality
of PBNs. Now we describe how these issues are addressed
with our BDD based techniques.
First we introduce a modified form of Equation 3 to reduce

the complexity of computing the probability of transition
from O(N) to O(Ñ), where Ñ is given by Equation 7. Ñ
is the number of Boolean functions in a given PBN.

Ñ =
n

∑

i=1

li (7)

where li = |Fi| for i = 1, 2, ..., n

The modified formula for computing the probability of
transition is then given by Equations 8 and 9:

P (xt
i, x

t+1
i ) =

∑

j:f(i)
j =xt+1

i

c
(i)
j (8)

P (xt,xt+1) =
n

∏

i=1

P (xt
i,x

t+1
i ) (9)

In Equation 8, 0 ≤ P (xt
i, x

t+1
i ) ≤ 1 and is equal to the sum

of the probabilities associated with all those functions f
(i)
j

for which the expression of gene vi at time t + 1 matches
the function evaluation (i.e. f (i)

j = xt+1
i ). The probability of

transition of the state of the gene regulatory network from xt

to xt+1 is given by the product of the transition probabilities
of all the genes and is defined by Equation 9. The computa-
tional complexity of Equation 9 is O(Ñ). To get an idea of
the improvement in complexity with this modified equation,
if each gene can have k functions then Ñ = k · n, whereas
N = kn in Equation 1. Mathematically, Equations 3 and 9
are equivalent.
However, using this modified equation may not help in

reducing the complexity of constructing the transition matrix
A as the number of non-zero elements in the matrix are



O(N · 2n) and using this modified equation for each non-
zero entry would only increase the computational complexity
to O(Ñ · N · 2n). If the size of the transition matrix A
could be reduced so that the number of nonzero entries
are significantly smaller than O(N · 2n), then using this
modified equation could be helpful. This is the central idea
behind our BDD based technique. We compute the steady
states (or attractors) using an implicit representation based
on BDDs and compute the transition matrix implcitly (using
ADDs) only for the states restricted to the attractors. This
way the size of the matrix A is proportional to the size of the
attractor. Although it is difficult to put a bound on the number
of states in an attractor, it has been observed that it is often a
small number [15]. Dividing the problem of computing the
steady state distribution into two parts ensures that in the
event of a situation in which the size of an attractor becomes
very large to be represented as ADDs, our algorithm is at
least able to detect the states in the attractor. However, we
may not be able to compute the probability distribution of
these states in that situation.
We start by giving an implicit representation of PBNs as

Boolean functions which is suitable for the BDD represen-
tation. Given a PBN, a gene vi can have only two states ’0’
and ’1’. Since there are multiple functions f

(i)
j acting on the

gene vi at the same time, there is a possibility that some of
the functions set the expression of the gene vi to ‘0’ and
some others may set the expression to ‘1’. Let us define the
expression of the gene vi by using the function defined in
Equation 10 :

xi(t + 1) = {xt+1
i ⇔

li∨

j=1

f
(i)
j }

︸ ︷︷ ︸

I

∨ {xt+1
i ⇔

li∧

j=1

f
(i)
j }

︸ ︷︷ ︸

II

(10)

Part (I) of Equation 10 represents the situation when one of
the input functions f

(i)
j can set the expression of gene vi at

time t + 1 (given by xt+1
i ) to 1. Part (II) of Equation 10

represents the case when one of the input functions f
(i)
j can

set xt+1
i to 0.

If all the genes in the network are assumed to make
a synchronous transition, i.e. all the genes change their
expression at the same time, then the transition function
representing the state of the network between consecutive
time steps can be given by Equation 11 :

T (xt,xt+1) =
n
∧

i=1

xi(t + 1) (11)

Equation 11 is similar to Equation 2, except that it evaluates
to a binary value.
We proposed, in [8], algorithms to compute steady states

using the transition function T (xt,xt+1) (of a different form
but similar structure). The same algorithms can be used here
with a modified T (xt,xt+1). We will only give the theorems
[14] on which these algorithms are based and leave the
details of the algorithms which can be found in [14, 8].
Definition 1: Forward reachable states FR(S0) from the

states set S0 are all the states that can be reached from the

states in the set S0 by iteratively computing the forward
image (states reachable in one step) on the transition function
T (xt,xt+1) until no new states are reachable.
Definition 2: Backward reachable states, BR(S0), are all

the states xt whose forward reachable set contains at least
one state in S0.
Definition 3: A Steady State (or attractor) is the set of

states SS(xt) such that for all the states s ∈ SS(xt), the
forward reachable set FR(s) is the same as SS(xt).
Theorem 1: A state i ∈ S is a steady state if and only if

FR(i) ⊆ BR(i). State i is transient otherwise.
Theorem 2: If state i ∈ S is transient, then states in BR(i)

are all transient. If state i is steady, then all the states in
FR(i) are steady. In the latter case set {BR(i) − FR(i)}
has all the transient states.
Based on Theorems 1 and 2, we can find all the attractors

that may exist in a given state transition diagram. For every
attractor, we can construct the matrix A(xt,xt+1) restricted
to the states in that attractor and compute the steady state
probability distribution for those states. Equation 8 can also
be computed symbolically using Equations 12 and 13.

q
(i)
j = (xt+1

i ⇔ f
(i)
j ) ∧ c

(i)
j (12)

P̃ (xt
i, x

t+1
i ) =

li∨

j=1

(q(i)
j ∧ xt ∧ xt+1) (13)

We remove the variables xt
i and xt+1

i from Equation 13 by
applying the Existential Quantification (i.e. the operator ∃)
[2]. The outcome of the ∃ operator on Equation 13 is the
logic OR of Boolean variables c

(i)
j for which f

(i)
j = xt+1

i .
On substituting Boolean variables c

(i)
j with probabilities c

(i)
j

and logic OR with the sum operator, we get the probability
of transition of gene vi from xt

i to xt+1
i . The probability

of transition of all the genes vi (∀i = 1, 2, ..., n) is then
used together as in Equation 9 to compute the probability of
transition from the state xt to xt+1. Equations 9 and 13 can
be computed implicitly using ADDs.
Algorithm 1 formally describes the procedure for com-

puting the probability of a transition. In this algorithm,
Equation 13 is implemented in lines 7-10. Equation 9 is
implemented in line 11. The number of times the for loop
in line 7 is iterated is given by Equation 7 and explains the
O(Ñ) complexity of this computation.
Using both Equations 11 and 13, we can construct the

sparse transition matrix A. The matrix A now only rep-
resents the transitions among the states restricted to an
attractor (given by a set S). The column entries Aij gives
the probability of state j making a transition into state i
in one step. Equation 11 can be used to compute all the
states j that can transition into the state i in a single step.
The probabilities for these transitions can then be computed
using Equation 13. The resulting matrix A can then be used
as in Equations 5 and 6 to find the steady state probability
distribution.
Given a set of states S, Algorithm 2 can be used to

construct the state transition matrix for transitions among



Algorithm 1: Computing the probability of a transition
P (ssrc, sdest)

prob tran(Q, ssrc, sdest)1
begin2

P (ssrc, sdest) = 1.03
sdest = sdest(xt ← xt+1)4
for i = 1 to n do5

pi = 0.0;6
for j = 1 to li do7

p̃sym
i = (q

(i)
j ∧ ssrc ∧ sdest)8

psym
i = ∃

x∈{xt,xt+1} p̃sym
i9

pi = pi + real(psym
i )10

P (ssrc, sdest) = pi × P (ssrc, sdest)11

return P (ssrc, sdest)12
end13

these states. In this algorithm, first all the states in the set
S are mapped to a unique id in line 3. Then for every state
Si in the set S, we compute the states that can reach Si

in one step using the image function Ib(Si) in line 5. Now
for all the states in this set we compute the probability of
transition in line 9 using the prob tran() function described
in Algorithm 1. Algorithm 2 is implemented using ADDs in
practice.

B. Probability of a path
Given a path p(i !

1 j) = (i, s1, s2, ..., sn, j) from state
i to state j, the probability of this path, P (i !

1 j) is given
by Equation 14 :

P (i !
1 j) = P (i, s1)P (s1, s2)....P (sn, j) (14)

There can be multiple paths between any two states and the
probability P (i ! j) to go from a state i to state j is given
by the sum of the probability of all these paths. Summation
of the probability of all the paths l maintains the probability
constraint, i.e. 0 ≤

∑

l P (i !
l j) ≤ 1. To avoid making too

many P (i !
l j) computations, we apply a constraint that

only the shortest paths (or paths with minimum number of
steps) are enumerated between any two states. This gives a
lower bound on the probability P (i ! j).
Given the state transition matrix A, a row vector y(0)

of size equal to the number of states in the state transition
diagram is constructed. In this vector y(0) all the entries

Algorithm 2: Constructing the transition matrix for a
given set of states S

const tran matrix(T, S, Q)1
begin2

ID{1, ..., M} = map states(S)3
for i = 1 to S.size() do4

Snext = Ib(Si) ∧ S5
src = find ID(ID, Si)6
for j = 1 to Snext.size() do7

dest = find ID(ID, Snext
j )8

Asrc,dest = prob tran(Q, Si, Snext
j )9

return A10
end11

Algorithm 3: Computing Forward and Backward reach-
able sets
forward set(S0, T, Starget)1
/∗ backward set(S0, T, Starget) ∗/2
begin3

RS(0) ←− ∅, FS(0) ←− {S0}4
k ←− 05
while FS(k) '= ∅ do6

FS(k+1) = If (FS(k))(xt+1 ← xt) ∧ RS(k)7
/∗ FS(k+1) = Ib(FS(k))(xt ← xt+1) ∧ RS(k) ∗/8
RS(k+1) = RS(k) ∨ FS(k+1)9
if RS(k+1) ∧ Starget '= ∅ then10

return (RS(k+1))11

k ←− k + 112

/∗ Target is not reachable from source. Return Empty Set ∗/13
return ∅14

end15

Algorithm 4: Computing set of states that lie on all
shortest paths between a source and destination
compute states path(T, Ssrc, Sdest)1
begin2

FR = forward set(Ssrc, T, Starget)3
Ssrc tmp = Ssrc(xt ← xt+1))4
Sdest tmp = Sdest(xt ← xt+1))5
BR = backward set(Sdest tmp, T, Ssrc tmp)6
SReduced = FR ∧ BR(xt ← xt+1)7
return SReduced8

end9

are 0, except the entry corresponding to the source state
which is 1. Then Equation 15 is iterated until the condition
in Equation 16 is satisfied.

y(k) = Ãy
(k−1)

(15)

yk[dest] > 0 (16)

Intuitively, the iteration of Equation 15 computes the prob-
ability of reaching a state i in k iterations. The probability
values are stored in the vector y(k). Equation 16 ensures that
we stop the iteration the first time we reach the destination
state.
This computation has similar computational issues as the

probability distribution computation using Equations 5 and 6
in Section IV-A. But again, if a smaller transition matrix A
can be used then P (src ! dest) can be computed very
efficiently. Using the implicit representation we described
earlier, here we propose algorithms that first compute the
states that lie on all the shortest paths between the source
and the destination and then compute Ã restricted to these
states.
Algorithms 3, 4 and 5, along with Equations 15 and 16 can

be used to compute P (i ! j). Algorithms 3 and 4 compute
the states that lie on the shortest paths between the source
and the destination states. First, the forward reachable states
from the source state are computed in line 3 of Algorithm 4.
Then the backward reachable states from the destination state
are computed in line 6. The intersection of the forward and



Algorithm 5: Computing transition matrix for the states
lying on shortest paths between the given source and
destination states.
tran matrix path(T, Q, ssrc, sdest)1
begin2

S = compute states path(T, ssrc, sdest)3
if S = ∅ then4

/∗ Target is not reachable from source. Return NULL ∗/5
return NULL6

A = const tran matrix(T, S, Q)7
return A8

end9

the backward reachable states gives all the states that may
lie on all the paths between the source and the destination.
To ensure that we include only the shortest paths while
computing the forward and backward reachable states in
Algorithm 3, we compute reachable states upto the point
when the target state is first seen (in line 10). The reduced
state space along with Algorithm 2 is then used in Algorithm
5 to construct the state transition matrix Ã.

C. Sensitivity Analysis
Another interesting functionality of PBNs is their ability

to represent the influence of a gene on other genes in a
network. This functionality can be very useful in deciding
the genes that should be perturbed to have the maximum
impact on the state space of the network. This impact could
be in terms of the size of the attractor, number of attractors or
the probability of the reachability from one state to another.
The influence of a variable xi on a function f(x1, x2, ..., xn)
is given by Equations 17-19 [12], where ∂f(x)

∂xi
is the Boolean

difference of Function f(x) with respect to the variable xi.

Ii(f) = Pr

{
∂f(x)

∂xi
= 1

}

(17)

= Pr {f(xi = 0) -= f(xi = 1)} (18)

=
no. of x such that ∂f(x)

∂xi
= 1

2 size of vector x
(19)

Equation 20 can then be used to compute the influence of a
gene vi on the gene vj .

Ii(vj) =
li∑

k=1

Ii(f
(j)
k ) · c(j)

k (20)

This way an n × n influence matrix Γ can be constructed
to represent the influence of all the genes on all the other
genes.
In our implicit representation of PBNs, the influence

matrix can be computed trivially as explained below. Given a
Boolean function f(a, b, c) in Equation 21, it can be rewritten
in an SOP form as in Equation 22.

f = (a⊕̄b)c + bc (21)
f = āb̄c + bc (22)

In Equation 22, a three variable function f consists of two
cubes āb̄c and bc. Cube āb̄c has all the three variables in

Algorithm 6: Algorithm to compute Influence Matrix
compute influence matrix(F, C)1
begin2

for i = 1 to n do3
for j = 1 to n do4

for k = 1 to li do5
∂f
∂x

= ∃xi(f
(j)
k ∧ ¬xi) ⊕ ∃xi (f

(j)
k ∧ xi)6

cubes drv = compute Cubes( ∂f
∂x

)7
cnt = 08
for p = 1 to cubes drv.size() do9

cnt + = 2n−num var support(cubes drv[p])10

Γij+ = cnt
2n × c

(j)
k11

end12

support and evaluates to true for only one (= 23−3) Boolean
vector (i.e. a = 0, b = 0, c = 1). Cube bc has two variables
in support and evaluates to true for two (= 23−1) Boolean
vectors {111, 110}. Union of these two cubes gives three
Boolean vectors {001, 111, 110} for which function f is true.
In a BDD representation, any path from root node to 1-

leaf node represents a cube. So computing cubes is very
efficient in BDDs and the number of cubes is always less
than the number of possible boolean vectors. This method
for computing the influence matrix is formally described in
Algorithm 6. In this algorithm, an n×n influence matrix Γ is
constructed in lines 3-11. The influence of gene vi on vj (i.e.
Γij) is computed in lines 5-11. A for loop is iterated over
all the functions that may influence the gene vj . For each
function, the boolean difference is computed in line 6. Then
the cubes of the boolean difference are stored in an array in
line 7. In lines 9-10, the number of boolean vectors for all
the cubes are computed and the corresponding influence for
this function is finally added to Γij in line 11.

V. RESULTS
In this section, we present the results obtained from the

simulations on the glioma network [5, 13]. The PBN network
is not shown in this paper due to space constraints. The
network with the corresponding truth tables can be found
on the software website.
Table I gives the number and size of attractors when

TABLE I
INFLUENCE OF GENES ON ATTRACTORS.

Gene Perturbed Number Of Time
attractors states (sec)

Un-perturbed 1 4450 50
ERCC1 = 1 1 768 6
SCYB10 = 0 2 1920 ; 1662 33
NFkB1 = 0 2 2180 ; 2145 38

TABLE II
INFLUENCE OF FUNCTIONS ON ATTRACTORS.

Inactive Number Of Time
Function attractors states (sec)

f1
2 1 4424 38

f3
1 1 1633 27

f14
2 1 3815 36



TABLE III
COMPUTATIONAL RESULTS ON SYNTHETIC DATA.
Number of Maximum Time (sec)

Alt. Functions Attractor Steady Probability
Genes 1 2 3 Attractors size States Distribution
20 10 10 0 2 844 0.6 8
20 9 8 3 3 288 0.8 3
40 30 10 0 8 1536 2 7
40 23 15 2 3 2684 3 30
60 41 19 0 12 4096 39 40
60 46 10 4 18 1536 120 20

different genes are perturbed in the glioma network. A gene
is knocked out when it is constantly inactive (i.e. level 0) and
it is over-expressed when it is constantly active (i.e. level 1).
Table II represents the situation when some of the functions
are inactive in the glioma network. Function f i

j in Table II
represents the jth function of gene vi. Further details of
Functions f i

j are available on the software webpage.
All the results obtained from simulations on the glioma

network match the results shown in [15]. The computation
time of our algorithm was, at maximum, 50 seconds on a 1.8
GHz Dual Core Pentium machine with 1GB of RAM running
on Linux Fedora Core 5. The algorithms are implemented in
C++ using the CUDD package for BDDs. It is difficult to
compare the run time of our algorithms with the one achieved
by the authors in [15] since their program is not available
in the PBN toolbox [11]. However, it has been mentioned
in their paper that it takes them 20 minutes to compute the
steady state distribution on a CPU Pentium 4 machine with
1GB RAM. Moreover, their software is written in MATLAB.
The PBN toolbox in [11] can not run networks that consist of
more than 10 nodes as it quickly runs out of memory. Even
with a network of 10 nodes and two functions per gene, it
takes more than 1 hour to compute the state transition matrix.
Some results to benchmark our algorithm are given in Table
III. Columns 2, 3 and 4 represent the number of genes in
the network with 1, 2 and 3 alternate functions per gene
respectively.

VI. CONCLUSION
In this work, we have provided a framework for imple-

menting a PBN toolbox using implicit representation and
traversal techniques. The software binaries of the new tool-
box genYsis-P are freely available on our website. In the
presence of limited computational resources, genYsis-P
can handle biological networks that were earlier not possible
to simulate using the PBN toolbox of [11].
Due to space constraints we do not show the extension

of the algorithms proposed in this paper for Multiple valued
networks and Asynchronous transition models. In Multiple
Valued Networks, a gene can have more than two levels of
expressions. All the equations and methods in this paper can
be easily extended to multiple valued logic on the same lines
as in our previous work in [7]. A synchronous model assumes
that all the genes take an equal amount of time in changing
their expression levels. For example, in the state transition
diagram of Figure 3, transition from state 10 to 01 implies
that gene a and gene b move concurrently from 1 to 0 and 0

to 1 respectively. however, for some biological phenomena
it might be interesting to model asynchronous transition. We
have proposed, in the past [6], methods for asynchronous
modeling of boolean networks. Similar modeling approaches
can be extended to asynchronous modeling of PBNs.
In the future, we will incorporate multiple valued logic

and asynchronous modeling in genYsis-P and add more
functionalities for advanced applications of PBNs.
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